
AI	Fundamentals:	planning
Maria	Simi

Planning	and	acting	
in	the	real	world
LESSON	3:	PLANNING	WITH	CONSTRAINTS	– HIERARCHICAL	
PLANNING	– NON	DETERMINISTIC	PLANNING	– MULTI-AGENT	
PLANNING

Summary
1. Actions	with	duration	and	resource	constraints
2. Hierarchical	planning
3. Planning	and	acting	in	nondeterministic	domains
4. Planning	in	a	multi-agent	environments

27/11/17 AI	FUNDAMENTALS	- M.	SIMI 3

Actions	with	duration	and	
resource	constraints

Combining	planning	and	scheduling
• In	classical	planning	we	do	not	take	into	account	the	duration	of	the	actions	

and	resource	constraints.
• These	factors	are	important	in	scheduling	problems.
• The	most	common	approach	is	“plan	first,	schedule	later”.	Divide	the	

problem	into:
1. A	planning	phase:	produces	a	partially	ordered	plan	with	a	minimum	set	of	

ordering	constraints	on	actions.	We	can	use	SATPLAN,	GRAPHPLAN,	POP …
2. A	scheduling	phase:	we	take	into	account	the	duration	of	actions	and	other	

resources.

27/11/17 AI	FUNDAMENTALS	- M.	SIMI 5

The	language	for	scheduling	problems
Jobs:	a	collection	of	actions	with	ordering	constraints.
Constraints	on	actions:
• Duration
• Resources	needed
• the	type	(personnel,	materials,	tools,	machinery	…)
• the	quantity	
• consumable/reusable	distinction.	Resources	can	also	be	produced	(negative	consumption).

A	solution	must	specify	the	start	times	for	each	action	and	must	satisfy	all	the	temporal	
ordering	constraints	and	resource	constraints.
A	solution	has	a	cost	function:	for	simplicity	we	assume	it	is	the	total	duration	
(makespan)

27/11/17 AI	FUNDAMENTALS	- M.	SIMI 6

A	job-shop	scheduling	problem

27/11/17 AI	FUNDAMENTALS	- M.	SIMI 7

§ The	assembly	of	two	cars.
§ Two	jobs.
§ Four	types	of	resources	and	

their	quantities	available	a
§ Action	schemas,	with	duration

and	resources	needed,	their	use
or	consumption,	quantities	(not	
individual	resources	---a	useful	
abstraction,	aggregation)

Solving	scheduling	problems
We	start	with	temporal	scheduling.
Ordering	constraints	can	be	visualized	as	a	directed	graph.
A	path	from	Start to	Finish	is	a	linear	sequence	of	actions.	The	critical	path	is	the	
longest	path	(in	bold).	“Critical”	because	it	conditions	the	duration	of	the	whole	plan.
Actions	have	a	window	for	their	execution,	taking	into	account	the	earliest	possible	start	
time	(ES)	and	the	latest	possible	star	time	(LS).	The	quantity	(LS	– ES)	is	called	the	slack	
of	the	action.

27/11/17 AI	FUNDAMENTALS	- M.	SIMI 8

Start
 [0,0]

AddEngine1
30

 [0,15]
AddWheels1

30

 [30,45]

10
Inspect1

 [60,75]

Finish
 [85,85]

10
Inspect2

 [75,75]

15
AddWheels2

 [60,60]

60
AddEngine2

 [0,0]

AddEngine1

AddWheels1

Inspect1

AddWheels2

Inspect2AddEngine2

0 10 20 30 40 50 60 70 80 90

Critical	Path	Method	(CPM)
The	ES	and	LS	times	for	all	the	actions	constitute	a	schedule for	the	problem.
Definition:
• ES(Start)	=	0
• ES(B)	=	maxA≺B (ES(A)	+	Duration(A))		for	any	action	A preceding	B
• LS(Finish)	=	ES(Finish)
• LS(A)	=	minB ≻A	(LS(B)	−	Duration(A))		for	any	action	B following	A
Method,	going	forward:
1. Start	with	ES(Start)	=	0
2. When	we	reach	an	action	B such	all	preceding	actions	A have	their	ES,	compute ES(B)
Going	backword:
1. LS(Finish)	=	ES(Finish)
2. When	we	reach	an	action	A such	as	all	the	following	action	have	their	LS(B),	compute LS(A)

28/11/17 AI	FUNDAMENTALS	- M.	SIMI 9

A
max

ES(B)

B

B
min

LS(A)
A

27/11/17 AI	FUNDAMENTALS	- M.	SIMI 10

Start
 [0,0]

AddEngine1
30

 [0,15]
AddWheels1

30

 [30,45]

10
Inspect1

 [60,75]

Finish
 [85,85]

10
Inspect2

 [75,75]

15
AddWheels2

 [60,60]

60
AddEngine2

 [0,0]

AddEngine1

AddWheels1

Inspect1

AddWheels2

Inspect2AddEngine2

0 10 20 30 40 50 60 70 80 90

Slack	of	action	Addweels1

Critical	path;	no	slacks

Complexity:	O(Nb)
- N	is	the	number	of	actions
- b is	the	maximum	branching	factor	
into	or	out	of	an	action.

Introducing	resource	constraints
Introducing	resource	constraints,	the	resulting	constraints	on	start	and	end	times	
become	more	complicated.
For	example	AddEngine1 and	AddEngine2	require	the	same	tool	and	cannot	overlap.	
Below	the	shortest	duration	plan,	taking	onto	account	reusable	resources	(these	are	
reported	on	left).

27/11/17 AI	FUNDAMENTALS	- M.	SIMI 11

AddEngine1

AddWheels1

Inspect1

AddWheels2

Inspect2

AddEngine2

0 10 20 30 40 50 60 70 80 90 100 110 120

EngineHoists(1)

WheelStations(1)

Inspectors(2)

Minimum	slack	algorithm

27/11/17 AI	FUNDAMENTALS	- M.	SIMI 12

The	“cannot	overlap”	constraint	is	a	disjunction	of	two	linear	inequalities,	one	for	each	
possible	ordering.	
The	introduction	of	disjunctions	turns	out	to	make	scheduling	with	resource	constraints	
NP-hard.
The	minimum	slack	algorithm is	one	of	many.
The	heuristic	is	the	following;	on	each	iteration:
§ Select	for	scheduling	the	action	with	the	least	slack	among	unscheduled	actions	
having	all	predecessors	scheduled;	schedule	this	action	for	the	earliest	possible	start.

§ then	update	the	ES	and	LS	times	for	each	affected	action	and	repeat.	
The	heuristic	resembles	the	minimum-remaining-values	(MRV)	heuristic	in	constraint	
satisfaction.	
Not	optimal:	on	the	example	this	heuristic	does	not	find	the	shortest	solution.

Hierarchical	planning

Hierarchical	decomposition
A	strategy	to	dominate	complexity	is	to	work	at	different	level	of	abstractions.	
Humans	do	not	plan	at	the	level	of	single	muscle	activation.	The	complexity	
would	be	too	high.
We	could	also	plan	at	a	high	level	and	defer	computation	of	more	detailed	plans	
until	necessary	for	execution.	Especially	when	dealing	with	non	determinism.
Hierarchical	decomposition	is	a	winning	organizing	principle	in	complex	
organizations,	software	development	and	many	other	fields

27/11/17 AI	FUNDAMENTALS	- M.	SIMI 14

High	level	actions
We	are	in	the	domain	of	Hierarchical	Task	
Networks	planning	(HTN	planning).
We	distinguish	actions	in:
• Primitive	actions	(directly	executable	by	the	

agent)
• High	Level	Actions	(HLA)
Each	HLA	has	one	or	more	possible	refinements
in	terms	of	a	sequence	of	primitive	or	high	level	
actions.
Specifying	the	decomposition	humans	have	the	
possibility	to	express	knowledge	about	their	
strategy
The	navigate	example	(for	the	vacuum	world)	
shows	recursive	refinements.

27/11/17 AI	FUNDAMENTALS	- M.	SIMI 15

Going	to	SFO

The	vacuum	
world

High	level	plans
HLA’s	with	only	primitive	actions	are	implementations.
Example:	the	sequences	[Right	,	Right	,	Down]	and	[Down,	Right	,	Right],	in	a	grid	
world,	both	implement	the	HLA	Navigate([1,	3],	[3,	2]).
An	implementation	of	a	high-level	plan	(a	sequence	of	HLAs)	is	the	concatenation	of	
implementations	of	each	HLA	in	the	sequence.
A	high-level	plan	achieves	the	goal	from	a	given	state	if	atleast one	of	its	
implementations	achieves	the	goal	from	that	state.
When	a	HLA	has	multiple	implementations,	there	are	two	options
1. to	search	for	one	of	the	primitive	solution	that	works
2. to	reason	about	correctness	of	abstract	plans,	without	considering	implementations

27/11/17 AI	FUNDAMENTALS	- M.	SIMI 16

Searching	for	primitive	solutions
We	start	with	Act is	the	top	level	action	and	the	goal	is	to	find	an	
implementation	of	Act.
Classical	planning	problems	can	be	recursively	defined	as	follows:
- for	each	primitive	action	ai,	provide	a refinement	of	Act with	steps	[ai,	Act].

Proceed	with	Act ←	[ai,	Act].
- stop	when	Act,	is	achieved,	i.e.	admits	a	refinement	with	an	empty	list	of	

steps.
One	possible	implementation	based	on	breadth-first	tree	search	follows.

28/11/17 AI	FUNDAMENTALS	- M.	SIMI 17

Breadth	first	hierarchical	search	

27/11/17 AI	FUNDAMENTALS	- M.	SIMI 18

You	found	a	good	primitive	plan
Try	all	refinements

Breadth	first

[Go(Home,	SFO)]

The	state	after	prefix.

Go(Home,	SFO)

Complexity	of	hierarchical	planning
●

◦ ◦ ◦ ●●● ◦ ◦ ◦
◦ ◦ ◦ ●●●●●●●●● ◦ ◦ ◦

…

●●● ●●● ●●● ●●● ●●● ●●● ●●● ●●● ●●●

27/11/17 AI	FUNDAMENTALS	- M.	SIMI 19

K	refinements	at	each	level

logk d	levels

d	primitive	actions

Number	of	nodes	expanded,	assuming	one	refinement	for	each	HLA:
1	+	k +	k2+…+	klogk d – 1	=	(d – 1)/(k – 1) see	next	slide	for	more	detail

Assuming r	refinements	for	each	of	the	k	actions,	the	number	of	possible	refinement	
trees	is:	r (d−1)/(k−1) to	be	compared	with	O(bd)	of	classical	planning,	where	b is	

the	number	of	actions	at	each	level	and	d the	length	of	the	plan.
Keeping	r small	and	k large	can	result	in	huge	savings:	a	library	of	long	primitive	plans	…

Justification
This	computation	requires	some	more	detail:
1	+	k +	k2+…+	klogk d – 1	=	(d –1)/(k	–1)

Let	#(n)	be	the	number	of	nodes	expanded	to	reach	level	n.
#(n	–1)	=	1	+	k +	k2+…+	kn-1

k #(n)	=	1	+	k(1	+	k +	k2+…+	kn-1)	=	1	+	k	#(n	–1)	
#(n	–1)	=	(#(n)	–1)/k
#(n	–1)	=	(d	+	#(n	–1)	– 1)/k the	nodes	at	the	nth levels	are	d
k #(n	–1)	=	d	+	#(n	–1)	– 1
k #(n	–1)	– #(n	–1)	=	d	– 1
#(n	–1)	=	(d	– 1)/(k	– 1)

27/11/17 AI	FUNDAMENTALS	- M.	SIMI 20

Searching	for	abstract	solutions
[Drive(Home,	SFOLongTermParking),	Shuttle(SFOLongTermParking,	SFO)]
The	question	is:	can	we	prove	that	this	plan	is	correct at	an	abstract	level?
We	could	add	pre	and	post-conditions	to	HLA’s	and	see	that	they	are	satisfied.	
The	downward	refinement	property	for	HLA	descriptions	guarantees	that	the	high	level	
plan	has	at	least	one	correct	implementation.
How	to	provide	such	a	guarantee	in	case	of	multiple	implementations?	Since	a	single	
HLA	can	be	implemented	in	different	way,	what	is	its	global	effect?
Example:	the	HLA	Go(Home,	SFOLongTermParking)	can	be	refined	by	two	
actions: Drive(Home, SFOLongTermParking)	and	Taxi(Home, SFO).		The	second	one	
may	require	Money	as	pre-condition.	Can	we	guarantee	the	effect	of	Go?

27/11/17 AI	FUNDAMENTALS	- M.	SIMI 21

Angelic	semantics	for	HLA’s
We	are	facing	a	non	deterministic	choice	which	is	in	control	of	the	agent	(angelic non-
determinism)	and	not	something	which	is	decided	by	some	external	entity	(demonic non-
determinism).	The	agent	has	a	solution	and	this	is	enough.
Angelic	semantics	relies	on	the	notion	of	reachable	set	of	an	HLA:	

Given	a	state	s,	the	reachable	set	for	an	HLA	h,	written	as	REACH(s,	h),	is	the	set	of	states	
reachable	by	any	of	the	HLA’s	implementations.

Reachable	set	of	a	sequence	of	HLA’s:
The	reachable	set	of	a	sequence	[h1,	h2] is	the	union	of	all	the	reachable	sets	of	states	obtained	by	
applying	h2 in	each	state	in	the	reachable	set	of	h1:	
REACH(s,	[h1,	h2])	=	⋃ REACH(s’,	h2)�

s’	∈	REACH(s,	h1)
Definition:	A	high-level	plan—a	sequence	of	HLAs—achieves	the	goal	if	its	reachable	set	intersects	
the	set	of	goal	states.
If	the	reachable	set	doesn’t	intersect	the	goal,	then	there	is	no	plan.

28/11/17 AI	FUNDAMENTALS	- M.	SIMI 22

A	visualization	of	reachability

(a) (b)

27/11/17 AI	FUNDAMENTALS	- M.	SIMI 23

The	grey	area	includes	goal	states.	The	dotted	area
is	the	reachable	set	of	an	HLA	h1 in	a	state	s	.

The	reachable	set	for	the	sequence	[h1,	h2]	.	The	
sequence	achieves	the	goal.

Angelic	Search	algorithm
Search	among	high	level plans,	looking	for	one	whose	reachable	set	intersects	the	goal;	
once	that	happens,	the	algorithm	can	commit	to	that	abstract	plan	and	focus	on	refining	
the	plan	further.
Problem:	in	many	cases	we	can	only	approximate	the	effects	because	an	HLA	may	have	
infinitely	many	implementations.	This	leads,	skipping	many	details,		to	the	definition	of	
two	approximate	representation	of	reachable	sets	for	h.
- An	optimistic	description	REACH+(s,	h)	of	hmay	overstate	the	reachable	set.	
- A	pessimistic	description	REACH−(s,	h)	of	hmay	understate	the	reachable	set.	
Thus	the	relation:	REACH−(s,	h)	⊆ REACH(s,	h)	⊆ REACH+(s,	h)
The	algorithm	fails	when	REACH+(s,	h)	does	not	intersect	the	goal	and	succeeds	when	
REACH−(s,	h) intersects	the	goal.
When	REACH+(s,	h)	intersects	and REACH−(s,	h)	does	not,	the	algorithm	needs	to	refine	
the	plan	and	check	whether	a	plan	is	possible.

28/11/17 AI	FUNDAMENTALS	- M.	SIMI 24

Angelic-Search

27/11/17 AI	FUNDAMENTALS	- M.	SIMI 25

The	plan	exists
We	can	commit	to	the	abstract	plan

We	need	to	refine	the	abstract	plan

Planning	and	acting	in	
nondeterministic	domains

Planning	and	acting	in	nondeterministic	domains
Consider	partially	observable,	nondeterministic,	and	unknown	environments.
1. sensorless planning	(also	known	as	conformant planning)	for	environments	

with	no	observations;	
2. contingent	planning for	partially	observable	and	nondeterministic	

environments;
3. online	planning	and	re-planning for	unknown	environments.
The	belief	state	in	all	these	cases	is	uncertain.	For	this	reason	we	need	to	change	
the	representation	of	states.

27/11/17 AI	FUNDAMENTALS	- M.	SIMI 27

An	example
Given	a	chair	and	a	table,	the	goal	is	to	have	them	the	same	color.	In	the	initial	state	we	
have	two	cans	of	paint,	but	the	colors	of	the	paint	and	the	chair	are	unknown.		Only	the	
table	is	initially	in	the	agent’s	field	of	view.

Init:	Object(Table)	∧	Object(Chair)	∧	Can(C1)	∧	Can(C2)	∧	InView(Table)
Goal:	Color(Chair,	c)	∧	Color(Table,	c)	 c	is	a	variable

There	are	two	actions:	
1. removing	the	lid	from	a	paint	can	
2. painting	an	object	using	the	paint	from	an	open	can.

Action(RemoveLid(can), Action(Paint(x ,	can),
PRECOND:	Can(can) PRECOND:	Object(x)	∧	Can(can)	∧
EFFECT:	Open(can))	 Color(can,	c)	∧	Open(can)

EFFECT:	Color(x , c))
Note:	c is	not	a	variable	of	the	schema

27/11/17 AI	FUNDAMENTALS	- M.	SIMI 28

Percepts
We	need	to	formalize	perceptions,	by	means	of	percept	schema:
Percept(Color(x,	c),
PRECOND:	Object(x)	∧	InView(x))

Percept(Color(can,	c),
PRECOND:	Can(can)	∧	InView(can)	∧	Open(can))

We	also	need	an	action	LookAt:
Action(LookAt(x),
PRECOND:	InView(y)	∧	(x ≠	y) one	at	a	time
EFFECT:	InView(x)	∧	¬InView(y))

27/11/17 AI	FUNDAMENTALS	- M.	SIMI 29

Sensorless planning
Backround knowledge:	 Object(Table)	∧	Object(Chair)	∧	Can(C1)	∧	Can(C2)
Initial	state	b0:	Color(x, C(x)) any	object	has	a	color
We	cannot	assume	the	CWA	as	in	classical	planning.	States	must	also	include	negative	
literals. A	possible	plan	is:
[RemoveLid(Can1),	Paint(Chair,	Can1),	Paint(Table,	Can1)]

Let’s	execute	the	plan:
RemoveLid(Can1)	in	b0	→	b1	=	Color(x,	C(x))	∧	Open(Can1)
Paint(Chair,	Can1)	in	b1→	b2	=	Color(x,	C(x))	∧	Open(Can1) ∧	Color(Chair,	C(Can1))
Paint(Table,	Can1)	in	b2	→	

b3	=	Color(x,	C(x))	∧	Open(Can1) ∧	Color(Chair,	C(Can1))	∧	Color(Table,	C(Can1))

In	this	example	the	belief	representation	is	always	a	conjunction	of	literals	(1-CNF)	

27/11/17 AI	FUNDAMENTALS	- M.	SIMI 30

Actions	with	conditional	effects
There	may	be	actions	whose	effect	depends	on	some	aspect	of	the	state.
Consider	the	Vacuum	world	with	two	locations.	

Fluents are:	AtL,		AtR,	CleanL,	CleanR
Action(Suck,
EFFECT:	when	AtL:	CleanL ∧	when AtR:	CleanR)

Not	knowing	location	leads	to	uncertain	beliefs.	After	Suck	the	resulting	belief	state	is:
(AtL ∧	CleanL)	∨	(AtR ∧ CleanR)	 no	longer	in	1-CNF.

Note:	having	two	Suck	actions	with	different	pre-conditions	(AtL and AtR)	does	not	work;	we	
cannot	determine	applicability	of	the	actions.
An	approximation	of	the	belief	state	is	necessary.		
AIMA	discusses	a	few	of	them.	Details	are	omitted.

27/11/17 AI	FUNDAMENTALS	- M.	SIMI 31

Contingent	planning
Contingent	planning	is	the	generation	of	plans	with	conditional	branching	based	on	
percepts.	It	is	appropriate	for	environments	with	partial	observability,	nondeterminism,	
or	both.	The	action	is	selected	on	the	basis	of	perceptions.	Different	from	conditional	
planning.

Computation	of	the	new	belief	state	is	done	in	two	steps:
1. Compute	the	belief	state	as	a	result	of	actions	(using	add	and	delete	lists)
2. Update	le	belief	state	according	to	perceptions

27/11/17 AI	FUNDAMENTALS	- M.	SIMI 32

Online	replanning
In	contingent	planning	you	have	to	consider	all	the	contingencies	that	may	arise.
An	alternative,	or	addition,	to	contingent	planning	is	replanning during	execution.
Different	reasons	for	replanning:
§ Inaccurate	model	(missing	preconditions,	missing	effect,	missing	state	variables	…)
§ exogenous	events
It	requires	some	execution	monitoring:
§ Action	monitoring	(preconds ok?)
§ Plan	monitoring	(rest	of	plan	still	ok?)
§ Goal	monitoring	(better	goal?)
Plan	execution	monitoring	also	allows	
for	serendipity,	accidental	achievement	
of	the	goal	by	other	means,

28/11/17 AI	FUNDAMENTALS	- M.	SIMI 33

whole plan
plan

repair

S P

O

E G
continuation

Planning	in	multi-agent	
scenarios

Multi-agent	planning
In	multi-agent	planning	problems	an	agent	tries	to	achieve	its	own	goals	with	the	help	
or	despite	the	interference	of	others.
There	are	intermediate	scenarios	in	the	spectrum	from	a	single	agent	to	a	multi-agent	
scenario	made	of	autonomous	agents:
- multi-effectors	planning:	the	centralized	plan	has	to	control	different	effectors
- multi-body	planning:	overall	plan	executed	by	different	bodies,	decentralized	planning
- multi-agent	planning:	

- same	goal	but	different	plans,	coordination	is	needed;	
- different	goals	as	players	in	opposite	teams	in	competitive	environments	,	e.g.	tennis	or	soccer.
- a	mixture	…

The	issues	involved	in	multi-agent	planning:
1. representing	and	planning	for	multiple	simultaneous	actions
2. cooperation,	coordination,	competition	in	multi-agent	planning

27/11/17 AI	FUNDAMENTALS	- M.	SIMI 35

Multiple	simultaneous	actions
Multi-actor	planning:	where	actors	is	a	generic	term	covering	effectors,	bodies,	and	
agents	themselves.	
The	different	entities	share	a	common	goal	and	collaborate	to	achieve	it.	The	planning	is	
done	centrally. We	assume	perfect	synchronization.
Transition	model:
The	single	action	a	is	replaced	by	a	joint	action	⟨a1,	.	.	.	,	an〉,	where	ai is	the	action	taken	
by	the	ith actor.	
Two	big	problems,	given	that	b	is	the	number	of	possible	actions:	
1. we	have	to	describe	the	transition	model	for	bn different	joint	actions;	
2. we	have	a	joint	planning	problem	with	a	branching	factor	of	bn.
The	major	concern	is	to	decouple the	actors	so	that each	one	can	work	independently	
to	one	sub-problem.	

27/11/17 AI	FUNDAMENTALS	- M.	SIMI 36

Loosely	coupled	sub-problems
The	standard	approach	to	loosely	coupled	problems	is	to	pretend	the	problems	are	
completely	decoupled and	then	fix	up the	interactions.
Double	tennis	problem:

27/11/17 AI	FUNDAMENTALS	- M.	SIMI 37

Controlling	interactions
The	following	joint	plan	works:
PLAN	1:
A :	[Go(A,	RightBaseline),	Hit(A,	Ball)]
B :	[NoOp(B),	NoOp(B)]

But	in	general,	to	restrict	unwanted	interactions	we	need	to	augment	action	schemas	with	a	
concurrent	action	list	stating	which	actions	must	or	must	not	be	executed	concurrently.	
The	Hit action	can	be	described	as	follows:
Action(Hit(a,	Ball),
CONCURRENT:	b ≠	a ⇒	¬Hit(b,	Ball)
PRECOND:	Approaching(Ball,	loc)	∧	At(a,	loc)
EFFECT:	Returned(Ball))

Conversely,	for	some	actions	the	desired	effect	is	achieved	only	when	another	action	occurs	
concurrently.	Example:	carrying	a	heavy	piece	of	furniture.

27/11/17 AI	FUNDAMENTALS	- M.	SIMI 38

Multiple	agent:	cooperation	and	coordination
Each	agent	makes	its	own	plan.	We	assume	that	the	goals	and	knowledge	base	are	
shared.	There	may	be	different	plans	for	one	goal.

If	agents	choose	different	plans,	the	combined	effect	does	not	work.
There	is	an	issue	of	coordination.	Different	ways:
1. Conventions	and	social	laws,	i.e.	“stick	to	your	side	of	the	court”
2. Communication,	i.e.	a	tennis	player	could	shout	“Mine!”
3. Plan	recognition:	recognize	the	joint	plan	that	the	other	agent	is	starting	to	execute	and	

behave	accordingly.	

27/11/17 AI	FUNDAMENTALS	- M.	SIMI 39

PLAN	2:
A :	[Go(A,	LeftNet),	NoOp(A)]
B :	[Go(B,	RightBaseline),	Hit(B,	Ball)]

PLAN	1:
A :	[Go(A,	RightBaseline),	Hit(A,	Ball)]
B :	[NoOp(B),	NoOp(B)]

Evolutionary	conventions	and	flocking
In	both	cases	the	behavior	of	animals	in	nature	is	a	source	of	inspiration.
1. Conventions	developed	through	evolutionary	processes.

- Colonies	of	ants	execute	very	elaborate	joint	plans	without	any	centralized	control.
- They	do	so	playing	very	specific	roles	and	strategies	apparently	with	limited	

communication.

2. Flocking	behavior	of	birds
Maximize	the	weighted	sum	of
three	components:
- Cohesion
- Separation
- Alignment

Emergent	behavior of	flying	
as	a pseudo-rigid	body
(more	on	Computational	neuroscience)

27/11/17 AI	FUNDAMENTALS	- M.	SIMI 40

(a) (b) (c)
(a) (b) (c)

Flocking	behaviorFlocking	simulation
by	local	interactions

Conclusions
ü Interaction	between	planning	and	scheduling	taking	into	account	actions	with	

duration	and	resource	constraints
ü Hierarchical	planning	and	decomposition	is	fundamental	for	managing	the	

complexity	(HTN	planning).
ü We	only	scratched	the	surface	of	other	important	areas:	planning	and	acting	in	

nondeterministic	domains	(estimation	of	belief	states,	perceiving	and	acting,	online	
planning)	and	multi-agent	environments.	

ü Important	is	also	the	issue	of	storing	and	reutilizing	plans	(kind	of	learning):	either	in	
abstract	form	(explanation	based	learning)	or	as	concrete	plans	to	be	retrieved	by	
similarity	(case	based	planning).	More	on	AIMA	chapter	19.

27/11/17 AI	FUNDAMENTALS	- M.	SIMI 41

Your	turn
ü Planning	with	resource	constraints.		You	may	look	at	some	popular	planners	such	as	

SAPA	(Do	and	Kambhampati,	2001),	T4	(Haslum and	Geffner,	2001).
ü HTN	planning.	Discuss	approaches.
ü O-PLAN	(Bell	and	Tate,	1985),	combines	HTN	planning	with	scheduling.	Presentation.
ü Reusing	plans:	Explanation	based	learning	or	Case	based	planning
ü Non	deterministic	planning	approaches.
ü Multi-agent	planning	approaches.

27/11/17 AI	FUNDAMENTALS	- M.	SIMI 42

References
ü Stuart	J.	Russell	and	Peter	Norvig.	Artificial	Intelligence:	A	Modern	Approach

(3rd edition).	Pearson	Education	2010	[Chapter	10]

27/11/17 AI	FUNDAMENTALS	- M.	SIMI 43

