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Image Format

Images are matrices of pixel intensities or color values (RGB)

Other representations exist, but not of interest for the
course
CIE-LUV is often used in image processing due to
perceptual linearity

Image difference is more coherent
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Machine Vision Applications

Region of interest identification

Object classification
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Machine Vision Applications

Image Segmentation Semantic segmentation
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Machine Vision Applications

Automated image
captioning

...and much more
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Key Questions?

How do we represent visual information?
Informative
Invariant to photometric and geometric transformations
Efficient for indexing and querying

How do we identify informative parts?
Whole image? Generally not a good idea...
Must lead to good representations
Edges, blobs, segments
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Global Descriptors
Local Descriptors
Spectral Analysis

Image Histograms

Represent the distribution of some visual information on
the whole image

Color
Edges
Corners

Color histograms are one of the earliest image descriptors
Count the number of pixels of a given color (normalize!)
Need to discretize and group the RGB colors
Any information concerning shapes and position is lost
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Color Histograms

Images can be compared, indexed and classified based on
their color histogram representation

%Compute histogram on s i n g l e
channel

[ yRed , x ] = i m h i s t ( image ( : , : , 1 ) ) ;
%Disp lay histogram
i m h i s t ( image ( : , : , 1 ) ) ;

impor t cv2 #OpenCV
image = cv2 . imread ( " image . png " )
# loop over the image channels
chans = cv2 . s p l i t ( image )
co lo rs = ( " b " , " g " , " r " )
f o r ( chan , co l o r ) i n z ip ( chans , co lo rs ) :

h i s t = cv2 . c a l c H i s t ( [ chan ] , [ 0 ] , None , \
[ 256 ] , [ 0 , 256] )
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Describing Local Image Properties

Capturing information on image regions
Extract multiple local descriptors

Different location
Different scale

Several approaches, typically performing convolution
between a filter and the image region

Need to identity
good regions of
interest (later)
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Intensity Vector

The simplest form of localized descriptor

Normalize w to make the descriptor
invariant w.r.t. affine intensity changes

No invariance to pose, location, scale (
poorly discriminative)

d =
w− w
‖w− w‖
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Distribution-based Descriptors

Represent local patches by histograms describing properties
(i.e. distributions) of the pixels in the patch

What is the simplest approach you can think of?
Histogram of pixel intensities on a subwindow
Not invariant enough

A descriptor that is invariant to
Illumination (normalization)
Scale (captured at multiple scale)
Geometric transformations (rotation invariant)
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Scale Invariant Feature Transform (SIFT)

1 Center the image patch on a pixel x , y of image I
2 Represent image at scale σ

Controls how close I look at an image

Convolve the image with a Gaussian filter with std σ

Lσ(x , y) = G(x , y , σ) ∗ I(x , y)

G(x , y , σ) = exp
(
−x2 + y2

2σ2

)
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Gaussian Filtering of an Image

Create the Gaussian filter
%A gaussian f i l t e r between −6 and +6
h=13 , w=13 , sigma =5;
%Create a mesh of p i x e l po in t s i n [−6 ,+6]
[ h1 w1]= meshgrid(−(h−1) / 2 : ( h−1) /2 , −(w−1)

/ 2 : ( w−1) / 2 ) ;
%Compute the f i l t e r
hg= exp(−(h1 .^2+w1. ^ 2 ) / (2∗ sigma ^2) ) ;
%Normalize
hg = hg . / sum( hg ( : ) ) ;

Then, convolve it with the
image
Or you use library functions to
do all this for you
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Gaussian Filtering of an Image

Create the Gaussian filter
%A gaussian f i l t e r between −6 and +6
h=13 , w=13 , sigma =5;
%Create a mesh of p i x e l po in t s i n [−6 ,+6]
[ h1 w1]= meshgrid(−(h−1) / 2 : ( h−1) /2 , −(w−1)

/ 2 : ( w−1) / 2 ) ;
%Compute the f i l t e r
hg= exp(−(h1 .^2+w1. ^ 2 ) / (2∗ sigma ^2) ) ;
%Normalize
hg = hg . / sum( hg ( : ) ) ;

Then, convolve it with the
image
Or you use library functions to
do all this for you

I s c a l e = i m g a u s s f i l t ( I , sigma ) ;

σ = 5

σ = 0.05
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Scale Invariant Feature Transform (SIFT)

1 Center the image patch on a pixel x , y of image I
2 Represent image at scale σ
3 Compute the gradient of intensity in the patch

Magnitude m
Orientation θ

Use finite differences:

mσ(x , y) =√
(Lσ(x + 1, y)− Lσ(x − 1, y))2 + (Lσ(x , y + 1)− Lσ(x , y − 1))2

θσ(x , y) = tan−1
(
(Lσ(x , y + 1)− Lσ(x , y − 1))
(Lσ(x + 1, y)− Lσ(x − 1, y))

)
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Gradient and Filters

A closer look at finite difference reveals

Gx =
[

1 0 −1
]
∗ Lσ(x , y)

Gy =

 1
0
−1

 ∗ Lσ(x , y)

So

mσ(x , y) =
√

G2
x + G2

y and θσ(x , y) = tan−1
(

Gy

Gx

)
=
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Gradient Example

%Compute g rad ien t w i th c e n t r a l d i f f e r e n c e on x , y d i r e c t i o n s
[ Gx, Gy ] = imgrad ientxy ( Ig , ’ c e n t r a l ’ ) ;

%Compute magnitude and o r i e n t a t i o n
[m, the ta ] = imgrad ien t (Gx, Gy) ;

Ig m θ
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Scale Invariant Feature Transform (SIFT)

1 Center the image patch on a pixel x , y of image I
2 Represent image at scale σ
3 Compute the gradient of intensity in the patch
4 Create a gradient histogram

4x4 gradient window
Histogram of 4x4 samples per window on 8 orientation bins
Gaussian weighting on center keypoint (width = 1.5σ)
4× 4× 8 = 128 descriptor size
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SIFT Descriptor

Normalize to unity for illumination invariance
Threshold gradient magnitude to 0.2 to avoid saturation
(before normalization)
Rotate all angles by main orientation to obtain rotational
invariance
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SIFT Facts

For long time the most used visual descriptor
HOG: Histogram of oriented gradients
SURF: Speeded Up Robust Features
ORB: an efficient alternative to SIFT or SURF
GLOH: Gradient location-orientation histogram

SIFT is also a detector, although less used

SIFT in OpenCV
impor t cv2
. . . #Image Read
gray= cv2 . cv tCo lo r ( img , cv2 .COLOR_BGR2GRAY)
s i f t = cv2 . x features2d . SIFT_create ( )
#1 − Detect and then d i sp lay
kp = s i f t . de tec t ( gray , None )
kp , des = s i f t . compute ( gray , kp )
#2 − Detect and d i sp lay
kp , des = s i f t . detectAndCompute ( gray , None )
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Fourier Analysis

Images are functions returning intensity values I(x , y) on
the 2D plane spanned by variables x , y
Not surprisingly, we can define the Fourier coefficients of a
2D-DFT as

H(kx , ky ) =
N−1∑
x=1

M−1∑
y=1

I(x , y)e−2πi
(

xkx
N +

yky
M

)

In other words, I can write my image as sum of sine and cosine
waves of varying frequency in x and y directions
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The Convolution Theorem

The Fourier transform F of the convolution of two functions is
the product of their Fourier transforms

F(f ∗ g) = F(f )F(g)

Transforms convolutions in element-wise multiplications in
Fourier domain
Suppose we are given an image I (a function) and a filter g
(a function as well)...
...their convolution I ∗ g can be conveniently computed as

I ∗ g = (F )−1(F(I)F(g))

where (F )−1 is the inverse Fourier transform

Convolutional neural networks can be implemented efficiently in
Fourier domain!
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Image PR with DFT

1 Make a filter out of a pattern using Fourier transform F
2 Convolve in Fourier domain and reconstruct with F−1

3 Threshold high pixel activation to generate response mask
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Practical Issues with DFT on Images

Previous example, in Matlab:
[N,M] = s ize ( I ) ;
mask = i f f t 2 ( f f t 2 ( I ) .∗ f f t 2 ( charPat ,N,M) ) > th resho ld ;

The DFT is simmetric (in both directions):
Power spectrum is re-arranged to have
the (0,0) frequency at the center of the
plot

The (0,0) frequency is the DC component
Its magnitude is typically out of scale w.r.t.
other frequencies

H(0,0) =
N−1∑
x=1

M−1∑
y=1

I(x , y)e0

Use log(abs(H·,·)) to plot the spectrum (or
log-transform the image)
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Visual Feature Detector

Repeatability
Detect the same feature in different image portions and in
different images

Photometric - Changes in brightness and luminance
Translation - Changes in pixel location
Rotation - Changes to absolute or relative angle of keypoint
Scaling - Image resizing or changes in camera zoom
Affine Transformations - Non-isotrophic changes
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Edge Detection
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Edges and Gradients

Image gradient (graylevel)

∇I =
[
∂I
∂x
,
∂I
∂y

]
direction of change of intensity
Edges are pixel regions where...

Intensity gradient changes abruptly

The return of finite difference methods

Gx =
∂I
∂x
≈ I(x + 1, y)− I(x − 1, y)

Gy =
∂I
∂y
≈ I(x , y + 1)− I(x , y − 1)

Gx +1 0 −1
+1 0 −1
+1 0 −1


Gy +1 +1 +1

0 0 0
−1 −1 −1


Prewitt

operators
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Convolving Gradient Operators
Image

Magnitude

Gx

Gy
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Sobel Operator

An additional level of smoothing of the central difference

Gx =

 +1 0 −1
+2 0 −2
+1 0 −1


Gy =

 +1 +2 +1
0 0 0
−1 −2 −1


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In Code

Matlab
%Create an h o r i z o n t a l ( x ) P r e w i t t f i l t e r
h = f s p e c i a l ( ’ p r e w i t t ’ ) ; %Try a lso ’ sobel ’
%Convolve i t to the image Ig
imH = i m f i l t e r ( Ig , h , ’ r e p l i c a t e ’ ) ;
%Transpose f i l t e r f o r the y−d e r i v a t i v e
imV = i m f i l t e r ( Ig , h ’ , ’ r e p l i c a t e ’ ) ;
%Magnitude
M = u in t8 ( s q r t ( double ( ( imHor . ^ 2 ) + ( imVer . ^ 2 ) ) ) ) ;
%Then p l o t . . .
im too l ( imH) ; %etc . . .

Python
# p r e w i t t masks
kerne lx = np . ar ray ( [ [1 ,1 ,1 ] , [0 ,0 ,0 ] , [ −1 , −1 , −1] ] )
kerne ly = np . ar ray ( [ [ −1 ,0 ,1 ] , [ −1 ,0 ,1 ] , [ −1 ,0 ,1 ] ] )

#convo lv ing f i l t e r s
img_prewi t t x = cv2 . f i l t e r 2 D ( img_gray , −1, kerne lx )
img_prewi t t y = cv2 . f i l t e r 2 D ( img_gray , −1, kerne ly )

#sobel (CV_8U i s the output data type , ks ize i s the kerne l s i ze )
img_sobelx = cv2 . Sobel ( img_gray , cv2 .CV_8U,1 ,0 , ks ize =3)
img_sobely = cv2 . Sobel ( img_gray , cv2 .CV_8U,0 ,1 , ks ize =3)
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Blob Detection

Blobs are connected pixels
regions with little gradient
variability
Laplacian of Gaussian (LoG)
gσ(x , y) has maximum response
when centered on a circle of
radius

√
2σ

∇2gσ(x , y) =
∂2gσ

∂x2 +
∂2gσ

∂y2

Typically using a scale normalized response

∇2
normgσ(x , y) = σ2

(
∂2gσ

∂x2 +
∂2gσ

∂y2

)
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LoG Blob Detection

1 Convolve image with a LoG filter at different scales
σ = kσ0 by varying k

2 Find maxima of squared LoG response
1 Find maxima on space-scale
2 Find maxima between scale
3 Threshold

The LoG filter can be approximated
as a Difference of Gaussians (DoG)
for efficiency

gkσ0(x , y)−gσ0(x , y) ≈
(k − 1)σ2

0∇2g(k−1)σ0
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Affine Detectors

Laplacian-based detectors are invariant to scale thanks to
the maximization in scale-space

Still not invariant to affine transformations
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Maximally Stable Extremal Regions (MSER)

Extract covariant regions (blobs) that are stable connected
components of intensity sets of the image
Key idea is to take blobs (Extremal Regions) which are
nearly the same through a wide range of intensity
thresholds
The blobs are generated (locally) by binarizing the image
over a large number of thresholds

Invariance to affine transformation of image intensities
Stability (they are stable on multiple thresholds)
Multi-scale (connected components are identified by
intensity stability not by scale)
Sensitive to local lighting effects, shadows, etc..

You can then fit an ellipse enclosing the stable region



Representing Visual Content
Identify Informative Parts

Segmentation

Edge Detection
Blob Detectors
Interest Point Detectors

Intuition on the MSER Algorithm

Generate frames from the image by thesholding it on all
graylevels

Capture those regions that from a small seed of pixel grow
to a stably connected region
Stability is assessed by looking at derivatives of region
masks in time (most stable⇒ minima of connected region
variation)
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MSER in Code

Again, in OpenCV
impor t cv2
. . .
#Load the mser de tec to r from OpenCV
mser = cv2 . MSER_create ( )
reg ions = mser . detectRegions ( img , None )
#Create a convexhu l l enc los ing s tab le reg ions
h u l l s = [ cv2 . convexHul l ( p . reshape(−1, 1 , 2 ) ) f o r p i n reg ions ]
#Draw detected reg ions on image copy
v i s = img . copy ( )
cv2 . p o l y l i n e s ( v is , hu l l s , 1 , (0 , 255 , 0 ) )
cv2 . imshow ( ’ img ’ , v i s )

Matlab
%Run MSER and re tu rns reg ions
reg ions = detectMSERFeatures ( Ig ) ;
f i g u r e ; imshow ( Ig ) ; %p l o t image
hold on ;
p l o t ( reg ions ) ; %over lap reg ions

%A l t e r n a t i v e l y can p l o t ac tua l reg ions
p l o t ( regions , ’ showPixe lL is t ’ , t rue , ’

showEl l ipses ’ , f a l s e ) ;
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Image Segmentation

The process of partitioning an image into set of homogeneous
pixels, hoping to match object or their subparts

A naive approach? Apply
k-means to pixels color (typically
L*a*b) hoping to cluster together
regions
A slightly less naive approach?
Apply k-means to pixels color
and (x , y) position hoping to
enforce some level of spatial
information in clusters
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Normalized Cuts (Ncut)

Node = pixel
aij = affinity between pixels
(at a certain scale σ)

A cut of G is the set of
edges such whose
removal makes G a
disconnected graph
Breaking graph into pieces
by cutting edges of low
affinity
Normalized cut problem

NP-hard
Approximate solution as
an eigenvalue problem

Code: https://www.cis.upenn.edu/~jshi/software/

https://www.cis.upenn.edu/~jshi/software/
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Pixel Issue

Pixels in image are a lot!
Ncut can take ages to complete
Likewise many other advanced segmentation algorithms

Efficiency trick⇒ Superpixels
Group together similar pixels
Cheap, local oversegmentation
Important that superpixels do
not cross boundaries

Now apply segmentation/fusion
algorithms to superpixels: Ncut,
Markov Random Fields, etc.

Code: https://ivrl.epfl.ch/research/superpixels

https://ivrl.epfl.ch/research/superpixels
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Take Home Messages

Image processing is very much about convolutions
Linear masks to perform gradient operations
Gaussian functions to apply scale changes (zooming in and
out)

Visual content can be better represented by local
descriptors

Histograms of photo-geometric properties
SIFT is intensity gradient histogram

Computational efficiency is often a driving factor
Convolutions in Fourier domain
Superpixels
Lightweight feature detector? Random sampling
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Next Lecture

Generative and Graphical Models
Introduction to a module of 6 lectures
A (very quick) refresher on probabilities (from ML)

Probability theory
Conditional independence
Inference and learning in generative models

Graphical models representation
Directed graphical models
Undirected graphical models
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