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Signals = Time series

A sequence of measurements in time

Medicine
Financial
Meteorology
Geology
Biometrics
Robotics
IoT
Biometrics
...
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Formalization

A time series x is a sequence of measurements in time t

x = x0, x1, . . . , xt , . . . , xN

where xt (or x(t)) is the measurement at time t .

Observations can be observable at irregular time intervals
Time series analysis assumes weakly stationary (or
second-order stationary) data

E[xt ] = µ for all t
Cov(xt+τ , xt ) = γτ for all t (γ does only depend on lag τ )
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Goals

Description - Summary statistics, graphs
Analysis - Identify and describe dependencies in data
Prediction - Forecast the next values given information up
to time t
Control - Adjust the parameters of the generative process
to make the time series fit a target

The goal of this lecture is providing knowledge on some basic
techniques that can be useful as

Baseline
Preprocessing
Building blocks
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Key Methods

Time domain analysis - Assesses how a signal changes
over time

Correlation and Convolution
Autoregressive models

Spectral domain analysis - Assesses the distribution of the
signal over a range of frequencies

Fourier Analysis
Wavelets



Introduction
Time Domain Analysis

Spectral Analysis

Statistics
Time-Series Similarity
Autoregressive models

Mean and Autocovariance

Some interesting estimators for time series statistics are
Sample mean

µ̂ =
1
N

N∑
t=1

xt

(Sample) Autocovariance for lag −N ≤ τ ≤ N

γ̂x(τ) =
1
N

N−|τ |∑
t=1

(xt+|τ | − µ̂)(xt − µ̂)
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Autocorrelation

Autocovariance serves to compute autocorrelation, i.e. the
correlation of a signal with itself

ρ̂x(τ) =
γ̂x(τ)

γ̂x(0)

Autocorrelation analysis can reveal repeating patterns such as
the presence of a periodic signal hidden by noise
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Autocorrelation Plot

A revealing view on timeseries statistics

What do you see in this time
series?

Autocorrelogram reveals a sine
wave
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Cross-Correlation (Discrete)

A measure of similarity of x1 and x2 as a function of a time lag τ

φx1x2(τ) =

min{(T 1−1+τ),(T 2−1)}∑
t=max{0,τ}

x1(t − τ) · x2(t)

τ ∈ [−(T 1 − 1), . . . ,0, . . . , (T 1 − 1)]

The maximum φx1x2(τ) w.r.t. τ identifies the displacement
of x1 vs x2
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Cross-Correlation (Discrete)

Normalized cross-correlation returns an amplitude independent
value

φx1x2(τ) =
φx1x2(τ)√∑T 1−1

t=0 (x1(t))2
∑T 2−1

t=0 (x2(t))2
∈ [−1,+1]

φx1x2(τ) = +1⇒ The two time-series have the exact same
shape if aligned at time τ
φx1x2(τ) = −1⇒ The two time-series have the exact same
shape but opposite sign if aligned at time τ
φx1x2(τ) = 0⇒ Completely uncorrelated signals
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Cross-Correlation - Something already seen...

What is this?

(f ∗ g)[n] =
M∑

t=−M

f (n − t)g(t)

Discrete convolution on finite support [−M,+M]

Similar to cross-correlation but one of the signals is
reversed (i.e. −t in place of t)
Convolution can be seen as a smoothing operator
(commutative!)
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A View of Time Domain Operators

Image Credit: Wikipedia
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Autoregressive Process

A timeseries Autoregressive process (AR) of order K is the
linear system

xt =
K∑

k=1

αkxt−k + εt

Autoregressive⇒ xt regresses on itself
αk ⇒ linear coefficients s.t. |α| < 1
εt ⇒ sequence of i.i.d. values with mean 0 and fixed
variance
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ARMA

Autoregressive with Moving Average process (ARMA)

xt =
K∑

k=1

αkxt−k +
Q∑

q=1

βqεt−q + εt

εt ⇒ Random white noise (again)
The current timeseries value is the result of a regression
on its past values plus a term that depends on a
combination of stochastically uncorrelated information
Denotes new information or shocks at time t
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Estimating Autoregressive Models

Need to estimate
The values of the linear coefficients αt (and βt )
The order of the autoregressor K (and Q)

Estimation of the α is performed with the Levinson-Durbin
recursion, e.g. in Matlab a = levinson(x,K)

The order is often estimated with a Bayesian model
selection criterion, e.g. BIC, AIC, etc.

The set of autoregressive parameters αi
1, . . . , α

i
K fitted to a

specific timeseries xi is used to confront it with other timeseries



Introduction
Time Domain Analysis

Spectral Analysis

Statistics
Time-Series Similarity
Autoregressive models

Comparing Timeseries by AR

Timeseries clustering

d(x1,x2) = ‖α1 − α2‖2M

Novelty/anomaly detection

Test Err(xt , x̂t ) < ξ

where x̂t is the AR predicted value
Encode time series as a set of αi vectors and feed them to
a flat ML model



Introduction
Time Domain Analysis

Spectral Analysis

Fourier Analysis
Wavelets

Spectral Analysis

Analysing time series in the frequency domain

Key Idea
Decompose a time series into a linear combination of sinusoids
(and cosines) with random and uncorrelated coefficients

Time domain - Regression on past values of the time
series
Frequency domain - Regression on sinusoids

Use the framework of Fourier Analysis
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Fourier Transform

Discrete Fourier transform (DFT)
Transforms a time series from the time domain to the
frequency domain
Can be easily inverted (back to the time domain)
Useful to handle periodicity in the time series

Seasonal trends
Cyclic processes
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Representing Functions

We (should) know that, given an orthonormal system
{e1; e2, . . . } for E , we can represent any function f ∈ E by a
linear combination of the basis

∞∑
k=1

< f ,ek > ek .

Given the orthonormal system{
1√
2
, sin(x), cos(x), sin(2x), cos(2x), . . .

}
the linear combination above becomes the Fourier Series

a0/2 +
∞∑

k=1

[ak cos(kx) + bk sin(kx)]

with ak ,bk being coefficients resulting from integrating f (x) with
the sin and cos functions
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Representing Functions in Complex Space

Using cos(kx)− i sin(kx) = e−ikx with i =
√
−1 we can rewrite

the Fourier series as
∞∑

k=−∞
ckeikx

on the orthonormal system{
1,eix ,e−ix ,ei2x ,e−i2x , . . .

}
and ck integrates f (x) with e−ikx .
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Representing Discrete Time series

1 Consider a discrete time series x = x0, x1, . . . , xN−1 of
length N and xn ∈ R

2 Using the exponential formulation the orthonormal system
is made of {e0,e1, . . . ,eN−1} vectors ek ∈ CN

3 The n-th component of the k -th vector is

[ek ]n = e−
2πink

N
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Graphically

A basis ek at frequency k has
N elements sampled from the
roots of the unitary circle in
imaginary-real space
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Discreet Fourier Transform

Given a time series x = x0, x1, . . . , xN−1 its Discrete Fourier
Transform (DFT) is the sequence (in frequency domain)

Xk =
N−1∑
n=1

xne
−2πink

N

The DFT has an inverse transform

xn =
1
N

N−1∑
k=1

Xke
2πink

N

to go back to the time domain.
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Amplitude

A measure of relevance/strenght of a target frequency k

Ak = Re2(Xk ) + Im2(Xk )



Introduction
Time Domain Analysis

Spectral Analysis

Fourier Analysis
Wavelets

DFT in Action

Use the DFT elements X1, . . . ,XK as representation of the
signal to train predictor/classifier
Representation in spectral domain can reveal patterns that
are not clear in time domain
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Limitations of DFT

Sometimes we might need localized frequencies rather than
global frequency analysis
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Graphical Intuition

Split signal in frequency bands only if they exist in specific
time-intervals
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Wavelets

Split the signal using an orthonormal basis generated by
translation and dilation of a mother wavelet

f (x) =
∑
t∈Z

∑
k∈Z

Ψt ,k (x)

Terms k and t regulate scaling and shifting of the wavelet

Ψt ,k (x) = 2k/2Ψ(2kx− t)

with respect to the mother Ψ(·). E.g.
k < 1 Compresses the signal
k > 1 Dilates the signal

Many different possible choices for the mother wavelet function:
Haar, Daubechies, Gabor,...
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Take Home Messages

Old-school pattern recognition on timeseries is about
learning coefficients that describe properties of the time
series

Autoregressive coefficients (time domain)
Fourier coefficient (frequency domain)

Often linear methods
Autocorrelation reveals similitude of a signal with delayed
versions of itself
Cross-correlation provides hints on time series similarity
and how to align them

Fourier analysis allows to identify recurring patterns and to
identify key frequencies in the signal
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Next Lecture

Introduction to image processing
Representing images and visual content
Identify informative parts of an image
Spectral analysis in 2D
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