AI Fundamentals: planning

Maria Simi
Classical planning 2

LESSON 2: PLANNING GRAPHS, GRAPHPLAN, PARTIAL ORDER PLANNING
Planning graphs

A data structure called a **planning graph**:

1. can be used to give better heuristic estimates to employ in conjunction with search algorithms
2. is the basis of an algorithm called **GraphPlan**.

A planning graph is polynomial size approximation to the [exponential] search tree. It can be constructed quickly.

The planning graph can’t answer definitively whether G is reachable from S_0, but it can estimate how many steps it takes to reach G. This estimate is always correct when it reports the goal is not reachable, and it never overestimates the number of steps, so it represents an **admissible heuristic**.
Planning graph definition

Planning graphs work only for propositional planning problems, with no variables. A planning graph is a directed graph which is built *forward* and is organized into levels:

- a level S_0 for the initial state, representing each fluent that holds in S_0
- a level A_0 consisting of nodes for each ground action applicable in S_0
- alternating levels S_i followed by A_i are built until we reach a termination condition.

S_i contains **all the literals that could hold** at time i (even P and $\neg P$)

A_i contains all the actions that could have their preconditions satisfied at time i

Mutual exclusion links (mutex) between actions mean that two actions cannot occur at the same time. **Mutex** between literals mean that two literals cannot appear in the same belief state. More in detail after the example ...
An example of planning graph

Init(Have(Cake))
Goal(Have(Cake) ∧ Eaten(Cake))
Action(Eat(Cake))
 PRECOND: Have(Cake)
 EFFECT: ¬ Have(Cake) ∧ Eaten(Cake))
Action(Bake(Cake))
 PRECOND: ¬ Have(Cake)
 EFFECT: Have(Cake))

Rectangles indicate actions
Small squares persistence actions (no-ops)
Straight lines indicate preconditions and effects
Mutex links are shown as curved gray lines
Mutex computation

- Mutex relations between **actions:**
 1. *Inconsistent effects:* one action negates an effect of another action
 2. *Interference:* one of the effects of one action is the negation of a precondition of the other
 3. *Competing needs:* one of the preconditions of one action is mutually exclusive with a precondition of the other

- Mutex relations between **literals** at the same level
 1. if one is the negation of the other
 2. *inconsistent support:* if each possible pair of actions that could achieve the two literals is mutually exclusive. Example *Have(Cake)*, produced by *noop*, is mutex with *Eaten(Cake)*, produced by *Eat(Cake).*
Properties of the planning graph

- Each level S_i represents a set of possible belief states. Two literals connected by a mutex belong to different belief states.

- The levels, alternating S's an A's, are computed until we reach a point where two consecutive levels are identical. The graph levels off at S_2.

- The process of constructing the planning graph does not require choosing among actions and is very fast.

- A planning graph is polynomial in the size of the planning problem: an entire graph with n levels, a actions, l literals, has size $O(n(a + l)^2)$. Time complexity is the same.

- The level j at which a literal first appears is never greater than the level at which it can be achieved.
Use of planning graphs for heuristic estimation

Information that can be extracted from the planning graph:

1. If any goal literal fails to appear in the final level of the graph, then the problem is **unsolvable**;

2. We can estimate the cost of achieving a goal literal g_i as the level at which g_i first appears in the planning graph, the **level cost**. This estimate is **admissible**.

3. A better estimate can be obtained by **serial planning graphs**, only one action at each level.

Estimating the heuristic of a conjunction of goals:

1. **max-level** heuristic: the maximum **level cost** of any of the sub-goals. Admissible.

2. **level sum** heuristic: the sum of the level costs of the goals. This can be inadmissible when goals are not independent, but can be accurate.

3. **set-level** heuristic: finds the level at which all the literals appear together in the planning graph, without any mutex between pair of them. Admissible, accurate.
The planning graph as relaxed problem

We can only prove that:

If there exists a plan with i action levels that achieves g then g appears at level i

but not vice versa.

If g does appear at level i, the plan possibly exists but, in order to be sure, we need to check the *mutex* relations, pairs of conflicting actions or pairs of conflicting literals.

Even so, there are plans that are not recognized as impossible, for example the goal to get block A on B, B on C, and C on A. To detect that this problem is impossible, we would have to search over the planning graph.
The GRAPHPLAN algorithm

The GRAPHPLAN algorithm is a strategy for **extracting a plan** from the planning graph.

The planning graph is computed **incrementally** by the function EXPAND-GRAPH. Once a level is reached where all the goals show up as non-mutex, a plan is extracted with EXTRACT-SOLUTION.

If this EXTRACT-SOLUTION fails, the failure is recorded as a **no-good**, another level is expanded and the process repeats until a terminal condition is met.
GRAPHPLAN pseudo-code

```plaintext
function GRAPHPLAN(problem) returns solution or failure

graph ← INITIAL-PLANNING-GRAPH(problem)
goals ← CONJUNCTS(problem.GOAL)
nogoods ← an empty hash table
for tl = 0 to ∞ do
    if goals all non-mutex in S_t of graph then
        solution ← EXTRACT-SOLUTION(graph, goals, NUMLEVELS(graph), nogoods)
        if solution ≠ failure then return solution
    if graph and nogoods have both leveled off then return failure
    graph ← EXPAND-GRAPH(graph, problem)
```
GRAPHPLAN on the *spare-tire* example

\[S_0 \]
- At(Spare, Trunk)
- At(Flat, Axle)
- At(Spare, Axle)
- At(Flat, Ground)
- At(Spare, Ground)

\[S_1 \]
- At(Spare, Trunk)
- At(Flat, Axle)
- At(Spare, Axle)
- At(Flat, Ground)
- At(Spare, Ground)

\[S_2 \]
- At(Spare, Trunk)
- At(Flat, Axle)
- At(Spare, Axle)
- At(Flat, Ground)
- At(Spare, Ground)

\[A_0 \]
- Remove(Spare, Trunk)
- Remove(Flat, Axle)
- LeaveOvernight

\[A_1 \]
- Remove(Spare, Trunk)
- Remove(Flat, Axle)
- LeaveOvernight
- PutOn(Spare, Axle)
Progress of the algorithm

1. The planning graph is initialized with S_0, representing the initial state. The goal $At(Spare, Axle)$ is not present in S_0.

2. **EXPAND-GRApH adds into A_o the three applicable actions and persistence actions for all the literals in S_0. The effects of the actions are added at level S_1. Mutex relations are also added to the graph.**

3. $At(Spare, Axle)$ is not still present in S_1, so again we call **EXPAND-GRApH adding A_1 and S_2**

4. All the literals from the goal are present in S_2, and none of them is mutex with any other, ... so we can call **EXTRACT-SOLUTION.**
Two approaches:

1. **Solve as a boolean CSP**: the variables are the actions at each level, the values for each variable are *in* or *out* of the plan, and the constraints are the mutex and the need to satisfy each goal and precondition.

2. **Solve as a backward search problem**:
 - Start with \(S_n \), the last level of the planning graphs, and the goals.
 - For each level \(S_i \) select a number of non-conflicting actions in \(A_{i-1} \) whose effects cover the goals in \(S_i \). The resulting state is \(S_{i-1} \) with goals the preconditions of the selected actions.
 - The process is repeated until level \(S_0 \) hoping all the goals are satisfied.

If **EXTRACT-SOLUTION** fails to find a solution for a set of goals at a given level, we record the \((level, goals)\) pair as **no-good**, so that we can avoid to repeat the computation.

Going back to the example ...
Complexity and heuristics

Constructing the planning graph takes polynomial time.
Solution extraction is intractable in the worst case.
Heuristics exist.

Greedy algorithm based on the level cost of the literals:

1. Pick first the literal with the highest level cost.
2. To achieve that literal, prefer actions with easier preconditions. That is, choose an action such that the sum (or maximum) of the level costs of its preconditions is smallest.
Termination of GRAPHPLAN

We can prove that GRAPHPLAN will in fact terminate and return failure when there is no solution.

But we may need to expand the graph even after it levels off.

Theorem: If the graph and the no-goods have both leveled off, and no solution is found we can safely terminate with failure.

Sketch of the proof:

1. Literals and actions increase monotonically and are finite, we need to reach a level where they stabilize.
2. Mutex and no-goods decrease monotonically and cannot become less than zero, so they too must level off.
3. When we reach this stable state if one of the goals is missing or is mutex with another goal it will remain so. We may as well stop computation.
International Planning Competition

<table>
<thead>
<tr>
<th>Year</th>
<th>Track</th>
<th>Winning Systems (approaches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>Optimal</td>
<td>GAMER (model checking, bidirectional search)</td>
</tr>
<tr>
<td>2008</td>
<td>Satisficing</td>
<td>LAMA (fast downward search with FF heuristic)</td>
</tr>
<tr>
<td>2006</td>
<td>Optimal</td>
<td>SATPLAN, MAXPLAN (Boolean satisfiability)</td>
</tr>
<tr>
<td>2006</td>
<td>Satisficing</td>
<td>SGPLAN (forward search; partitions into independent subproblems)</td>
</tr>
<tr>
<td>2004</td>
<td>Optimal</td>
<td>SATPLAN (Boolean satisfiability)</td>
</tr>
<tr>
<td>2004</td>
<td>Satisficing</td>
<td>FAST DIAGONALLY DOWNWARD (forward search with causal graph)</td>
</tr>
<tr>
<td>2002</td>
<td>Automated</td>
<td>LPG (local search, planning graphs converted to CSPs)</td>
</tr>
<tr>
<td>2002</td>
<td>Hand-coded</td>
<td>TLPLAN (temporal action logic with control rules for forward search)</td>
</tr>
<tr>
<td>2000</td>
<td>Automated</td>
<td>FF (forward search)</td>
</tr>
<tr>
<td>2000</td>
<td>Hand-coded</td>
<td>TALPLANNER (temporal action logic with control rules for forward search)</td>
</tr>
<tr>
<td>1998</td>
<td>Automated</td>
<td>IPP (planning graphs); HSP (forward search)</td>
</tr>
</tbody>
</table>
Other classical approaches

1. Planning as a Constraint Satisfaction problem.
2. Planning as refinement of partially ordered plans

Partial Order Planning is an interesting approach, very popular in the nineties. Interesting since it addresses the issue of independent subgoals, that can be performed in parallel. For some specific tasks, such as operations scheduling is the technology of choice.

Interesting because it represents a change of paradigm: planning as search in the state of partial plans rather than in space of states.

The plan refinement approach is also more explainable: it makes it easier for the humans to understand what the planning algorithms are doing and verify that they are correct.
Partial Order Planning: ideas

The driving principle is **least-commitment**.

Partially ordered plans:
- Do not order steps in the plan unless necessary to do so.
- In a partial-order plan steps are partially ordered.
- *Plan linearization*: to impose a total order to a partially ordered plan.

Partially instantiated plans:
- Leave variables uninstantiated until is necessary to instantiate them.
- A plan without variables is said to be **totally instantiated**.
Searching in the space of partial plans

Instead of searching in space of states as in the classical formulation, we search in the space of partial plans.

1. We start with an empty plan.
2. At each step we use operators for plan construction and refinement:
 - We can add actions in order to satisfy some pre-condition, i.e. fixing flaws in the plan.
 - We can instantiate variables.
 - We can add ordering constraints between steps.
3. We stop when we obtain a consistent and complete plan where:
 - All the preconditions of all the steps are satisfied
 - Ordering constraints do not create cycles

Every linearization is a solution.
Empty plan

Facts holding in the initial state

Facts that must hold in the goal state

NI L
Representation for plans

Partial plan are represented as:

- A set of actions, among them Start and Finish.
- A set of open preconditions.
- Constraints among actions of two different types:
 - Ordering relations: $S_1 < S_2$ (\(S_1\) before \(S_2\))
 - Causal links $S_1 \rightarrow_{\text{cond}} S_2$ (\(S_1\) achieves cond for \(S_2\))

Note: If $S_1 \rightarrow_{\text{cond}} S_2$ then $S_1 < S_2$ but not vice versa

Example:

\{Unstack(A, B), Unstack(C, D), Stack(B, A), Stack(D, C), Start, Finish\}

Unstack(A, B) \prec Stack(B, A) \hspace{1cm} Unstack(A, B) \rightarrow Clear(B) Stack(B, A)

Unstack(C, D) \prec Stack(D, C) \hspace{1cm} Unstack(C, D) \rightarrow Clear(D) Stack(D, C)
Representation for actions

Action Stack

- Clear(x)
- Table(x)
- Clear(y)

Stack(x, y)

- ¬Clear(y)
- ¬Table(x)
- On(x, y)

Action Unstack

- Clear(x)
- On(x, y)

Unstack(x, y)

- Clear(y)
- Table(x)
- ¬On(x, y)
PoP algorithm

We start with the empty plan, with Start and Finish.

At each step:

- We choose a step B and one of its open preconditions p and we generate a successor plan for each action A (old or new) having p among the effects.

- After choosing an action A consistency is re-established as follows:
 - Add to the plan the constraints $A < B$ and $A \rightarrow_p B$.
 - Possible actions C having $\neg p$ as effect, are potential conflicts (or threats). They need to be anticipated or delayed adding the constraints $C < A$ or $B < C$. This step may fail.

- We stop when the set of open pre-conditions is empty.
Threats removal

(a) S_3 is a threat for pre-condition c of S_2, achieved by S_1
(b) The threat is resolved by demotion
(c) The threat is resolved by promotion
POP in action

Start < Finish
Start < Stack(a, b) < Finish
Start < Stack(b, c) < Finish
Stack(b, c) < Stack(a, b)
Unstack(c, a) < Stack(b, c)
PoP: analysis

- We obtained a complete and consistent partial plan
- Any linearization is a solution: in this case only one:
 \[\text{Unstack}(C, A), \text{Stack}(B, C), \text{Stack}(A, B)\]
- The PoP algorithm is correct and complete:
 - any plan computed is a solution
 - If a plan exists, the algorithm finds it
- The Sussman’s anomaly was solved without problems.
Conclusions

✓ Planning combines search and logic.
✓ Progress in forward planning (GRAPHPLAN and PLANSAT) has been steady in the last ten years and there is an increasing use of planners in industrial applications.
✓ Planners rely on a combination of heuristics and there is no clear winning approach for every domain.
✓ An important speed-up can be obtained by recognizing that a problem has serializable subgoals, i.e. subgoals can be ordered in such a way that they can be achieved in that order without having to undo any of the previously achieved subgoals.
✓ Next time we go outside “classical planning” to more realistic scenarios.
Your turn

- Describe more heuristics for planning
- Describe some of the winning algorithms for planning
- Implement/run Partial order planning algorithms
- Compute the planning graph for a new problem and discuss the execution of GraphPlan.
References