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Alessio Micheli

Learning in Structured Domain
Plan in 2 lectures 

1. Recurrent and Recursive Neural Networks

Extensions of models for learning in structured domains

• Motivation and examples (structured data)

• The structured data (recursive) 

• Recursive models: RNN and RecNN

• Recursive Cascade Correlation & other recursive 
approaches

2. Moving to DPAG and Graphs: the role of causality
[Next Lecture (SD-2)]

An introductive aim for a research field in ML

2



Alessio Micheli

Why structured data?

Because data have relationships
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Introduction:
Motivation of ML for SD

• Most of known ML methods are limited to the use of flat 
and fixed form of the data (vectors or sequences)
fixed-length attribute-value vectors

• Central: data representation

• Graph: very useful abstraction for real data

• Labeled graphs = vector patterns + relationships 

– natural: for structured domain 

– richness

– efficiency: repetitive nature inherent in the data

• SD + ML = adaptive processing of structured information

4
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Introduction: Research Area

• SD + ML = adaptive processing of structured information

• General Aim: investigation of  ML models for the adaptive 
processing of structured information: sequences, trees, 
graphs:            
– Structured domain learning/ Learning in Structured Domains

– Relational Learning 

– Structure/Graph Mining

• Molecule Mining

– ... Deep Learning for Graphs

5



Alessio Micheli

Advancements from ML to SDL

Learning in Structured Domains (SD) in Pisa/CIML: Pioneering since the 

90’s the development of 

• Theoretical analysis 

• New approaches

• Applications

Especially on the basis of Recursive approaches.

And for you?

• To build and advanced background  for

– Analysis/development of innovative models

– Applications in the are of interdisciplinary projects (@ ciml)

• Practical: thesis are possible for the design of new 

models/applications for the extension of the input domains toward:

– Extension of the applicative domain

– Adaptivity and accuracy

– Efficiency

6
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From flat to structured data

• Flat: vectors (as in the rest of AA1)

• Structured: Sequences, trees, graphs, multi-relational data

l5l4l3l2l1

Network data

stringa_in_italiano Strings Proteins

Small molecules

Series/
temporal stream
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Example: logo recognition
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Example: Terms in 1st order logic
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Example (trees): language parsing

PRP

NP

S

VBZ DT NN IN PRPS NN NN

It has no bearing

VP

NP

on our work force

NP

NP

NP

PP

Anchor

Foot
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Example: Social networks
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Example: Biological Networks

• Node for protein 

• Link for interaction or similarity
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Example (graphs): Molecules

• A fundamental problem in Chemistry: correlate chemical structure of 

molecules with their properties (e.g. physico-chemical properties, or biological activity of 
molecules) in order to be able to predict these properties for new molecules

– Quantitative Structure-Property Relationship (QSPR) 

– Quantitative Structure-Activity Relationship (QSAR)

Property Value (regression)
Toxic (yes/no) (classification)

QSPR: Correlate chemical structure of 
molecules with their properties

Molecules are not vectors !

Molecules can be more naturally represented 
by varying size structures

Can we predict directly from structures ?

T
Property/Activity = T(Structure)

17
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Learn a transduction

• Goal: to learn a mapping between a structured information 
domain (SD) and a discrete or continuous space 
(transduction T). 

• Start with this problem: classify variable size graphs

– For instance,  classify different graphs  starting from a training set of know couples 
as in the molecules example

19

• Given a set of examples (graphi ,targeti) (in the training set) 

• Learn a hypothesis  mapping T(graph)
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Introduction: Learning Model for SD 

• The problem: there has been no systematic way to extract 
features or metrics relations between examples for SD 

– A representation learning instances (extended to SD)!

• What we mean for adaptive processing of SD:

extraction of the topological information directly from data 

– H has to be able to represent hierarchic relationships 

– adaptive measure of similarity on structures + apt learning rule

– efficient handling of structure variability

– Classical:

– efficient learning 

– good generalization performance 

– knowledge extraction capabilities 

20
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Learning in Structured Domain
Plan in 2 lectures 

1. Recurrent and Recursive Neural Networks

Extensions of models for learning in structured domains

• Motivation and examples (structured data)

• The structured data (recursive) 

• Recursive models: RNN and RecNN

• Recursive Cascade Correlation & other recursive 
approaches

2. Moving to DPAG and Graphs: the role of causality
[Next Lecture (SD-2)]
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K-ary Trees

• k-ary trees (trees in the following) are rooted positional
trees with finite out-degree k.

• Given a node v in the tree TG:

– The children of v are the node successors of v, each with a position
j=1,...k;

– k is the maximum out-degree over G, i.e. the maximum number of

children for each node;

– l(v) in is the input label associated with v, and li(v) is the i-th

element of the label;

– The subtree T(j) is a tree rooted at the j-th children of v.

(1) ( )

=

k

root

T

T T

22

…



Alessio Micheli

Structured Domains

• L: set of attribute vectors 

• Structure G:  vertexes labels L + topology (skeleton of G)

• Sequences, Trees, DOAGs- DPAGs, graphs:

• G : labeled direct ordered/positional acyclic graphs with super-source
– A total order (or the position) on the edges leaving from each vertex

– Super-source: a vertex s such that every vertex can be reached by a 
direct path starting from s.

– Bounded out-degree and in-degree (the  number of  edges leaving and 
entering from a vertex v)

• DPAG: supeclass of the DOAGs:  besides ordering, a distinctive 
positive integer can be associated to each edge, allowing some 
position to be absent.

• Trees: labeled rooted order trees, or positional (K-ary trees).
– Super-source: the root of the tree.

– Binary tree (K=2)

)(vl

23

Mostly used in this lecture
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Data Domains G

• We consider sets of DPAGs: labeled direct positional 
acyclic graphs with super-source, bounded in-degree and 
out-degree (k).

• Include sub-classes:

DPAGs  DOAGs  k-ary trees  sequences  vectors.

• Notations:

– ch[v] set of successors of v

– chj[v]  is the j-th child of the node v
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Structured Data: Examples

• Labeled Sequences, Trees, DOAGs- DPAGs, graphs

l5l4l3l2l1

cb

d

a

Supersource

DPAG: labeled direct positional acyclic 
graphs with super-source, bounded in-

degree and out-degree (k).

Rooted Tree

Sequence

DPAG
a

cb

d

aa

cb

d

aa

Graph (undirected)

l1

Single labeled vertex
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Structures: just use sequence ?

• Can we process structures like they are sequences?

• E.g. any tree can be converted into a sequence (no information loss) but: 

– Sequences may be long: number of vertices exponential w.r.t. height 
of tree

(aka the paths are log of #nodes for the tree, so the dependencies are much shorter) 

– Dependencies are blurred out (arbitrary depending on the visit)

ba

d e

c

g

i

h

f

i(g(d(a,b),(e(c))),h(f))

????????

Tree

Children are far, distant relatives are close
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Trees and DPGAs

ba

c

f

ba

c b

f

b: shared node 

DPAG Tree

?

27

Exercise after the lecture SD-2
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Positional versus Ordered

• DPAG: for each vertex v in vert(G), an injective function 
Sv: edg(v) → [1,2,...,K] is defined on the edges leaving 

from v
in_set(V ) = {u | v V and  u →v }      

Predecessors

out_set(V ) = {u | v  V and  v → u }   

Successors

28
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Learning in Structured Domain
Plan in 2 lectures 

1. Recurrent and Recursive Neural Networks

Extensions of models for learning in structured domains

• Motivation and examples (structured data)

• The structured data (recursive) 

• Recursive models: RNN and RecNN

• Recursive Cascade Correlation & other recursive 
approaches

2. Moving to DPAG and Graphs: the role of causality
[Next Lecture (SD-2)]
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The models

• Instead of moving data to models
(e.g. Graphs into vectors or trees into sequences, with 
alignment problems, loose of information, etc.) 
we move models to data 

30

Vectors (e.g. F.F.NN) Sequences (RNN)

Trees (RecNN)
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SD Learning scenario

Symbolic Connectionist Probabilistic 

STATIC
attribute/value, 
real vectors

Rule induction,
Decision trees

NN, SVM Mixture 
models,
Naïve Bayes

SEQUENTIAL
serially ordered 
entities

Learning finite 
state
automata

Recurrent NN Hidden 
Markov 
Models

STRUCTURAL
relations among 
domain variables

Inductive logic 
programming

Recursive NN

(Kernels forSD)

Recursive 
Markov 
models

Data Type

Model
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Preview: The RecNN idea

Recursive NN:

• Recursive and parametric realization of the transduction 
function

– In other words: Node embedding by a neural state machine 

• Adaptive  by Neural Networks

32

Fractal tree: a recursive structure

We will see how RecNNs 

extend RNNs matching the 

recursive nature of trees 
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Neural Computing Approach

– NN are universal approximators (Theorem of Cybenko) 

– NN can learn from example (automatic inference) 

– NN can deal with noise and incomplete data 

– NN can handle  continuos real and discrete  data

– Simple gradient descent technique for training

– Successful model in ML due to the flexibility in applications

Domain Neural Network

Static fixed-dim patterns

(vectors, records, ...)

Feedforward

Dynamical patterns

(temporal sequences, sequences ...)

Recurrent

Structured patterns

(DPAGs, trees ...)
Recursive

33
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Feedforward versus Recurrent (memento)

• Feedforward: direction: input→ output 

• Recurrent neural networks: A different category of architecture, 

based on the addition of feedback loops connections in the network topology, 

– The presence of self-loop connections provides the network with dynamical 

properties, letting a memory of the past computations in the model. 

– This allows us to extend the representation capability of the model to the 

processing of sequences (and structured data).

Recurrent neural networks: 

• Introduced in the ML course

• They will be the subject 

(further developed) ISPR/CNS courses (see later).
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Recurrent Neural Networks (resume)

• Up to now:

• Tau is the state transition (next-state) function realized by a NN 

(say NN )
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Given x(0) =0 

E.g. 

also HMM

Graphical 

model

x(1)         x(2)           x(3)         x(4)       …
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RNN training and properties (resume)

• BPTT/RTRL [see CNS course]

• Unfolding [see ML lecture RNN]:

• Causality: A system is causal if the output at time t0  (or vertex v) only 
depends on inputs at time t<t0 (depends only on v and its descendants)

– necessary and sufficient for internal state

• Stationarity: time invariance, state transition function  is independent on 

node v (the same in any time)

36

Back-Prop Through Time: 

Backprop on this enrolled 

version 
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Recursive Neural Networks (overview)

• Now:

ba

d e

c

f

1

lq− 1−

kq

l

x

y
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# feedbacks = # children

State transition sytem
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Recursive Neural Networks (overview)
More precisely (with initial conditions)

• Now:

ba

d e

c

f
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# feedbacks = # children

State transition sytem
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])[ch(,]),[ch(])[ch( vvv k1 xxx = …

Given x(nil) =0 

nil or x0

or empty node 
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Generalized Shift Operators

• Standard shift operator (time):

q -1 St = St-1

• Generalized shift operators (structure):

qj
-1 Gv = Gchj[v]

where chj[v] is the j-th child of v

j

chj[v]

v

39
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Learning in Structured Domain
Plan in 2 lectures 

1. Recurrent and Recursive Neural Networks

Extensions of models for learning in structured domains

• Motivation and examples (structured data)

• The structured data (recursive) 

• Recursive models: RNN and RecNN

• Properties of the recursive transductions 

• Unfolding

• Details on the domain

• Implementation by NN

• Recursive Cascade Correlation & other recursive 
approaches

2. Moving to DPAG and Graphs: the role of causality
[Next Lecture (SD-2)]
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Recursive Processing (a different point of view)

Recursive definition of E (encoding function)





=
))(),...,(,(

empty is  if        
)(

)()1( k

EErootNN

E
GGL

G
G




0

E : systematic visit of G → it guides the application of  (in the 

forma of a NN NN ) to each node of tree (bottom-up). 

Causality and stationary assumption.

)()1( kGG

s

G = . . .

43

s can be either a root

for a tree or a super-

source for a DPAG

x(root)= E  (G)

Node/Graph embedding

G(j) is a subgraph rooted 

in the children j of s.

s has a label  l(s)=Lroot
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Properties or RecNN (I)

Extension of causality and stationarity defined for RNN:

• Causality: the output for a vertex v only depends on v and its 
descendants (induced subgraphs)

– Compositionality!

• Stationarity: state transition function NN is independent on vertex v

– Parsimony: we use the same NN for each vertex

Recurrent/recursive NN transductions admit  a recursive state representation with 
such properties

• Adaptivity (NN. learn. Alg.) + Universal approximation over the 
tree domain [Hammer 2005-2007] 
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Kind of graphs for RecNN

• RecNN can in principle treat both Trees and 
DOAGs/DPAGs

– Whether it can discriminate completely also the DOAG/DPAGs will 
treated later

– But if there are no cycles the recursive model can visit the input 
DOAG/DAPG without special care

45

cb

d

a

Supersource

Rooted Tree DPAG
a

cb
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Properties (II): graphical view

• TG is IO-isomorph if G and TG(G) have the same skeleton (graph 

after removing labels)

0

0

0

1

0

1

1

Output DPAG

b

b

b

b

a

a

b

Input DPAG

TG

46

State space x(G)

internal rep./encoding

Node/Graph embedding

Encoding Output 

Alessio Micheli

E g
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Properties (II): graphical view

• TG Supersource transductions

47

Also knows as 

Structure-to-Element

Supersource  

transductions 

b

b

b

b

a

a

b

Input DPAG

TG

Encoding Output Scalar Value

y(s)

Alessio Micheli

State space x(G)

internal rep./encoding

Node/Graph embedding

Supersource (s)

E g
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Properties (III)

• IO-isomorph causal transduction

TG

48

b

b

b

b

a

a

b

Alessio Micheli

Only the sub-structure is considered 
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Learning in Structured Domain
Plan in 2 lectures 

1. Recurrent and Recursive Neural Networks

Extensions of models for learning in structured domains

• Motivation and examples (structured data)

• The structured data (recursive) 

• Recursive models: RNN and RecNN

• Properties of the recursive transduction

• Unfolding

• Details on the domain

• Implementation by NN

• Recursive Cascade Correlation & other recursive 
approaches

2. Moving to DPAG and Graphs: the role of causality
[Next Lecture (SD-2)]
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Unfolding and Enc. Network

• We will see (again) the RecNN data flow process  with two 
points of view:

1. Unfolding by “Walking on structures” model (stationarity),

according to causal assumption (inverse topological order*).

– The model visits the structures

2. Building an Encoding network isomorph to the input structure 
(same skeleton, inverse arrows, again with stationarity) and 
causal assumption): 

– We build a different encoding network for each input structure

* see next slide
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Topological Order

• A linear ordering of its nodes s.t. each node comes before all nodes to 
which it has edges. Every DAG has at least one topological sort, and
may have many.

• A numbering of the vertices of a directed acyclic graph such that 
every edge from a vertex numbered i to a vertex numbered j satisfies 
i<j. 

According to a Partial order

For RNN:

Inverse topological order

51
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Unfolding & Encoding Process:
Unfolding view (1)

ba

d e

c

f •Unfolding the encoding 
process trough structures

•Bottom-up process for 
visiting

• We will see later  how to 
made it with NN (and hence 
by NN) for each step: to build 
an encoding network

52
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RecNN over different structures: unfolding 2

53

CH3

CH2

CH2

O

CH3

Start

CH3CH3

C

OH

CH3

Start

Start
Start

Examples on different trees  for chemical 

compounds:

Unfolding through structures: 

The same process apply to all the vertices of 

a tree and for all the trees in the data set

Start

Output for the tree
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Unfolding (3) & Enc. Net. For Recurrent and Recursive NN

(or Recursive unfold. for two different structures)

54

NN (and weight) sharing : units are the same 

for the all the vertices of a tree and for all the 

trees in the data set!!!

 → NN

•  (NN) for each step (with weight sharing): 

encoding network

• Adaptive encoding via the free parameters 

ofNN
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Learning in Structured Domain
Plan in 2 lectures 

1. Recurrent and Recursive Neural Networks

Extensions of models for learning in structured domains

• Motivation and examples (structured data)

• The structured data (recursive) 

• Recursive models: RNN and RecNN

• Properties of the recursive transduction

• Unfolding

• Details on the domain

• Implementation by NN

• Recursive Cascade Correlation & other recursive 
approaches

2. Moving to DPAG and Graphs: the role of causality
[Next Lecture (SD-2)]
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– X = IRm  continuous (real values) state (code) space (encoded subgraph space)

– L= IRn   vertex label space

– O = IRz  or {0,1}z

–  =

– g output function

– x0 = 0

•  and g realized by NN with free parameters W

RecNN: going to details for the domains

Eg RNN realize

IRIRG gmE ⎯→⎯⎯→⎯

TG

mmmn

NN IRIRIRIR → ...:

k times
Subgraph code

56

TG: G → O



Alessio Micheli

Learning in Structured Domain
Plan in 2 lectures 

1. Recurrent and Recursive Neural Networks

Extensions of models for learning in structured domains

• Motivation and examples (structured data)

• The structured data (recursive) 

• Recursive models: RNN and RecNN

• Properties of the recursive transduction

• Unfolding

• Details on the domain

• Implementation by NN

• Recursive Cascade Correlation & other recursive 
approaches

2. Moving to DPAG and Graphs: the role of causality
[Next Lecture (SD-2)]
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Realization of NN (RecNN) unit 

mmmn

NN IRIRIRIR → ...:

)θˆ(),....,,(
1

)()()1( 
=

++==
k

j

j

j

k

NN xWWlxxlx 

1 recursive neuron 

(NN with m=1)

Process a vertex

# feedbacks = # children 

(max k)

k times
Subgraph code

Free parameters

m x m

58

where x(j)=x(chj[v])

x(v)=

# of children

Dim m
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Fully-connected RecNN

q1
-1x q2

-1x

x

60

Copy made according to 

the graph topology

Labels

Inputs

Recursive Neurons

Standard Neurons

g function

E

E.g. 

for a binary tree
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In details: Encoding Network with NN (I)

Start here !

61

Tau (and weight) sharing : units are the same 

for the all the vertices of a tree and for all the 

trees in the data set!!!
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In details: Encoding Network with NN (II)

62
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Recap: Unfolding 4. A different view by graphical models
of the Encoding Networks for Seq. and Structures

64

Note that the use of graphical models 

make uniform the cases of NN  (RNN & RecNN) and 

generative approaches (HMM/HTreeMM)

Where (from a 

different paper) 

Xv → x(v)

Yv → y(v)

Uv → l(v)
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RecNN applications

• Representing hierarchical information in many real-
world domains

• Many examples: 

• Molecular Biology 

• Document (XML) Processing

• Natural Language Processing

• E.g. Stanford NLP group  shown the effectives of RecNN applied to 

tree representation of language (and images) data and tasks.

• Sentiment Tree Bank 

• Next slides
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Recent Applications:
Repetita (da ML): RecNN for NLP recent exploitment

• Currently wide successful application in NLP (e.g. by the 

Stanford NLP group)

• Shown the effectives of RecursiveNN applied to tree 
representation of language (and images) data and tasks.
Started in 2011-13

• E.g. Sentiment Treebank (about movies)
– Sentiment labels (movies reviews) for 215,154 phrases in the parse trees of 

11,855 sentences

– Recursive NN pushes the state of the art in single sentence positive/negative 
classification from 80% up to 85.4%. 

67
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Repetita (da ML): Examples

Polarity grade

68

Human-gram annotation

…

Other instances in the dataset
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Learning Aims (transductions)

• Parametric : TG   depends on tunable parameters W.

• With different possible aims:

Alessio Micheli 70

Structure-to-Structure
(Input-Output isomorph)

Possible internal 

representation/encoding

Node/Graph embedding

Structure-to-Scalar/Element
(regression/classification)

Or (in general) it can also 

be non-isomorphic

Input graph
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RNN Learning Algorithms

• Backpropagation through structure: Extension of BPTT
Goller & Küchler (1996)

– Simple to understand using graphical formalism 
(backprop+weight sharing on the unfolded net) :

– The notation is adapted to the case of delta from the fathers

• RTRL Sperduti & Starita (1997), 

✓ Equations: See Cap 19 in

Kolen, Kremer , A Field Guide to Dynamical Recurrent Networks. 

IEEE press 2001

• RCC family based: next slides
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Learning in Structured Domain
Plan in 2 lectures 

1. Recurrent and Recursive Neural Networks

Extensions of models for learning in structured domains

• Motivation and examples (structured data)

• The structured data (recursive) 

• Recursive models: RNN and RecNN

• Recursive Cascade Correlation & other recursive 
approaches

2. Moving to DPAG and Graphs: the role of causality
[Next Lecture (SD-2)]
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RCC (I)

• Architecture of Cascade Correlation for Structure 
(Recursive Cascade Correlation - RCC)

• We realize RNN by RCC: constructive approach  m is 
automatically computed by the training algorithm.

• A deep neural network!

73
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RCC (II)

Architecture of a RCC with 3 hidden units ( m=3 ) and k=2 . 

Recursive hidden units (shadowed) generate the code of the input 

graph (function E ). The hidden units are added to the network 

during the training. The box elements are used to store the output 

of the hidden units, i.e. the code xi
(j) that represent the context 

according to the graph topology. 

The output unit realize the function g

and produce the final prediction value.

E.G. A.M. Bianucci, A. Micheli, A. Sperduti, A. Starita.
Application of Cascade Correlation Networks for Structures to Chemistry, 
Applied Intelligence Journal. 12 (1/2): 117-146, 2000
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RCC (III) Learning

Gradient descent: interleaving LMS (output) and maximization of  

correlation between new hidden units and residual error. Main 

difference with CC: calculation of the following derivatives by 

recurrent equations:

Note: simplification (of the sum on other units) due to the architecture 
difference with the RTRL for a fully connected RNN!
But compared to the recurrent case it  appears the summation on children!
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76

Unsupervised recursive models (2003-2005)

• Transfer recursive idea to unsupervised learning 

• No prior metric/pre-processing (but still bias!)

• Evolution of the similarity measure through  recursive comparison of 
sub-structures

• Iteratively compared via bottom-up encoding process

ba

cRecursive nodes embedding on a 

Self-Organizing Map

M. Hagenbuchner et al. IEEE TNN, 2003
B. Hammer et al. Neural Networks, 2005 

It uses e.g. the SOM 

coordinates for 

node embedding
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Generative: HTMM  (2012-2018)

• E.g Bottom-up Hidden Tree Markov Models extend HMM to trees 
exploiting the recursive approach 

• Generative process from the leaves to the root

• Markov assumption (conditional dependence)

Qch1(u), …, QchK(u) → Qu

Children to parent hidden state transition
P(Qu | Qch1(u), …, QchK(u))

Bayesian network unfolding graphical model over 

the input trees; y: observed elements

Q: hidden states variables with discrete values

77

Bacciu, Micheli, Sperduti. IEEE TNNLS, 2012

Issue: how decompose this joint 

state transition? (see ref.).

Where (from a 

different paper) 

Qv → x(v)
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Efficient: TreeESN  (2010-13)

• Combine Reservoir Computing (un-trained layer of recurrent  units  
with linear redout) and recursive modeling

– Extend the applicability of the RC/ESN approach to tree structured data

– Extremely efficient way of modeling RecNNs (randomized approaches)

– Architectural and experimental performance baseline for trained RecNN 
models with often comptetive results.
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The recursive process of  RecNN made by efficient  RC approaches

C. Gallicchio, A. Micheli. Neurocomputing, 2013.

untrained (recursive) 
reservoir

trained  (linear)
readout

input tree

 g

More in a NEXT LECTURE
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Deep: Deep Tree ESN (2018)

80

Hierarchical abstraction both through  the input structure and 
architectural layers

input tree

1st layer

2nd layer

3rd layer

Progressively more 
abstract deep reservoir 
representations of trees

C.Gallicchio, A.Micheli IEEE IJCNN 2018
C.Gallicchio, A.Micheli Information Sciences 2019

• Improve efficiency (giving same #units) 

by a factor = num. of layers 

• Improve results

Pro:

1. Rec NN adv.s

2. Deep learning 

abstraction (even before 

training: arch. bias)

3. Extremely efficient
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Learning in Structured Domain
Plan in 2 lectures 

1. Recurrent and Recursive Neural Networks

Extensions of models for learning in structured domains

• Motivation and examples (structured data)

• The structured data (recursive) 

• Recursive models: RNN and RecNN

• Recursive Cascade Correlation & other recursive 
approaches

2. Moving to DPAG and Graphs: the role of causality
[Next Lecture (SD-2)]
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Toward next lecture
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RecNN Analysis

• RecNNs allow adaptive representation of SD 

– handling of variability by causality and stationarity

– Adaptive transduction: BPTS, RTRL, ....

• Stationarity: 

– efficacy solution to parsimony (reducing the number of paratmetrs) 
without reducing expressive power

• Causality: affects the computational power !

– RNN are only able to memorize past information (sub-sequences)

– RecNN outputs depend only on sub-structures 

– The domain is restricted to sequences and trees due to causality

– Toward partial relaxation (or extension) of the causality assumption
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Graphs by NN?

• For Graphs by NN: see next lecture!

• Following a journey through the causality assumption!
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How to deal with cycles

and causality?

cb

d

aa
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MODELS panorama for SD (examples)

A. Micheli

l5l4l3l2l1

cb

d

aTree:

•Recursive NN

•Tree ESN

•HTMM

•Tree Kernels 

•…

• Recurrent NN/ESN

• HMM

• Kernel for strings …

DPAG:

•CRCC

a

cb

d

aa

cb

d

aa

• GNN/GraphESN

• NN4G

• Graph Kernels

• SRL

• …

l1

Standard ML models for 

flat data

See references for models in the bibliography slides (later)
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Bibliography: aims

Different parts in the following:

• Basic/Fundamentals

* Possible topic for seminars

• May be useful also for future studies

– Many topics can be subject of study and development

– Many many works in literature (arrive continuously)!

– Many possible topics for demand and possible thesis 

– More bibliography on demand: micheli@di.unipi.it
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Bibliografia (Basic, origins of RecNN)

RecNN 
• A. Sperduti, A. Starita. Supervised Neural Networks for the Classification of 

Structures,IEEE Transactions on Neural Networks. Vol. 8, n. 3, pp. 714-735, 
1997. 

• P. Frasconi, M. Gori, and A. Sperduti, A General Framework for Adaptive 
Processing of Data Structures, IEEE Transactions on Neural Networks. Vol. 9, 
No. 5, pp. 768-786, 1998. 

• A.M. Bianucci, A. Micheli, A. Sperduti, A. Starita. Application of Cascade 
Correlation Networks for Structures to Chemistry, Applied Intelligence Journal 
(Kluwer Academic Publishers), Special Issue on "Neural Networks and 
Structured Knowledge" Vol. 12 (1/2): 117-146, 2000.

• A. Micheli, A. Sperduti, A. Starita, A.M. Bianucci. A Novel Approach to 
QSPR/QSAR Based on Neural Networks for Structures,
Chapter in Book : "Soft Computing Approaches in Chemistry", pp. 265-296, H. 
Cartwright, L. M. Sztandera, Eds., Springer-Verlag, Heidelberg, March 2003. 
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Bibliography: NN approaches-2

* UNSUPERVISED RecursiveNN

• B. Hammer, A. Micheli, M. Strickert, A. Sperduti. 
A General Framework for Unsupervised Processing of Structured Data,  
Neurocomputing (Elsevier Science) Volume 57, Pages 3-35, March 2004.

• B. Hammer, A. Micheli, A. Sperduti, M. Strickert.
Recursive Self-organizing Network Models.  Neural Networks, Elsevier Science. Volume 
17, Issues 8-9, Pages 1061-1085, October-November 2004.

* TreeESN: efficient RecNN
• C. Gallicchio, A. Micheli. 

Tree Echo State Networks, Neurocomputing, volume 101, pag. 319-337, 2013.

• C. Gallicchio, A. Micheli. 
Deep Reservoir Neural Networks for Trees. Information Sciences 480, 174-193, 2019.

* HTMM: further developments (generative)
• D. Bacciu, A. Micheli and A. Sperduti.

Compositional Generative Mapping for Tree-Structured Data - Part I: Bottom-Up 
Probabilistic Modeling of Trees, IEEE Transactions on Neural Networks and Learning 
Systems, vol. 23, no. 12, pp. 1987-2002, 2012
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Bibliography: RecNN applications (example)

* NLP applications (that you can extend with recent instances, and 
relate them to the general RecNN framework present in this lecture and 
the basic RecNN bibliography references  )

• R. Socher, C.C. Lin, C. Manning, A.Y. Ng, 
Parsing natural scenes and natural language with recursive neural networks, 
Proceedings of the 28th international conference on machine learning (ICML-11)

• R. Socher, A. Perelygin, J.Y. Wu, J. Chuang, C.D. Manning, A.Y. Ng, C.P. Potts,
Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank
Proceedings of the 2013 Conference on Empirical Methods in Natural Language 
Processing,  pages 1631–1642, Seattle, Washington, USA, 18-21 October 2013
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Bibliography: for the next lecture

* RecNN for DPAGs : how to extend the domain (I)
• A. Micheli, D. Sona, A. Sperduti. 

Contextual Processing of Structured Data by Recursive Cascade Correlation.  IEEE 
Transactions on Neural Networks. Vol. 15, n. 6, Pages 1396- 1410, November 2004.

• Hammer, A. Micheli, and A. Sperduti.
Universal Approximation Capability of Cascade Correlation for Structures. 
Neural Computation. Vol. 17, No. 5, Pages 1109-1159, (C) 2005 MIT press. 

* NN for GRAPH DATA: how to extend the domain (II)

• * A. Micheli.  Neural network for graphs: a contextual constructive approach,
IEEE Transactions on Neural Networks, volume 20 (3), pag.  498-511, doi: 
10.1109/TNN.2008.2010350, 2009.

• C. Gallicchio, A. Micheli. Graph Echo State Networks, Proceedings of the International 
Joint Conference on  Neural Networks (IJCNN), pages 1–8, 2010.

• F. Scarselli, M. Gori, A.C.Tsoi, M. Hagenbuchner, G. Monfardini. The graph neural
network model, IEEE   Transactions on Neural Networks, 20(1), pag. 61–80, 2009.
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