
Intro to Machine Learning
with Keras
--
Federico Errica
Ph.D. Student
Dept. of Computer Science, University of Pisa
Mail: federico.errica@phd.unipi.it
Website: http://pages.di.unipi.it/errica Computational Intelligence

and Machine Learning Group

http://pages.di.unipi.it/errica

Lecture Outline
● Keras 101 (TensorFlow 2.0 backend)

● Split your data 101

● Learn via examples:
○ Linear Model / Multi-Layer Perceptron

○ Neural Autoencoders for anomaly detection

○ Convolutional Neural Networks for image
classification

○ Recurrent Networks for time-series prediction
2

About the Lab
● The code of the exercises will remain publicly available

https://github.com/diningphil/Intro_Keras

● If you have doubts, please interrupt me! I’ll do my best to answer

● Acknowledgments: Francesco Crecchi and Daniele Castellana

● Do try this at home ;)

3

In theory, theory and practice are the same.
In practice, they are not.

(supposedly) Jan L. A. van de Snepscheut

https://github.com/diningphil/Intro_Keras
http://pages.di.unipi.it/crecchi/
http://pages.di.unipi.it/castellana/

● A Machine Learning framework by Google

○ 2015 → over 100M downloads in 2020

● Production vs Prototyping
○ Static optimization for faster training/inference

○ Eager execution in TF 2.0
■ details later

○ Can be quite complex to learn at first
■ Change of coding paradigm

○ Less intuitive than PyTorch

TensorFlow 2.0

4

Tensorboard
Interactive visualization

5

● Training logs
○ Train/val/test

● Model’s graph

● Project embeddings in 2D

● Histograms of weights, biases

● Images, audio and text

https://www.tensorflow.org/tensorboard

https://www.tensorflow.org/tensorboard

Keras 101
Credit goes to F. Crecchi

● Minimalist, highly-modular neural network

library written in python

● Supports TensorFlow/Theano and CNTK

● Easy and fast prototyping
○ User-friendly
○ Modular

■ Pre-built layers, optimizers, etc..
○ Easy-extensibility

■ Also good for doing research!

● We will rely on TensorFlow 2.0
6

Keras API

TensorFlow / CNTK / Theano / ...

CPU GPU TPU

Keras and TensorFlow 2.0

7

● Keras merged into TF 2.0 now
○ tf.keras

○ Used in our Lab

○ Supported in Colab!

● We’ll cover the very basics

● Quickstart for experts

https://colab.research.google.com/

It’s poll time!

Is anyone NOT familiar with
NumPy + tensor indexing?

8

Scalar
0-d tensor

Tensors

● Generalization of the concept of
vectors and matrices to higher
dimensional spaces

● When using Keras, it is
fundamental to know what tensor
shapes you are working with!

9

1
2

0

Vector
1-d tensor

Matrix
2-d tensor

Tensor
2x2x2 tensor

1
2

3
4

1 2 3 4

5 6 7 8

Indexing and Broadcasting
● Each dimension of a tensor can be indexed → sub-tensor

○ Usual square bracket notation: my_tensor[:10, : , 2:5]

○ You can filter on the basis of boolean arrays

■ my_tensor[: , bool_filter, :]

● Broadcasting allows you to forget about replicating data across dimensions

○ e.g., elem-wise multiplication between 100x10x32 and 100x1x32 tensors

○ Always check the shape of your tensors
10

Data-Flow Graph
● Model for parallel computing

● Benefits:
○ Parallel/distributed execution
○ Portability
○ Auto-differentiation (!)
○ Clear separation model and logic

● Graphs can be static or dynamic
○ Lazy vs eager execution

11

Auto-differentiation!

e = (a+b) ∗ (b+1)

c=a+b

d=b+1

e=c∗d

12

Useful (Sub-)Packages
import tensorflow as tf

● Datasets → tf.keras.datasets
○ MNIST → tf.keras.datasets.mnist

● Data creation/management → tf.data
○ Dataset utilities → tf.data.Dataset

● Layers → tf.keras.layers

● Loss functions → tf.keras.losses

13

● Metrics → tf.keras.metrics

● Optimizers → tf.keras.optimizers

● Regularizers → tf.keras.regularizers

● Tensorboard → tf.keras.callbacks

● Save/Load → tf.keras.callbacks

Wait! I want to use a GPU!

import tensorflow as tf

try:

Specify a valid GPU device

with tf.device('/device:GPU:0'): # “with” ensures that GPU resources are freed

a = tf.constant([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])

b = tf.constant([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]])

c = tf.matmul(a, b)

except RuntimeError as e:

print(e)

14

● Sequential Model (70+% of use cases)
○ Dead simple!
○ Only for single-input, single output, sequential layer stacks

● Functional API (95% of use cases)

○ Functions of functions!
○ Multi-input multi-output arbitrary graph topologies

● Model subclassing
○ Maximum flexibility!

Three API Styles

15

import keras
from keras import layers
Sequential
model = keras.Sequential()
model.add(layers.Dense(20, activation=’relu’, input_shape=(10,)))
model.add(layers.Dense(20, activation=’relu’)
model.add(layers.Dense(10, activation=’softmax’))

Functional
inputs = keras.Input(shape=(10,))
x = layers.Dense(20, activation=’relu’)(inputs)
x = layers.Dense(20, activation=’relu’)(x)
outputs = layers.Dense(10, activation=’softmax’)(x)
model = keras.Model(inputs, outputs)

Three API Styles

16

Model subclassing
class MyModel(keras.Model):

def __init__(self):
super(MyModel, self).__init__()
self.dense1 = layers.Dense(20, activation=’relu’)
self.dense2 = layers.Dense(20, activation=’relu’)
self.dense3 = layers.Dense(10, activation=’softmax’)

def call(self, inputs):
x = self.dense1(inputs)
x = self.dense2(x)
return self.dense3(x)

model = MyModel()
model.fit(x, y, epochs=10, batch_size=32)

Three API Styles

17

Remember:
Use the right tool (API)
for the right job!

18

Split your data 101

19

TRAIN VALIDATION TEST

DATASET

Model Selection
(10% of the data)

Train the model
(80% of the data)

Model Assessment
(10% of the data)

Called Hold-Out Technique

Model Selection

20

● Process that finds the “best” hyper-parameters configuration

for your model using the VALIDATION set

● “Best” according to some performance metric

● Two possible ways to do that:

○ Grid Search: Define possible values for each hyper-parameter
and try all possible configuration

○ Random Search: fix range of value for each hyper-parameters
and try several random configurations.

Golden Rule (a MUST)

21

Never

ever

EVER
(do a PhD)

USE THE TEST SET FOR MODEL SELECTION

THE TEST SET IS USED ONLY ONCE!
YOU CANNOT REPEAT THE EXPERIMENT

IF YOU “DO NOT LIKE” THE TEST RESULTS!

Seriously..

22

1) That makes the difference between making your boss 😡 (when things do
not work “as expected” in production) or 😇

2) Bringing biased results to the table does not help anyone

3) The test set is the “oracle” of your model.. you do not want to kill the oracle
because you don’t like the answer.

4) Once you have your answer….

More complex splits

23

● External K-fold Cross Validation
○ For Model Assessment

● Internal K-fold Cross Validation
○ For Model Selection

or..

● Internal Hold-out train/validation split
○ For Model Selection

Shall we start training our
machine? ;)

Hands-on!

24

Our data: MNIST

● ML “Hello World” problem

● Labeled handwritten digits dataset

● Goal: obtain better and better

performance on the task with models

of increasing complexity

25

Our data: Membrane

● Used for Image Segmentation

● Goal: train a Convolutional Network

to do image segmentation!

26

10-minute break?

Upcoming: Coding Lab Practice

Questions?

27

References

Keras Documentation:

1. https://www.tensorflow.org/api_docs/python/tf/keras

2. https://keras.io/guides/

Again: We will use the Keras library inside TensorFlow 2.0.

Keras Tutorials: https://www.tensorflow.org/guide/keras

Colab: https://colab.research.google.com/

28

https://www.tensorflow.org/api_docs/python/tf/keras
https://keras.io/guides/
https://www.tensorflow.org/guide/keras
https://colab.research.google.com/

Let’s open a Notebook / Colab

Just type jupyter notebook in your terminal

(with the environment activated)

and create a Python3 notebook using the “New” button,

or open one of the notebooks in the repo

● Interactive execution of Python code

● Alternative: open the Github Lessons in Colab

29

