Intro to Learning in SD -1

Alessio Micheli

E-mail: micheli@di.unipi.it

1- Introduction to RecNN

Apr 2021

DRAFT, please do not circulate!

www.di.unipi.it/groups/ciml

Dipartimento di Informatica
Università di Pisa - Italy

Computational Intelligence &
Machine Learning Group
Learning in Structured Domain
Plan in 2 lectures

1. Recurrent and Recursive Neural Networks
 Extensions of models for learning in structured domains
 - Motivation and examples (structured data)
 - The structured data (recursive)
 - Recursive models: RNN and RecNN
 - Recursive Cascade Correlation & other recursive approaches

2. Moving to DPAG and Graphs: the role of causality
 [Next Lecture (SD-2)]

An introductive aim for a research field in ML
Why structured data?

Because data have relationships
Introduction:
Motivation of ML for SD

- Most of known ML methods are limited to the use of flat and fixed form of the data (vectors or sequences)

 fixed-length attribute-value vectors

- Central: *data representation*
- Graph: very useful abstraction for real data

- **Labeled graphs** = vector patterns + relationships
 - **natural**: for structured domain
 - **richness**
 - **efficiency**: repetitive nature inherent in the data

- **SD + ML** = adaptive processing of structured information
Introduction: Research Area

- **SD + ML** = adaptive processing of structured information

- **General Aim**: investigation of ML models for the adaptive processing of structured information: **sequences, trees, graphs/networks**

- **Terminologies**:
 - Structured domain learning/ Learning in Structured Domains
 - Graph Representation Learning, Learning with/for/on graphs
 - Relational Learning
 - Structures/Graphs Mining
 - Also sub-areas, e.g. Molecule Mining
 - **Deep learning for graphs**: (deep) NN for Graphs (NN4G/DNNG), NN on Graphs, Graph NN (GNN), Graph Convolutional Networks (GCN), RecGNN*, ConvGNN*, Graph Nets, **Deep Graph Networks (DGN)***, …

* A Comprehensive Survey on Graph Neural Networks – TNNLS Jan. 2021
** A gentle introduction to deep learning for graphs – Neural Networks Sep. 2020
Increasing Attention in ML

• Dozens of new research papers in all the top-tier ML venues (literature is rapidly growing)

• And concrete real-world applications
Advancements from ML to SDL

Learning in Structured Domains (SD) in Pisa/CIML: Pioneering since the 90’s the development of
• Theoretical analysis
• New approaches
• Applications

Especially on the basis of Recursive approaches.

And for you?
• To build and advanced background for
 – Analysis/development of innovative models
 – Applications in the are of interdisciplinary projects (@ ciml)
• Practical: **thesis are possible for the design of new models/applications for the extension of the input domains toward:**
 – Extension of the applicative domain
 – Adaptivity and accuracy
 – Efficiency
From flat to structured data

- **Flat**: vectors (as in most of the ML course)
- **Structured**: Sequences, trees, graphs, multi-relational data

stringa_in_italiano

- Strings
- Series/temporal stream
- Proteins
- Small molecules
- Network data
Example: logo recognition

Alessio Micheli
Example: Terms in 1st order logic

\[
A(B(\alpha, \beta), Z(\gamma, \delta), \varepsilon)
\]

\[
B(N(\gamma, \alpha, \beta), Z(\varepsilon, K(\gamma, \alpha)))
\]
It has no bearing on our work force.
Example: Social networks
Example: Biological Networks

- Node for protein
- Link for interaction or similarity
Example: Google maps – traffic estimates

- **DeepMind** – Google Maps. Sept. 2020
- **Aim**: accurate traffic predictions and estimated times of arrival (ETAs)
- **Graphs**: networks of roads
 - Node: each route segment
 - Edges: between segments that are consecutive on the same road or connected through an intersection
- **Task**: predicts the travel time for each supersegment (multiple adjacent segments of road that share significant traffic volume - subgraphs)
- **Results**: improve the accuracy of real time ETAs by up to 50% in places like Berlin, Jakarta, São Paulo, Sydney, Tokyo, and Washington D.C. by using Graph Neural Networks (indeed we will see *Convolutional NN for graphs*).
A fundamental problem in Chemistry: correlate chemical structure of molecules with their properties (e.g. physico-chemical properties, or biological activity of molecules) in order to be able to predict these properties for new molecules:

- Quantitative Structure-Property Relationship (QSPR)
- Quantitative Structure-Activity Relationship (QSAR)

Property/Activity = $T(\text{Structure})$

Molecules are not vectors! Molecules can be more naturally represented by varying size structures.

Can we predict directly from structures?
Learn a transduction

- **Goal**: to learn a mapping between a structured information domain (SD) and a discrete or continuous space (*transduction* T).

- Start with this problem: classify variable size graphs
 - For instance, classify different graphs starting from a training set of known couples as in the molecules example

- Given a set of examples $(graph_i, target_i)$ (in the training set)
- Learn a hypothesis mapping $T(graph)$
Introduction: Learning Model for SD

- **The problem**: there has been no systematic way to extract features or metrics relations between examples for SD
 - We are looking to the automatic extraction of the salinet topological information directly from data
 - A representation learning instances (extended to SD)!

Our “mantra”

Instead of moving *data to models* (e.g. Graphs into vectors or trees into sequences, with alignment problems, loose of information, etc.) we move *models to data*
Learning in Structured Domain
Plan in 2 lectures

1. Recurrent and Recursive Neural Networks
 Extensions of models for learning in structured domains
 • Motivation and examples (structured data)
 • **The structured data (recursive)**
 • Recursive models: RNN and RecNN
 • Recursive Cascade Correlation & other recursive approaches

2. Moving to DPAG and Graphs: the role of causality
 [Next Lecture (SD-2)]
K-ary Trees

- **k-ary trees (trees in the following) are rooted positional trees with finite out-degree k.**
- Given a node v in the tree $T \in G$:
 - The children of v are the node successors of v, each with a position $j=1,...,k$;
 - k is the maximum out-degree over G, i.e. the maximum number of children for each node;
 - $l(v)$ is the input label associated with v, and $l_i(v)$ is the i-th element of the label;
 - The subtree $T^{(j)}$ is a tree rooted at the j-th children of v.

\[
T = \begin{array}{c}
\quad \text{root} \\
T^{(1)} & \ldots & T^{(k)}
\end{array}
\]
Structured Domains

- \(L\): set of attribute vectors \(l(v)\)
- \(Structure\ G\): vertexes labels \(L\) + topology (skeleton of \(G\))
- Sequences, Trees, DOAGs- DPAGs, graphs.

We start considering sets of DPAGs (recursive structures), i.e.
- \(G\) as labeled direct positional acyclic graphs with:
 - \textit{Super-source}: a vertex \(s\) such that every vertex can be reached by a direct path starting from \(s\).
 - A total order (or the position) on the edges leaving from each vertex
 - \textit{Bounded out-degree and in-degree} (the number of edges leaving and entering from a vertex \(v\))
Data Domains \(G \)

- Include sub-classes:
 - DPAGs \(\supset \) DOAGs \(\supset \) k-ary trees \(\supset \) sequences \(\supset \) vectors.

- **DPAG**: superclass of the **DOAGs**: besides ordering, a distinctive positive integer can be associated to each edge, allowing some position to be absent.

- **Trees**: labeled rooted order trees, or positional (\(K \)-ary trees).
 - Super-source: the root of the tree.
 - **Binary tree** (\(K=2 \))

- **Notations**:
 - \(\text{ch}[\nu] \) set of successors of \(\nu \)
 - \(\text{ch}_j[\nu] \) is the \(j \)-th child of the node \(\nu \)

Mostly used in this lecture
Structured Data: Examples

- Labeled Sequences, Trees, DOAGs- DPAGs, graphs

DPAG: labeled direct positional acyclic graphs with super-source, bounded in-degree and out-degree (k).
Structures: just use sequence?

- Can we process structures like they are sequences?
- E.g. any tree can be converted into a sequence (no information loss) but:
 - Sequences may be long: number of vertices exponential w.r.t. height of tree
 (aka the paths are \(\log \) of #nodes for the tree, so the dependencies are much shorter)
 - Dependencies are blurred out (arbitrary depending on the visit)

Children are far, distant relatives are close
Trees and DPGAs

Exercise after the lecture SD-2

b: shared node
Positional versus Ordered (details)

- DPAG: for each vertex ν in $\text{vert}(G)$, an injective function $S_\nu: \text{edg}(\nu) \rightarrow [1,2,...,K]$ is defined on the edges leaving from ν

$$\text{in_set}(V) = \{u \mid \nu \in V \text{ and } u \rightarrow \nu\}$$

Predecessors

$$\text{out_set}(V) = \{u \mid \nu \in V \text{ and } \nu \rightarrow u\}$$

Successors
Models:
Restarting from the beginning:
Recurrent and Recursive models
Learning in Structured Domain
Plan in 2 lectures

1. Recurrent and Recursive Neural Networks
 Extensions of models for learning in structured domains
 • Motivation and examples (structured data)
 • The structured data (recursive)
 • Recursive models: RNN and RecNN
 • Recursive Cascade Correlation & other recursive approaches

2. Moving to DPAG and Graphs: the role of causality
 [Next Lecture (SD-2)]
Preview: The RecNN idea

Recursive NN:

- **Recursive** and parametric realization of the transduction function
 - In other words: Node embedding by a neural state machine
- **Adaptive** by Neural Networks

Fractal tree: a recursive structure

We will see how RecNNs extend RNNs *matching* the recursive nature of trees (moving the model to the nature of the data)
Summary of the Neural Computing Approach

<table>
<thead>
<tr>
<th>Domain</th>
<th>Neural Network</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static fixed-dim patterns</td>
<td>Feedforward</td>
</tr>
<tr>
<td>(vectors, records, ...)</td>
<td></td>
</tr>
<tr>
<td>Dynamical patterns</td>
<td>Recurrent</td>
</tr>
<tr>
<td>(temporal sequences, sequences...)</td>
<td></td>
</tr>
<tr>
<td>Structured patterns</td>
<td>Recursive</td>
</tr>
<tr>
<td>(trees, DPAGs, ...)</td>
<td></td>
</tr>
</tbody>
</table>
Feedforward versus Recurrent (memento)

- **Feedforward**: direction: input → output
- **Recurrent neural networks**: A different category of architecture, based on the addition of feedback loops connections in the network topology,
 - The presence of self-loop connections provides the network with dynamical properties, letting a memory of the past computations in the model.
 - This allows us to extend the representation capability of the model to the processing of sequences (and structured data).

Recurrent neural networks:
- Introduced in the ML course
- They will be the subject (further developed) ISPR/CNS courses (see later).
Recurrent Neural Networks (resume)

- Up to now:

Given \(x(0) = 0 \)

\[
\begin{align*}
\text{internal state} & \quad \begin{cases} x(t) = \tau(x(t-1), l(t)) \\ y(t) = g(x(t), l(t)) \end{cases} \\
\end{align*}
\]

E.g. also HMM

- Tau is the state transition (next-state) function realized by a NN (say \(\tau_{NN} \))
RNN training and properties (resume)

- **BPTT/RTRL** [see CNS course]
- **Unfolding** [see ML lecture RNN]:

 - **Causality:** A system is causal if the output at time t_0 (or vertex v) only depends on inputs at time $t<t_0$ (depends only on v and its descendants)
 - necessary and sufficient for *internal state*
 - **Stationarity:** time invariance, state transition function τ is independent on node v (the same in any time)
Recursive Neural Networks (overview)

- Now:

\[
\begin{align*}
 x(v) &= \tau(x(\text{ch}[v]), l(v)) \\
 y(v) &= g(x(v), l(v))
\end{align*}
\]

\[
x(\text{ch}[v]) = x(\text{ch}_1[v]), ..., x(\text{ch}_k[v])
\]

State transition system (for trees)

feedbacks = # children
Recursive Neural Networks (overview)
More precisely (with initial conditions)

Now:

\[\begin{align*}
 x(v) &= \tau(x(ch[v]), l(v)) \\
 y(v) &= g(x(v), l(v))
\end{align*} \]

\[x(ch[v]) = x(ch_{l}[v]), \ldots, x(ch_{k}[v]) \]

Given \(x(nil) = 0 \)

State transition system

nil or \(x_0 \) or empty node

\# feedbacks = \# children
Generalized Shift Operators

- Standard shift operator (time):

\[q^{-1} S_t = S_{t-1} \]

- Generalized shift operators (structure):

\[q_j^{-1} G_v = G_{\text{ch}_j[v]} \]

where \(\text{ch}_j[v] \) is the \(j \)-th child of \(v \)

RecNN with \(q \):

\[
\begin{align*}
\mathbf{x}(v) &= \tau(\mathbf{l}(v), q^{-1} \mathbf{x}(v)) \\
\mathbf{y}(v) &= g(\mathbf{x}(v))
\end{align*}
\]

\[
\begin{align*}
q_j^{-1} x_i(v) &= x_0 & \text{if } \text{ch}_j[v] = \text{nil} \\
q_j^{-1} x_i(v) &= x_i(\text{ch}_j[v]) & \text{otherwise}
\end{align*}
\]

Used to extend the states for children of vertexes of the tree
Learning in Structured Domain
Plan in 2 lectures

1. Recurrent and Recursive Neural Networks
 Extensions of models for learning in structured domains
 • Motivation and examples (structured data)
 • The structured data (recursive)

 • **Recursive models: RNN and RecNN**
 • Properties of the recursive transduction
 • Unfolding
 • Domain details and implementation by NN
 • Applications
 • Learning algorithms

 • Recursive Cascade Correlation & other recursive approaches

2. Moving to DPAG and Graphs: the role of causality
 [Next Lecture (SD-2)]
Recursive Processing *(a different point of view)*

Recursive definition of τ_E *(encoding function)*

Node/Graph embedding

$$x(\text{root}) = \tau_E (G)$$

$$G = \begin{cases}
\text{s} \\
G^{(1)} & \cdots & G^{(k)}
\end{cases}$$

s can be either a *root* for a tree or a super-source for a DPAG.

$G^{(j)}$ is a subgraph rooted in the children j of s.

s has a label $l(s) = L_{\text{root}}$

$$\tau_E (G) = \begin{cases}
0 & \text{if } G \text{ is empty} \\
\tau_{NN} (L_{\text{root}}, \tau_E (G^{(1)}), \ldots, \tau_E (G^{(k)})) & \text{}
\end{cases}$$

τ_E : **systematic visit** of $G \rightarrow$ it guides the application of τ (in the form of a NN τ_{NN}) to each node of tree (bottom-up).

Causality and *stationary* assumption.
Properties or RecNN (I)

Extension of *causality* and *stationarity* defined for RNN:

- **Causality:** the output for a vertex ν only depends on ν and its descendants (induced subgraphs)
 - Compositionality over the input structure!

- **Stationarity:** state transition function τ_{NN} is independent on vertex ν
 - Parsimony: we use the same NN for each vertex, regardless of the dimension of sequences (useful to process structures of variable size with a fixed size of the model)

Recurrent/recursive NN transductions admit a recursive state representation with such properties

- **Adaptivity** (NN. learn. Alg.) + **Universal approximation** over the tree domain [Hammer 2005-2007]
Property (II): Kind of graphs for RecNN

- RecNN can in principle treat both Trees and DOAGs/DPAGs
 - Whether it can discriminate completely also the DOAG/DPAGs will discussed later
 - But if there are no cycles the *recursive* model can visit the input DOAG/DAPG without special care

![Graphs Diagram]
Properties (III): Transduction: graphical view

- T_G is **IO-isomorph** if G and $T_G(G)$ have the same skeleton (graph after removing labels)

\[T_G \]

Input DPAG

τ_E

Encoding

State space $x(G)$

internal rep./encoding

Node/Graph embedding

Output DPAG

g

Output

Structure-to-Structure transductions
Properties (IV): Transduction: graphical view

- T_G Supersource transductions

Supersource (s) → Encoding → State space $x(G)$ → Internal rep./encoding → Node/Graph embedding

Input DPAG

Structure-to-Element (regression/classification)
Or Supersource transductions
Properties (IV)

- IO-isomorph causal transduction

- Causality: the output for a vertex v only depends on v and its descendants (induced subgraphs)
 - Compositionality over the input structure!

Only the sub-structure is considered
Learning in Structured Domain
Plan in 2 lectures

1. Recurrent and Recursive Neural Networks
 Extensions of models for learning in structured domains
 • Motivation and examples (structured data)
 • The structured data (recursive)
 • Recursive models: RNN and RecNN
 • Properties of the recursive transduction
 • Unfolding
 • Domain details and implementation by NN
 • Applications
 • Learning algorithms
 • Recursive Cascade Correlation & other recursive approaches

2. Moving to DPAG and Graphs: the role of causality
 [Next Lecture (SD-2)]
Unfolding and Enc. Network

- We will see (again) the RecNN data flow process with two points of view:

1. **Unfolding** by “Walking on structures” model (*stationarity*), according to *causal* assumption (inverse topological order*).
 - The model visits the structures

2. Building an **Encoding network** isomorph to the input structure (same skeleton, inverse arrows, again with *stationarity* and *causal* assumption):
 - We build a different encoding network for each input structure

* see next slide
Alessio Micheli

Topological Order

- A linear ordering of its nodes s.t. each node comes before all nodes to which it has edges. Every DAG has at least one topological sort, and may have many.

- A numbering of the vertices of a directed acyclic graph such that every edge from a vertex numbered i to a vertex numbered j satisfies i<j.

According to a Partial order

For RNN:

Inverse topological order
Unfolding & Encoding Process: Unfolding view (1)

- Unfolding the encoding process through structures
- Bottom-up process for visiting

- We will see later how to make it with τ_{NN} (and hence by NN) for each step: to build an encoding network
RecNN over different structures: unfolding 2

Examples on different trees for chemical compounds:
Unfolding through structures:
The same process applies to all the vertices of a tree and for all the trees in the data set
Unfolding (3) & Enc. Net. For Recurrent and Recursive NN (or Recursive unfold. for two different structures)

\[\tau \rightarrow \tau_{NN} \]

- \(\tau(\tau_{NN}) \) for each step (with weight sharing): encoding network
- Adaptive encoding via the free parameters of \(\tau_{NN} \)

\(\tau_{NN} \) (and weight sharing) : units are the same for the all the vertices of a tree and for all the trees in the data set!!!
Learning in Structured Domain
Plan in 2 lectures

1. Recurrent and Recursive Neural Networks
 Extensions of models for learning in structured domains
 • Motivation and examples (structured data)
 • The structured data (recursive)
 • **Recursive models: RNN and RecNN**
 • Properties of the recursive transduction
 • Unfolding
 • **Domain details and implementation by NN**
 • Applications
 • Learning algorithms
 • Recursive Cascade Correlation & other recursive approaches

2. Moving to DPAG and Graphs: the role of causality
 [Next Lecture (SD-2)]
RecNN: going to details for the domains

- \(X = \mathbb{IR}^m \) continuous (real values) state (code) space (encoded subgraph space)
- \(L = \mathbb{IR}^n \) vertex label space
- \(O = \mathbb{IR}^z \) or \(\{0,1\}^z \)
- \(\tau = \tau_{NN} : \mathbb{IR}^n \times \mathbb{IR}^m \times \ldots \times \mathbb{IR}^m \rightarrow \mathbb{IR}^m \)
- \(g \) output function
- \(x_0 = 0 \)

\(T_G : G \rightarrow O \)

\(\tau \) and \(g \) realized by NN with free parameters \(W \)

RNN realize \(g \circ \tau_E \)
Realization of $\tau_{NN}(\text{RecNN})$ unit

$$\tau_{NN} : IR^n \times IR^m \times \ldots \times IR^m \rightarrow IR^m$$

$\text{Dim } m$

$$x(v) = \tau_{NN}(l, x^{(1)}, \ldots, x^{(k)}) = \sigma(Wl + \sum_{j=1}^{k} \hat{W}_j x^{(j)} + \theta)$$

where $x^{(j)} = x(\text{ch}_j[v])$

1 recursive neuron

$(\tau_{NN} \text{ with } m=1)$

Process a vertex

$\# \text{ feedbacks} = \# \text{ children}$

$(\text{max } k)$
Fully-connected RecNN

- Standard Neurons
- Recursive Neurons
- Inputs

Output Network

g function

Encoder

τ_E

x

Labels

$q_1^{-1}x$

$q_2^{-1}x$

Copy made according to the graph topology

E.g. for a binary tree
In details: Encoding Network with NN (I)

Start here!

Tau (and weight) sharing: units are the same for all the vertices of a tree and for all the trees in the data set!!!
In details: Encoding Network with NN (II)
Learning in Structured Domain
Plan in 2 lectures

1. Recurrent and Recursive Neural Networks
 Extensions of models for learning in structured domains
 • Motivation and examples (structured data)
 • The structured data (recursive)
 • **Recursive models: RNN and RecNN**
 • Properties of the recursive transduction
 • Unfolding
 • Domain details and implementation by NN
 • Applications
 • Learning algorithms
 • Recursive Cascade Correlation & other recursive approaches

2. Moving to DPAG and Graphs: the role of causality
 [Next Lecture (SD-2)]
RecNN applications

- Representing **hierarchical** information in many real-world domains
- Many examples:
 - Molecular Biology
 - Document (XML) Processing
 - **Natural Language Processing**
 - E.g. Stanford NLP group shown the effectiveness of RecNN applied to tree representation of language (and images) data and tasks.
 - Sentiment Tree Bank
 - Next slides
Recent Applications: Repetita (da ML): RecNN for NLP recent exploitation

- Currently wide successful application in NLP (e.g. by the Stanford NLP group)

- Shown the effectives of RecursiveNN applied to tree representation of language (and images) data and tasks. Started in 2011-13

- E.g. Sentiment Treebank (about movies)
 - Sentiment labels (movies reviews) for 215,154 phrases in the parse trees of 11,855 sentences
 - Recursive NN pushes the state of the art in single sentence positive/negative classification from 80% up to 85.4%.
Repetita (da ML): Examples

Polarity grade

Human-gram annotation

The actors are fantastic

Other instances in the dataset
Learning in Structured Domain
Plan in 2 lectures

1. Recurrent and Recursive Neural Networks
 Extensions of models for learning in structured domains
 • Motivation and examples (structured data)
 • The structured data (recursive)
 • **Recursive models: RNN and RecNN**
 • Properties of the recursive transduction
 • Unfolding
 • Domain details and implementation by NN
 • Applications
 • **Learning algorithms**
 • Recursive Cascade Correlation & other recursive approaches

2. Moving to DPAG and Graphs: the role of causality
 [Next Lecture (SD-2)]
RNN Learning Algorithms

• **Backpropagation through structure: Extension of BPTT**
 Goller & Küchler (1996)
 - Simple to understand using graphical formalism
 (backprop+weight sharing on the unfolded net) :
 - *The notation is adapted to the case of delta from the fathers*

• **RTRL**
 Sperduti & Starita (1997),

✓ Equations: See Cap 19 in
 Kolen, Kremer, *A Field Guide to Dynamical Recurrent Networks*.
 IEEE press 2001

• **RCC family based: next slides**
Learning in Structured Domain
Plan in 2 lectures

1. Recurrent and Recursive Neural Networks
 Extensions of models for learning in structured domains
 • Motivation and examples (structured data)
 • The structured data (recursive)
 • Recursive models: RNN and RecNN
 • **Recursive Cascade Correlation & other recursive approaches**
 • RecCC
 • Panorama

2. Moving to DPAG and Graphs: the role of causality
 [Next Lecture (SD-2)]
RCC (I)

- Architecture of Cascade Correlation for Structure (Recursive Cascade Correlation - RCC)
- RecNN with recursive units within a **constructive approach** $\Rightarrow m$ is automatically computed by the training algorithm.
- *A deep neural network!*
RCC (II)

Architecture of a RCC with 3 hidden units \(m=3 \) and \(k=2 \).
Recursive hidden units (shadowed) generate the code of the input graph (function \(\tau_E \)). The hidden units are added to the network during the training. The box elements are used to store the output of the hidden units, i.e. the code \(x_i^{(j)} \) that represent the context according to the graph topology.

The output unit realize the function \(g \) and produce the final prediction value.

E.g. A.M. Bianucci, A. Micheli, A. Sperduti, A. Starita.
RCC (III) Learning

Gradient descent: interleaving LMS (output) and maximization of correlation between new hidden units and residual error. Main difference with CC: calculation of the following derivatives by recurrent equations:

\[
\frac{\partial x_h(v)}{\partial w_{hi}} = \frac{\partial \tau_h(l, x^{(1)}, \ldots, x^{(k)})}{\partial w_{hi}} = f'(l_i + \sum_{t=1}^{k} \hat{w}_{hh}^t \frac{\partial x_h^{(t)}}{\partial w_{hi}})
\]

\[
\frac{\partial x_h(v)}{\partial \hat{w}_{hi}} = \frac{\partial \tau_h(l, x^{(1)}, \ldots, x^{(k)})}{\partial \hat{w}_{hi}} = f'(x^{(j)}_i + \sum_{t=1}^{k} \hat{w}_{hh}^t \frac{\partial x_h^{(t)}}{\partial \hat{w}_{hi}})
\]

where \(x^{(j)} = x(ch_j[v])\)

Note: simplification (of the sum on other units) due to the architecture difference with the RTRL for a fully connected RNN! But compared to the recurrent case it appears the summation on children!
Unsupervised recursive models (2003-2005)

- Transfer *recursive* idea to unsupervised learning
- No prior metric/pre-processing (but still bias!)
- Evolution of the similarity measure through *recursive comparison* of sub-structures
- Iteratively compared via bottom-up *encoding* process

Recursive nodes embedding on a Self-Organizing Map

It uses e.g. the SOM coordinates for node embedding

<table>
<thead>
<tr>
<th></th>
<th>l</th>
<th>C_1</th>
<th>C_2</th>
</tr>
</thead>
</table>

M. Hagenbuchner et al. IEEE TNN, 2003
B. Hammer et al. Neural Networks, 2005
Generative: HTMM (2012-2018)

- E.g Bottom-up Hidden Tree Markov Models extend HMM to trees exploiting the recursive approach

- Generative process from the leaves to the root
- Markov assumption (conditional dependence)
 \[Q_{ch1}(u), \ldots, Q_{ch_K}(u) \rightarrow Q_u \]

Children to parent hidden state transition

\[
P(Q_u | Q_{ch1}(u), \ldots, Q_{ch_K}(u))
\]

Where (from a different paper)

\[Q_v \leftrightarrow x(v) \]

Bayesian network unfolding graphical model over the input trees; y: observed elements

Q: hidden states variables with discrete values

Issue: how decompose this joint state transition? (see ref.)
Efficient: TreeESN (2010-13)

- Combine Reservoir Computing (un-trained layer of recurrent units with linear redout) and recursive modeling
 - Extend the applicability of the RC/ESN approach to tree structured data
 - Extremely efficient way of modeling RecNNs (randomized approaches)
 - Architectural and experimental performance baseline for trained RecNN models with often competitive results.

![Diagram of TreeESN]

The recursive process of RecNN made by efficient RC approaches

More in a NEXT LECTURE
Hierarchical abstraction both through the input structure and architectural layers

Progressively more abstract deep reservoir representations of trees

- Improve efficiency (giving same #units) by a factor = num. of layers
- Improve results

Pro:
1. Rec NN adv.s
2. Deep learning abstraction (even before training: arch. bias)
3. Extremely efficient

C. Gallicchio, A. Micheli IEEE IJCNN 2018
C. Gallicchio, A. Micheli Information Sciences 2019
Learning in Structured Domain
Plan in 2 lectures

1. Recurrent and Recursive Neural Networks
 Extensions of models for learning in structured domains
 • Motivation and examples (structured data)
 • The structured data (recursive)
 • Recursive models: RNN and RecNN
 • Recursive Cascade Correlation & other recursive approaches

2. Moving to DPAG and Graphs: the role of causality
 [Next Lecture (SD-2)]

Toward next lecture
RecNN Analysis

- RecNNs allow adaptive representation of SD
 - Handling of variability by causality and stationarity
 - **Adaptive** transduction: BPTS, RTRL,

- **Stationarity:**
 - efficacy solution to parsimony (reducing the number of parameters) without reducing expressive power (universal approximation theorem)

- **Causality:** affects the computational power!
 - RNN are only able to memorize past information (sub-sequences)
 - RecNN outputs depend only on sub-structures
 - The domain is restricted to sequences and trees due to causality
 - Toward partial relaxation (or extension) of the causality assumption
Graphs by NN?

- For Graphs by NN: see next lecture!
- Following a journey through the *causality* assumption!

How to deal with cycles and causality?

We will see:
Or by relaxing the causality assumption
Or by imposing constraints on the recursive processing
Summary of MODELS for SD (examples)

Standard ML models for flat data

Tree:
- Recursive NN
- Tree ESN
- HTMM
- Tree Kernels
- ...

DPAG:
- CRCC

• Recurrent NN/ESN
• HMM
• Kernel for strings ...

See references for models in the bibliography slides (later)
Bibliography: aims

Different parts in the following:

- Basic/Fundamentals
- To go ahead

- Many topics can be subject of study and development
- Many many works in literature (they arrive continuously)!
- Many possible topics for demand and possible thesis

- **More bibliography on demand:** micheli@di.unipi.it
Bibliografia (Basic, origins of RecNN)

RecNN

Bibliography: NN approaches-2

* UNSUPERVISED RecursiveNN

* TreeESN: efficient RecNN

* HTMM: further developments (generative)

Bibliography: RecNN applications (example)

* NLP applications (that you can extend with recent instances, and relate them to the general RecNN framework present in this lecture and the basic RecNN bibliography references)

Bibliography: basic items for the next lecture

* RecNN for DPAGs : how to extend the domain (I)

* NN for GRAPH DATA: how to extend the domain (II)

 - C. Gallicchio, A. Micheli. *Graph Echo State Networks*, Proceedings of the International Joint Conference on Neural Networks (IJCNN), pages 1–8, 2010.
DRAFT, please do not circulate!

For information

Alessio Micheli
micheli@di.unipi.it

www.di.unipi.it/groups/ciml

Dipartimento di Informatica
Università di Pisa - Italy

Computational Intelligence & Machine Learning Group