
I N T R O D U C T I O N T O N E U R A L N E T W O R K P R O G R A M M I N G W I T H P Y T H O N A N D P Y T O R C H

ISPR – 06/05/2021

Antonio Carta
antonio.carta@di.unipi.it

Key Features

◦ Tensor manipulation: library to manipulate tensors, with
MATLAB/Numpy-like API.

◦ GPU support: seamless execution on GPU and CPU devices.

◦ Automatic Differentiation: custom layers only need to define the
forward step, because functions is automatically differentiated
using the chain rule.

◦ High-level API: ready-to-use high-level API with neural networks
layers, losses, and optimizers

2

Installation

◦ Python 3 (or C++)

◦ Cross-platform

◦ The library can be installed using pip or conda

◦ The last stable version is PyTorch 1.8.1

◦ GPU-enabled
conda install pytorch torchvision cudatoolkit=10.2 -c pytorch

◦ CPU-only
conda install pytorch torchvision cpuonly -c pytorch

More details on the official website: http://pytorch.org/

3

http://pytorch.org/

4

Tensors

◦ Tensors are the main data structure. They represent

multidimensional arrays

◦ Equivalent of numpy.ndarray

◦ Support advanced indexing and broadcasting numpy-style

Attributes:
◦ dtype: determine the type of the tensor elements (float{16, 32, 64},

int{8, 16, 32, 64}, uint8). Can be specified during the initialization.

◦ device: memory location (cpu or cuda)

◦ layout: dense tensors (strided) or sparse (sparse_coo)

5

Tensor Initialization

◦ torch.tensor

◦ takes any array-like argument and create a
new tensor

◦ zero initialization

◦ torch.zeros(*dims)

◦ random

◦ torch.randn(*dims)

◦ torch.rand(*dims)

◦ linear range

◦ torch.linspace(start, end, steps=100)

◦ Numpy bridge

◦ torch.from_numpy(x)

◦ you can also convert a tensor into a
ndarray with the .numpy method

◦ note: the numpy array and the resulting
tensor share the memory

In [1]: import torch

In [1]: cuda = torch.device("cuda")

In [2]: a = torch.tensor([[1], [2], [3]],
dtype=torch.half, device=cuda)

In [3]: print(a)

Out[3]:

tensor([[1],

[2],

[3]], device='cuda:0')

Tensor Operations

◦ some operators are overloaded
◦ +, - for addition and subtraction

◦ * is the elementwise multiplication (not the matrix product)

◦ @ for matrix multiplication (torch.matmul)

◦ in-place operations are defined with a suffix underscore
◦ add_, sub_, matmul_ are the in-place equivalent for the previous operators

◦ check the documentation:
http://pytorch.org/docs/stable/torch.html#tensors

6

http://pytorch.org/docs/stable/torch.html#tensors

Indexing

◦ basic tensor indexing is
similar to list indexing, but
with multiple dimensions

◦ boolean condition: boolean
arrays can be used to filter
elements that satisfy some
condition

◦ if the indices are less than the
number of dimensions the
missing indices are considered
complete slices

7

first k elements

x = a[:k]

all but the first k

x = a[k:]

negative indexing

x = a[-k:]

mixed indexing

a[:t_max, b:b+k, :]

indexing with Boolean condition

def relu(x):
x[x < 0] = 0

return x

Broadcasting

◦ Broadcasting allows to perform an operation when tensors have
different shapes (e.g. elementwise multiplication between matrix
and vector)

◦ Useful to avoid lots of reshape operations

◦ Can I use broadcasting? Yes, if you satisfy two conditions:
◦ each Tensor has at least one dimension

◦ When iterating over the dimension sizes, starting at the trailing dimension, the
dimension sizes must either be equal, one of them is 1, or one of them does not
exist.

8

9

Broadcasting examples

In [3]: a = torch.rand(3, 3)

In [4]: b = torch.rand(3, 1)

In [5]: s1 = a + b

In [6]: c = torch.rand(3, 1, 1)

In [7]: s2 = a + c

In [8]: d = torch.rand(3, 2)

In [9]: a + d

RuntimeError: inconsistent tensor size, expected r_ [3 x 3], t
[3 x 3] and src [3 x 2] to have the same number of elements,
but got 9, 9 and 6 elements respectively at
d:\projects\pytorch\torch\lib\th\generic/THTensorMath.c:887

ok, b is expanded
this is equivalent to a + b.expand(-1, 3)

ok, a and c are expanded
a.unsqueeze(2).expand(3,3,3) + c.expand(3,3,3)

error, a and d are not broadcastable

GPU usage

◦ torch.cuda API for GPU management

◦ during the creation of a tensor you can choose the device (CPU or GPU)

◦ all the tensor arguments of an operator must reside on the same device

◦ the result of the operation will be allocated on the same device

◦ Tensors can be moved to the GPU with cuda and to methods

◦ can take the GPU id as an optional argument if you have multiple GPUs

◦ You can move tensors to the CPU with the cpu method

◦ Check if CUDA is supported on the machine with torch.cuda.is available

10

CUDA – How to select a single GPU

On a server you typically have access to multiple shared GPU
and you must select one to run your code.

◦ Manual selection using the device argument (‘cuda:0’, ‘cuda:1’…)

◦ Using the context manager torch.cuda.device

◦ Changing the shell environment variable CUDA_VISIBLE_DEVICES to limit the
visible GPUs

◦ export CUDA_VISIBLE_DEVICES=0

◦ The library setGPU automatically finds the best GPU for you and uses
CUDA_VISIBLE_DEVICES to mask the others (https://github.com/bamos/setGPU)

◦ import setGPU at the top of your main script

11

https://github.com/bamos/setGPU

12

cuda = torch.device(device('cuda’)) # Default CUDA device
cuda0 = torch.device(device('cuda:0’)
cuda2 = torch.device(device('cuda:2’)) # GPU 2

x = torch.tensor([1., 2.], device=cuda0)
x.device is device(type='cuda', index=0)
y = torch.tensor([1., 2.]).cuda()
y.device is device(type='cuda', index=0)

With torch.cuda.device(1):
allocates a tensor on GPU 1
a = torch.tensor([1., 2.], device=cuda)

transfers a tensor from CPU to GPU 1
b = torch.tensor([1., 2.]).cuda()
a.device and b.device are device(type='cuda', index=1)

You can also use ``Tensor.to`` to transfer a tensor:
b2 = torch.tensor([1., 2.]).to(device=cuda)
b.device and b2.device are device(type='cuda', index=1)

c = a + b # c.device is device(type='cuda', index=1)
z = x + y # z.device is device(type='cuda', index=0)

even within a context, you can specify the device
(or give a GPU index to the .cuda call)
d = torch.randn(2, device=cuda2)
e = torch.randn(2).to(cuda2)
f = torch.randn(2).cuda(cuda2)
d.device, e.device, and f.device are all device(type='cuda', index=2)

Automatic Differentiation

torch.autograd is the package
responsible for the automatic
differentiation

Each computation creates a
dynamic computational graph.
Each operation adds a Function
node, conncted to its Tensor
arguments

The graph is used to compute
the gradient by calling the
method backward.

13

Autograd (1)

◦ Tensor objects are the data nodes of the computational graph

◦ The main attributes related to the graph structure are:

◦ data: Tensor containing the Variable value

◦ grad: Tensor containing the gradient (initially set to None)

◦ grad_fn: the function used to compute the gradient

◦ Each Function implements two methods:

◦ forward: function application

◦ backward: gradient computation

14

Autograd (2)

◦ The requires_grad attribute is used to specify if the gradient
computation should propagate into the Tensor or stop
◦ for model’s parameters requires_grad=True

◦ for input data or constant values requires_grad=False

◦ You can truncate the gradient using detach. The method removes
the Tensor from the graph, making it a leaf.

◦ in-place modification is not allowed because it breaks the
automatic differentiation.

◦ at inference time you can speed up the computation by using the
context manager torch.no_grad, which disables the graph
construction required for the backward computation, saving
space and time.

◦ autograd documentation
http://pytorch.org/docs/stable/autograd.html

15

http://pytorch.org/docs/stable/autograd.html

Building the dynamic graph

16

forward
step and
dynamic
graph
creation

gradient computation

functions

graph leaves. Data and Parameters

torch.nn

◦ torch.nn contains the basic
components to define your neural
networks, loss functions,
regularization techniques and
optimizers.

◦ We will see in the next few slides
◦ What is a Module

◦ how to define a custom Module

◦ how to set up a basic training loop

17

nn.Module

◦ Module is the base class for all the neural network submodules
◦ Linear, convolutional, recurrent layers are all Module subclasses

◦ A Module contain Parameters:
◦ these are typically the trainable parameters of your model

◦ Parameter is a wrapper of a tensor with requires_grad=True

◦ you can iterate over all the parameters using the parameters() method

◦ you can compute the output of a network by using it like a
function (e.g. y_pred = net(X))
◦ that is possible because __apply__ is overriden

◦ the computation is performed by the forward method, but if you forward
directly the module’s hooks are not activated

◦ It is possible to define forward and backward hooks
◦ e.g. you can check for NaN gradients after the backward pass

◦ you can register the hook with methods like register_forward_hook()

18

How to Subclass Module

◦ Override the forward method to define how the computation is
performed. Backward is automatically implemented with
autograd

◦ Override the __init__ method, defining your parameters
◦ remember to call the constructor of the super class!

◦ When you add a Parameter as an attribute it is automatically
registered for you. It also works for submodules.

◦ If you want to add a list of parameters or modules use the
ParameterList and ModuleList containers. If you use a list the
parameter will not be registered and cannot be iterated with the
parameters method

◦ you can print the network to see the registered parameters and
submodules

19

20

Example – Custom Module

class Net(nn.Module):
def __init__(self):

super().__init__() <- remember to call the superclass
1 input image channel, 6 output channels,
#5x5 square convolution
kernel
self.conv1 = nn.Conv2d(1, 6, 5)
self.conv2 = nn.Conv2d(6, 16, 5)
an affine operation: y = Wx + b
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)

def forward(self, x):
Max pooling over a (2, 2) window
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
If the size is a square you can only specify a
single number
x = F.max_pool2d(F.relu(self.conv2(x)), 2)
x = x.view(-1, self.num_flat_features(x))
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x

21

ParameterList usage

model = MyModel(**kwargs)

Correct!

model.x = nn.ParameterList([

torch.randn((10, 10), requires_grad=True),

torch.randn((10, 10), requires_grad=True)

]

Wrong!!!

model.x = [

torch.randn((10, 10), requires_grad=True),

torch.randn((10, 10), requires_grad=True)

]

Example – print model

if we create a Net object and print it we obtain the following
output:

We can see the two convolutional layers and the three fully
connected layers.

22

Net(

(conv1): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1))

(conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))

(fc1): Linear(in_features=400, out_features=120, bias=True)

(fc2): Linear(in_features=120, out_features=84, bias=True)

(fc3): Linear(in_features=84, out_features=10, bias=True)

)

◦ To define a training loop we need a loss and an optimizer

◦ torch.nn defines many different loss functions
◦ nn.MSELoss, nn.CrossEntropyLoss, nn.NLLLoss, nn.BCELoss, …

◦ you can also use the functional version, defined in nn.functional. The only
difference is that you don’t need to create an object.

◦ always check the documentation for the correct shape and input arguments
(does the loss needs logits or probabilities? Which dimension should be the
last? Is the average for each element or for each sample?)

Loss

23

import nn.functional as F

net = Net()
out = net(X)
loss = F.MSELoss(out, target)

Optimizer

◦ Simple gradient descent:

◦ note the call to the zero_grad method. It is needed to reset the
gradient buffers

◦ you can also use an optimizer defined in torch.optim (next slide)
◦ SGD, Adam, RMSProp

◦ they take as arguments the learning rate, momentum, l2 weight decay

◦ the step method performs the update (no need to call sub_ explicitly)

24

learning_rate = 0.01
net.zero_grad() do not forget it
loss.backward()
for f in net.parameters():

f.data.sub_(f.grad.data * learning_rate)

Training Loop

25

criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

for epoch in range(100): # loop over the dataset multiple
times

running_loss = 0.0
for i, data in enumerate(dataset):

inputs, labels = data # get the inputs
optimizer.zero_grad() # zero the parameter gradients

forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()

print statistics
running_loss += loss.data[0]
if i % 2000 == 1999: # print every 2000 mini-batches

print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 2000))

running_loss = 0.0

print('Finished Training')

torch.nn Modules

Available Modules:
◦ Convolutional layers: Conv2D, MaxPool2D

◦ Recurrent layers: RNN, LSTM, GRU, {RNN, LSTM, GRU}Cell

◦ FeedForward: Linear

◦ activation functions defined in torch.nn.functional

train/eval mode

◦ Modules have a train/eval mode. This is useful for layers (e.g.
Dropout, BatchNormalization) that define a different behaviour
during train and test. Always set it during training with net.train(),
and disable it during the test phase (net.eval()).

26

Feedforward
Network

import torch.nn as nn

model = nn.Sequential(

nn.Linear(100, 50),

nn.ReLU(),

nn.Linear(50, 50),

nn.ReLU(),

nn.Linear(50, 10),

nn.Softmax()

)

y_out = model(X)

Simple architectures can be
defined as a sequential
application of modules.

A feedforward network is a
sequence of linear
transformations and
nonlinear activations.

27

Recurrent
Neural
Networks

model = torch.nn.LSTMCell(input_size, hidden_size)

out = []

h_prev = torch.zeros((batch_size, hidden_size))

c_prev = torch.zeros((batch_size, hidden_size)))

for t in range(n_steps):

X_t = X[t]

h_prev, c_prev = model(X_t,(h_prev,c_prev))

out.append(o_t)

out = torch.stack(out)

{LSTM, RNN, GRU}Cell
implement a recurrent layer.
Combining them we can
build a recurrent network.

The default input shape is

(time, batch, features)

Different from Keras.

You also need to keep track
of the hidden and cell
states.

28

Dataset

◦ For small datasets you can load the data as a
numpy array and convert it to a pytorch
tensor (remember to check the dimensions in
case you need to transpose some dimension)

◦ the alternative is to use the utilities provided
in torch.data.utils

◦ DataLoader can be used to load the dataset
in parallel. It is useful only when you are using
heavy preprocessing (e.g. image data with
lots of data augmentation)

◦ Sampler classes for sequential or random
sampling from a dataset.

◦ check the documentation:
http://pytorch.org/docs/stable/data.html

29

http://pytorch.org/docs/stable/data.html

Model serialization and logging

◦ PyTorch provides some guidelines regarding serialization
http://pytorch.org/docs/stable/notes/serialization.html

◦ save a network

torch.save(the_model.state_dict(), PATH)

◦ load back the model

the_model = TheModelClass(*args, **kwargs)

the_model.load_state_dict(torch.load(PATH))

◦ You can also use Tensorboard to log training metrics
◦ https://pytorch.org/docs/stable/tensorboard.html

30

http://pytorch.org/docs/stable/notes/serialization.html
https://pytorch.org/docs/stable/tensorboard.html

Static vs Dynamic Graphs

Computation Graph: representation of your model’s computation,
needed to perform the backpropagation.

Static graph: Defined statically.

- More possibility for optimization and other graph transformations

- Harder to code and debug

- Painful to code if you have input with a dynamic structure

Dynamic graph: Defined and created at runtime.

- Easier to code

- Slower execution (not always)

Pytorch uses dynamic graphs by default. For static graphs you need
to use torch.jit

31

Static vs Dynamic Graphs (2)

◦ Debugging: dynamic graphs are (a lot) easier to debug due to the
ability to track the variables at runtime. The execution of a static
graph is harder to inspect.

◦ Structured Data: variable structures are easy to process with
dynamic graphs. Static graphs require explicit control flow and
dynamic batching to process structured data efficiently.

◦ Deployment: static graphs are easier to deploy and can be easily
serialized and loaded into different environments.

◦ Optimization: static graphs are easier to optimize. You can gain
about 30% with basic CNN in memory and time consumption with
a fully optimized graph at inference time

32

33

Static vs Dynamic

With a dynamic approach the
computational graph and the sample
have the same structure.

With a static approach the computational
graph contains explicit control flow because
it remains the same for different samples.

34

Pytorch lightning

◦ High-level keras-like
library that implements
most of the boilerplate
code for you

◦ Uses a callback system
that allows the user to
customize the training
loop and easily add
functionality

35

this is just a plain nn.Module with some structure
class LitClassifier(pl.LightningModule):

def __init__(self):
super().__init__()
self.l1 = torch.nn.Linear(28 * 28, 10)

def forward(self, x):
return torch.relu(self.l1(x.view(x.size(0), -1)))

def training_step(self, batch, batch_nb):
x, y = batch loss = F.cross_entropy(self(x), y)
tensorboard_logs = {'train_loss': loss}
return {'loss': loss, 'log': tensorboard_logs}

def configure_optimizers(self):
return torch.optim.Adam(self.parameters(), lr=0.02)

train!
train_loader = DataLoader(MNIST(os.getcwd(), train=True, download=True,

transform=transforms.ToTensor()), batch_size=32)
model = LitClassifier()
trainer = pl.Trainer(gpus=8, precision=16)
trainer.fit(model, train_loader)

Example Code

◦ Regression
https://github.com/pytorch/examples/blob/master/regression/m
ain.py

◦ CNN
https://github.com/pytorch/examples/blob/master/mnist/main.p
y

36

https://github.com/pytorch/examples/blob/master/regression/main.py
https://github.com/pytorch/examples/blob/master/mnist/main.py

References

official documentation: http://pytorch.org/docs

official tutorials: http://pytorch.org/tutorials/

official examples: https://github.com/pytorch/examples

PyTorch in 60 minutes:
http://pytorch.org/tutorials/beginner/deep_learning_60min_
blitz.html

tensor manipulation: https://github.com/rougier/numpy-100

37

http://pytorch.org/docs
http://pytorch.org/tutorials/
https://github.com/pytorch/examples
http://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html
https://github.com/rougier/numpy-100

