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Signals = Time series

Introduction

Definitions

A sequence of measurements in time

Medicine
Financial
Meteorology
Geology
Biometrics
Robotics
loT
Biometrics

At

Af*gm@%@\&%%@hﬁ'ﬁ

o
8
fe M
@
o




[l e Definitions

Formalization

A time series X is a sequence of measurements in time t

X=X0,X{,.- -, Xty ..., XN

where x; (or x(t)) is the measurement at time .

@ Observations can be observable at irregular time intervals
@ Time series analysis assumes weakly stationary (or
second-order stationary) data
e E[x;] =pforallt
o CoVv(Xiyr,Xt) =, for all t (v does only depend on lag 7)



Introduction

Motivations

@ Description - Summary statistics, graphs
@ Analysis - Identify and describe dependencies in data

@ Prediction - Forecast the next values given information up
to time t

@ Control - Adjust the parameters of the generative process
to make the time series fit a target

The goal of this lecture is providing knowledge on some basic
techniques that can be useful as

@ Baseline
@ Preprocessing
@ Building blocks




Introduction

Motivations

Key Methods

@ Time domain analysis - Assesses how a signal changes
over time
e Correlation and Convolution
o Autoregressive models
@ Speciral domain analysis - Assesses the distribution of the
signal over a range of frequencies
e Fourier Analysis
o Wavelets



Statistics
Time Domain Analysis

Mean and Autocovariance

Some interesting estimators for time series statistics are

Sample mean

1 N
A:NZXT
t=1

.
)
.
.
1
.
.

(Sample) Autocovariance forlag —N <7 < N
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Statistics
Time Domain Analysis

Autocorrelation

Autocovariance serves to compute autocorrelation, i.e. the

correlation of a signal with itself

Autocorrelation analysis can reveal repeating patierns such as
the presence of a periodic signal hidden by noise



Statistics
Time Domain Analysis

Autocorrelation Plot

A revealing view on timeseries statistics
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What do you see in this time Autocorrelogram reveals a sine
series? wave



Time Domain Analysis Time-Series Similarity

Cross-Correlation (Discrete)

A measure of similarity of x! and x2 as a function of a time lag 7
y

min{(TT—1+7),(T2—1)}

Pxixe(T) = > Xt —7) - x3(t)
t=max{0,7}

o Te[—(T'—1),...,0,...(T"=1)]
@ The maximum ¢y1,2(7) W.r.t. 7 identifies the displacement
of x' vs x?



Time Domain Analysis Time-Series Similarity

Cross-Correlation (Discrete)

Normalized cross-correlation returns an amplitude independent
value

¢x‘x2( )
VEL 02 D 0e(n)?

$x1x2(7-) € [-1,+1]

@ ¢yi,2(7) = +1 = The two time-series have the exact same
shape if aligned at time 7

@ Hy1,2(7) = —1 = The two time-series have the exact same
shape but opposiie sign if aligned at time 7

@ ¢y1,2(7) = 0 = Completely uncorrelated signals



Time Domain Analysis Time-Series Similarity

Cross-Correlation - Something already seen...

What is this?

(f«g)[n] = Z f(n—t)g

@ Discrete convolution on finite support [-M, +M]
@ Similar to cross-correlation but one of the signals is
reversed (i.e. —tin place of f)

@ Convolution can be seen as a smoothing operator
(commutative!)



Time Domain Analysis Time-Series Similarity

A View of Time Domain Operators

Convolution Cross-correlation Autocorrelation
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Image Credit: Wikipedia



Time Domain Analysis
Autoregressive models

Autoregressive Process

A timeseries Autoregressive process (AR) of order K is the
linear system

K
Xt = Z O Xi—k 1 €t
k=1

@ Autoregressive = x; regresses on itself
@ oy = linear coefficients s.t. |o| < 1

@ ¢; = sequence of i.i.d. values with mean 0 and fixed
variance



Time Domain Analysis
Autoregressive models

Autoregressive with Moving Average process (ARMA)

K Q
X; = Z axXi_k + Z 6q€t—q + €
k=1 g=1

@ ¢; = Random white noise (again)

@ The current timeseries value is the result of a regression
on its past values plus a term that depends on 2
combination of stochastically uncorrelated information

@ Denotes new information or shocks at time t



Time Domain Analysis
Autoregressive models

Estimating Autoregressive Models

@ Need to estimate
e The values of the linear coefficients a; (and ;)
e The order of the autoregressor K (and Q)
@ Estimation of the « is performed with the Levinson-Durbin
recursion, e.g. in Matlab a = levinson (x,K)

@ The order is often estimated with a Bayesian model
selection criterion, e.g. BIC, AIC, etc.

The set of autoregressive parameters a’1', e ,ak fitted to a
specific timeseries x' is used to confront it with other timeseries




Time Domain Analysis
Autoregressive models

Comparing Timeseries by AR

@ Timeseries clustering
d(x",x?) = [[a’ = a?|[}
@ Novelty/anomaly detection
Test Err(x;, Xt) < &

where X; is the AR predicted value

@ Encode time series as a set of o' vectors and feed them to
a flat ML model



Spectral Analysis

Spectral Analysis

Analysing time series in the frequency domain

Decompose a time series into a linear combination of sinusoids
(and cosines) with random and uncorrelated coefficients

@ [ime domain - Regression on past values of the time
series

@ Frequency domain - Regression on sinusoids

Use the framework of Fourier Analysis J




Fourier Analysis

Spectral Analysis

Fourier Transform

@ Discrete Fourier transform (DFT)

@ Transforms a time series from the time domain to the
frequency domain

@ Can be easily inverted (back to the time domain)
@ Useful to handle periodicity in the time series

e Seasonal trends
e Cyclic processes



Fourier Analysis

Spectral Analysis

Representing Functions

We (should) know that, given an orthonormal system
{e1;eo,...} for E, we can represent any function f € E by a
linear combination of the basis

o0
> < fe > e
p

Given the orthonormal system
1
——, sin(x), cos(x), sin(2x), cos(2x), ...
{ J+sin00.cos(x).sin(2x), cos(2x).... |

the linear combination above becomes the Fourier Series

ap/2 + i[ak cos(kx) + by sin(kx)]
k=1

with ak, bk being coefficients resulting from integrating f(x) with
the sin and cos functions



Fourier Analysis

Spectral Analysis

Representing Functions in Complex Space

Using cos(kx) — isin(kx) = e~® with i = v/—1 we can rewrite

the Fourier series as

© .
Z Ck e/kx

k=—oc0

on the orthonormal system
N i iox i
{1,e’x,e X e¥ e ’X,...}

and c integrates f(x) with e=™*~.



Fourier Analysis

Spectral Analysis

Representing Discrete Time series

@ Consider a discrete time series X = xg, X1, ..., Xy_1 Of
length N and x, € R

© Using the exponential formulation the orthonormal system
is made of {eg,eq,...,en_1} vectors e, € cN

© The n-th component of the k-th vector is

_ 2mink

[ek]n =€e N




Graphically

Spectral Analysis

Re

Fourier Analysis

A basis e, at frequency k has
N elements sampled from the
roots of the unitary circle in
imaginary-real space



Fourier Analysis

Spectral Analysis

Discreet Fourier Transform

Given a time series X = xg, X4, ..., Xy_1 its Discrete Fourier
Transform (DFT) is the sequence (in frequency domain)

N—1
—2mink
Xk - Z Xne N

n=1

The DFT has an inverse transform

N—-1

1 2mink

Xn == N E Xke N
k=1

to go back to the time domain.



Fourier Analysis

Spectral Analysis

Amplitude

A measure of relevance/strenght of a target frequency k

Ay = Re?(Xy) + Im?(Xx)
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DFT in Action

@ Use the DFT elements Xj, ...
signal to train predictor/classifier

@ Representation in spectral domain can reveal patierns that

are not clear in time domain
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Spectral Analysis WevElEiE

Limitations of DFT

Sometimes we might need localized frequencies rather than

global frequency analysis
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Spectral Analysis WevElEiE

Graphical Intuition

4 Fourier t Wavelet

frequency
frequency

time time time

Split signal in frequency bands only if they exist in specific
time-intervals
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Spectral Analysis avelets

Wavelets

Split the signal using an orthonormal basis generated by
translation and dilation of a mother wavelet

f(x ZZ\U”(

teZ kez

Terms k and t regulate scaling and shifting of the wavelet
Wy k(x) = 2F2w(2kx — t)

with respect to the mother V(). E.g.
k <1 Compresses the signal
k> 1 Dilates the signal

Many different possible choices for the mother wavelet function:
Haar, Daubechies, Gabor,...



Conclusions

Take Home Messages

@ Old-school pattern recognition on timeseries is about
learning coefficients that describe properties of the time
series

o Autoregressive coefficients (lime domain)
e Fourier coefficient (frequency domain)
@ Often linear methods
e Autocorrelation reveals similitude of a signal with delayed
versions of itself
e Cross-correlation provides hints on time series similarity
and how to align them

@ Fourier analysis allows to identify recurring patierns and to
identify key frequencies in the signal



Conclusions

Next Lecture

@ Introduction to image processing

@ Representing images and visual content
@ |dentify informative parts of an image

@ Spectral analysis in 2D
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