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Generative Learning

ML models that represent knowledge inferred from data
under the form of probabilities

Probabilities can be sampled: new data can be generated
Supervised, unsupervised, weakly supervised learning
tasks
Incorporate prior knowledge on data and tasks
Interpretable knowledge (how data is generated)

The majority of the modern task comprises large numbers
of variables

Modeling the joint distribution of all variables can become
impractical
Exponential size of the parameter space
Computationally impractical to train and predict
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The Graphical Models Framework

Representation
Graphical models are a compact way to represent
exponentially large probability distributions
Encode conditional independence assumptions
Different classes of graph structures imply different
assumptions/capabilities

Inference
How to query (predict with) a graphical model?
Probability of unknown X given observations d, P(X |d)

Most likely hypothesis
Learning

Find the right model parameter
An inference problem after all
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Graphical Model Representation

A graph whose nodes (vertices) are random variables whose
edges (links) represent probabilistic relationships between the
variables

Different classes of graphs

Directed Models

Directed edges
express causal
relationships

Undirected Models

Undirected edges
express soft
constraints

Dynamic Models

Structure changes
to reflect dynamic
processes
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Generative Models in Machine Vision
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Generative Models in Deep Learning

Bayesian learning necessary to understand Variational Deep
Learning
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Generate New Knowledge

Complex data can be generated if your model is powerful
enough to capture its distribution
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Generative and Graphical Models Module

Lesson 1 Introduction: Directed and Undirected Graphical
Models

Lesson 2-3 Dynamic GM: Hidden Markov Model
Lesson 4 Undirected GM: Markov Random Fields
Lesson 5 Bridging Neural and Generative: Boltzmann

Machines
Lesson 6 Bayesian Learning and Approximated Inference:

Latent Variable Models
Lesson 7 Sampling Methods
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Lecture Outline

Introduction
A probabilistic refresher (from ML)

Probability theory
Conditional independence
Inference and learning in generative models

Graphical Models
Directed and Undirected Representation
Independence assumptions, inference and learning

Conclusions

Module content is fully covered by David Barber’s book
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Random Variables

A Random Variable (RV) is a function describing the
outcome of a random process by assigning unique values
to all possible outcomes of the experiment
A RV models an attribute of our data (e.g. age, speech
sample,...)
Use uppercase to denote a RV, e.g. X , and lowercase to
denote a value (observation), e.g. x
A discrete (categorical) RV is defined on a finite or
countable list of values Ω

A continuous RV can take infinitely many values
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Probability Functions

Discrete Random Variables
A probability function P(X = x) ∈ [0,1] measures the
probability of a RV X attaining the value x
Subject to sum-rule

∑
x∈Ω

P(X = x) = 1

Continuous Random Variables
A density function p(t) describes the relative likelihood of a
RV to take on a value t
Subject to sum-rule

∫
Ω

p(t)dt = 1

Defines a probability distribution, e.g.

P(X ≤ x) =

∫ x

−∞
p(t)dt

Shorthand P(x) for P(X = x) or P(X ≤ x)



Introduction
Probability and Learning Refresher

Graphical Models

Probability Theory
Conditional Independence
Inference and Learning

Joint and Conditional Probabilities

If a discrete random process is described by a set of RVs
X1, . . . ,XN , then the joint probability writes

P(X1 = x1, . . . ,XN = xn) = P(x1 ∧ · · · ∧ xn)

The joint conditional probability of x1, . . . , xn given y

P(x1, . . . , xn|y)

measures the effect of the realization of an event y on the
occurrence of x1, . . . , xn

A conditional distribution P(x |y) is actually a family of
distributions

For each y , there is a distribution P(x |y)
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Chain Rule

Definition (Product Rule a.k.a. Chain Rule)

P(x1, . . . , xi , . . . , xn|y) =
N∏

i=1

P(xi |x1, . . . , xi−1, y)

Definition (Marginalization)
Using the sum and product rules together yield to the complete
probability

P(X1 = x1) =
∑
x2

P(X1 = x1|X2 = x2)P(X2 = x2)
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Bayes Rule

Given hypothesis hi ∈ H and observations d

P(hi |d) =
P(d|hi)P(hi)

P(d)
=

P(d|hi)P(hi)∑
j P(d|hj)P(hj)

P(hi) is the prior probability of hi

P(d|hi) is the conditional probability of observing d given
that hypothesis hi is true (likelihood).
P(d) is the marginal probability of d
P(hi |d) is the posterior probability that hypothesis is true
given the data and the previous belief about the
hypothesis.
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Independence and Conditional Independence

Two RV X and Y are independent if knowledge about X
does not change the uncertainty about Y and vice versa

I(X ,Y )⇔ P(X ,Y ) = P(X |Y )P(Y )

= P(Y |X )P(X ) = P(X )P(Y )

Two RV X and Y are conditionally independent given Z if
the realization of X and Y is an independent event of their
conditional probability distribution given Z

I(X ,Y |Z )⇔ P(X ,Y |Z ) = P(X |Y ,Z )P(Y |Z )

= P(Y |X ,Z )P(X |Z ) = P(X |Z )P(Y |Z )

Shorthand X⊥Y for I(X ,Y ) and X⊥Y |Z for I(X ,Y |Z )
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Inference and Learning in Probabilistic Models

Inference - How can one determine the distribution of the
values of one/several RV, given the observed values of others?

P(graduate|exam1, . . . ,examn)

Machine Learning view - Given a set of observations (data) d
and a set of hypotheses {hi}Ki=1, how can I use them to predict
the distribution of a RV X?

Learning - A very specific inference problem!
Given a set of observations d and a probabilistic model of
a given structure, how do I find the parameters θ of its
distribution?
Amounts to determining the best hypothesis hθ regulated
by a (set of) parameters θ
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3 Approaches to Inference

Bayesian Consider all hypotheses weighted by their
probabilities

P(X |d) =
∑

i

P(X |hi)P(hi |d)

MAP Infer X from P(X |hMAP) where hMAP is the
Maximum a-Posteriori hypothesis given d

hMAP = arg max
h∈H

P(h|d) = arg max
h∈H

P(d|h)P(h)

ML Assuming uniform priors P(hi) = P(hj), yields the
Maximum Likelihood (ML) estimate P(X |hML)

hML = arg max
h∈H

P(d|h)
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Considerations About Bayesian Inference

The Bayesian approach is optimal but poses computational
and analytical tractability issues

P(X |d) =

∫
H

P(X |h)P(h|d)dh

ML and MAP are point estimates of the Bayesian since
they infer based only on one most likely hypothesis
MAP and Bayesian predictions become closer as more
data gets available
MAP is a regularization of the ML estimation

Hypothesis prior P(h) embodies trade-off between
complexity and degree of fit
Well-suited to working with small datasets and/or large
parameter spaces
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Maximum-Likelihood (ML) Learning

Find the model θ that is most likely to have generated the data d

θML = arg max
θ∈Θ

P(d|θ)

from a family of parameterized distributions P(x |θ).

Optimization problem that considers the Likelihood function

L(θ|x) = P(x |θ)

to be a function of θ.

Can be addressed by solving

∂L(θ|x)

∂θ
= 0
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ML Learning with Hidden Variables

What if my probabilistic models contains both
Observed random variables X (i.e. for which we have
training data)
Unobserved (hidden/latent) variables Z (e.g. data clusters)

ML learning can still be used to estimate model parameters
The Expectation-Maximization algorithm which optimizes
the complete likelihood

Lc(θ|X,Z) = P(X,Z|θ) = P(Z|X, θ)P(X|θ)

A 2-step iterative process

θ(k+1) = arg max
θ

∑
z

P(Z = z|X, θ(k)) logLc(θ|X,Z = z)
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Joint Probabilities and Exponential Complexity

Discrete Joint Probability Distribution as a Table

X1 . . . Xi . . . Xn P(X1, . . . ,Xn)

x
′

1 . . . x
′

i . . . x
′
n P(x

′

1, . . . , x
′
n)

x l
1 . . . x l

i . . . x l
n P(x l

1, . . . , x
l
n)

Describes P(X1, . . . ,Xn) for all the RV instantiations
For n binary RV Xi the table has 2n entries!

Any probability can be obtained from the Joint Probability
Distribution P(X1, . . . ,Xn) by marginalization but again at an
exponential cost (e.g. 2n−1 for a marginal distribution from

binary RV).
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Graphical Models

Compact graphical representation for exponentially large
joint distributions
Simplifies marginalization and inference algorithms
Allow to incorporate prior knowledge concerning causal
relationships and associations between RV

Directed Graphical Models a.k.a. Bayesian Networks
Undirected Graphical Models a.k.a. Markov Random Fields
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Bayesian Network

Directed Acyclic Graph (DAG)
G = (V, E)

Nodes v ∈ V represent random
variables

Shaded⇒ observed
Empty⇒ un-observed

Edges e ∈ E describe the
conditional independence
relationships

Conditional Probability Tables (CPT) local to each node
describe the probability distribution given its parents

P(Y1, . . . ,YN) =
N∏

i=1

P(Yi |pa(Yi))
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A Simple Example

Assume N discrete RV Yi who can take k distinct values
How many parameters in the joint probability distribution?
kN − 1 independent parameters

How many independent
parameters if all N variables are
independent? N ∗ (k − 1)

P(Y1, . . . ,YN) =
N∏

i=1

P(YI)

What if only part of the variables
are (conditionally) independent?

If the N nodes have a maximum of L children⇒ (k − 1)L × N
independent parameters
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A Compact Representation of Replication

If the same causal relationship is replicated for a number of
variables, we can compactly represent it by plate notation

The Naive Bayes
Classifier Replication for L

attributes
Replication for N
data samples
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Full Plate Notation

Gaussian Mixture Model

Boxes denote replication for a
number of times denoted by the
letter in the corner
Shaded nodes are observed
variables
Empty nodes denote un-observed
latent variables
Black seeds (optional) identify
model parameters

π → multinomial prior distribution
µ→ means of the C Gaussians
σ → std of the C Gaussians
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Local Markov Property

Definition (Local Markov property)
Each node / random variable is conditionally independent of all
its non-descendants given a joint state of its parents

Yv ⊥ YV\ch(v)|Ypa(v) for all v ∈ V

Party and Study are marginally independent
Party ⊥ Study

However, local Markov property does not
support

Party ⊥ Study |Headache
Tabs ⊥ Party

But Party and Tabs are independent given
Headache

Tabs ⊥ Party |Headache
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Markov Blanket

The Markov Blanket Mb(A) of a node A is
the minimal set of vertices that shield the
node from the rest of Bayesian Network
The behavior of a node can be completely
determined and predicted from the
knowledge of its Markov blanket

P(A|Mb(A),Z ) = P(A|Mb(A)) ∀Z /∈ Mb(A)

The Markov blanket of A contains
Its parents pa(A)
Its children ch(A)
Its children’s parents pa(ch(A))
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Joint Probability Factorization

An application of Chain rule and Local Markov Property

1 Pick a topological ordering of
nodes

2 Apply chain rule following the
order

3 Use the conditional
independence assumptions

P(PA,S,H,T ,C) =

P(PA) · P(S|PA) · P(H|S,PA) · P(T |H,S,PA) · P(C|T ,H,S,PA)

= P(PA) · P(S) · P(H|S,PA) · P(T |H) · P(C|H)
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Sampling from a Bayesian Network

A BN describes a generative process
for observations

1 Pick a topological ordering of
nodes

2 Generate data by sampling from
the local conditional probabilities
following this order

Generate i-th sample for each variable PA,S,H,T ,C
1 pai ∼ P(PA)

2 si ∼ P(S)

3 hi ∼ P(H|S = si ,PA = pai)

4 ti ∼ P(T |H = hi)

5 ci ∼ P(C|H = hi)
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Basic Structures of a Bayesian Network

There exist 3 basic substructures that determine the conditional
independence relationships in a Bayesian network

Tail to tail (Common Cause)

Y1

Y2

Y3

Head to tail (Causal Effect)

Y1 Y2 Y3

Head to head (Common Effect)

Y1

Y2

Y3
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Tail to Tail Connections

Y1

Y2

Y3

Y1

Y2

Y3

Y1

Y2

Y3

Corresponds to

P(Y1,Y3|Y2) = P(Y1|Y2)P(Y3|Y2)

If Y2 is unobserved then Y1 and Y3
are marginally dependent

Y1 6⊥ Y3

If Y2 is observed then Y1 and Y3 are
conditionally independent

Y1 ⊥ Y3|Y2

When Y2 in observed is said to block the path from Y1 to Y3
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Head to Tail Connections

Y1 Y2 Y3

Y1 Y2 Y3

Y1 Y2 Y3

Observed Y2 blocks
the path from Y1 to Y3

Corresponds to

P(Y1,Y3|Y2) = P(Y1)P(Y2|Y1)P(Y3|Y2)

= P(Y1|Y2)P(Y3|Y2)

If Y2 is unobserved then Y1 and Y3 are
marginally dependent

Y1 6⊥ Y3

If Y2 is observed then Y1 and Y3 are
conditionally independent

Y1 ⊥ Y3|Y2
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Head to Head Connections

Y1

Y2

Y3

Y1

Y2

Y3

Y1

Y2

Y3

Corresponds to

P(Y1,Y2,Y3) = P(Y1)P(Y3)P(Y2|Y1,Y3)

If Y2 is observed then Y1 and Y3 are
conditionally dependent

Y1 6⊥ Y3|Y2

If Y2 is unobserved then Y1 and Y3 are
marginally independent

Y1 ⊥ Y3

If any Y2 descendants is observed it unlocks the path
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Derived Conditional Independence Relationships

A Bayesian Network represents the local relationships encoded
by the 3 basic structures plus the derived relationships

Consider

Y1 Y2 Y3 Y4

Local Markov Relationships

Y1 ⊥ Y3|Y2

Y4 ⊥ Y1,Y2|Y3

Derived Relationship

Y1 ⊥ Y4|Y2
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d-Separation

Definition (d-separation)
Let r = Y1 ←→ · · · ←→ Y2 be an undirected path between Y1
and Y2, then r is d-separated by Z if there exist at least one
node Yc ∈ Z for which path r is blocked.

In other words, d-separation holds if at least one of the
following holds

r contains an head-to-tail structure Yi −→ Yc −→ Yj (or
Yi ←− Yc ←− Yj ) and Yc ∈ Z
r contains a tail-to-tail structure Yi ←− Yc −→ Yj and
Yc ∈ Z
r contains an head-to-head structure Yi −→ Yc ←− Yj and
neither Yc nor its descendants are in Z
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Markov Blanket and d-Separation

Definition (Nodes d-separation)
Two nodes Yi and Yj in a BN G are said to be d-separated by
Z ⊂ V (denoted by DsepG(Yi ,Yj |Z ) if and only if all undirected
paths between Yi and Yj are d-separated by Z

Definition (Markov Blanket)

The Markov blanket Mb(Y ) is the minimal set of nodes which
d-separates a node Y from all other nodes (i.e. it makes Y
conditionally independent of all other nodes in the BN)

Mb(Y ) = {pa(Y ), ch(Y ),pa(ch(Y ))}
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Are Directed Models Enough?

Bayesian Networks are used to model asymmetric
dependencies (e.g. causal)
What if we want to model symmetric dependencies

Bidirectional effects, e.g. spatial dependencies
Need undirected approaches

Directed models cannot represent some (bidirectional)
dependencies in the distributions

Y1

Y2

Y3

Y4

What if we want to represent
Y1 ⊥ Y3|Y2,Y4?
What if we also want
Y2 ⊥ Y4|Y1,Y3?

Cannot be done in BN! Need
undirected model
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Markov Random Fields

Undirected graph G = (V, E) (a.k.a. Markov Networks)
Nodes v ∈ V represent random variables Xv

Shaded⇒ observed
Empty⇒ un-observed

Edges e ∈ E describe bi-directional dependencies between
variables (constraints)

Often arranged in a structure that is coherent with the
data/constraint we want to model
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Image Processing

Often used in image processing to impose spatial
constraints (e.g.smoothness)
Image de-noising example

Lattice Markov Network (Ising model)
Yi → observed value of the noisy pixel
Xi → unknown (unobserved) noise-free pixel value

Can use more expressive structures
Complexity of inference and learning can become relevant
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Conditional Independence

What is the undirected equivalent of d-separation in directed
models?

A ⊥ B|C
Again it is based on node separation, although it is way simpler!

Node subsets A,B ⊂ V are conditionally independent
given C ⊂ V \ {A,B} if all paths between nodes in A and B
pass through at least one of the nodes in C
The Markov Blanket of a node includes all and only its
neighbors
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Joint Probability Factorization

What is the undirected equivalent of conditional probability
factorization in directed models?

We seek a product of functions defined over a set of nodes
associated with some local property of the graph
Markov blanket tells that nodes that are not neighbors are
conditionally independent given the remainder of the nodes

P(Xv ,Xi |XV\{v ,i}) = P(Xv |XV\{v ,i})P(Xi |XV\{v ,i})

Factorization should be chosen in such a way that nodes
Xv and Xi are not in the same factor

What is a well-known graph structure that includes only nodes
that are pairwise connected?
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Cliques

Definition (Clique)
A subset of nodes C in graph G such that G contains an edge
between all pair of nodes in C

Definition (Maximal Clique)
A clique C that cannot include any further node from the graph
without ceasing to be a clique
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Maximal Clique Factorization

Define X = X1, . . . ,XN as the RVs associated to the N nodes in
the undirected graph G

P(X) =
1
Z

∏
C

ψ(XC)

XC → RV associated with nodes in the maximal clique C
ψ(XC)→ potential function over the maximal cliques C
Z → partition function ensuring normalization

Z =
∑

X

∏
C

ψ(XC)

Partition function is the computational bottleneck of undirected
modes: e.g. O(K N) for N discrete RV with K distinct values



Introduction
Probability and Learning Refresher

Graphical Models

Directed Representation
Undirected Representation
Directed Vs Undirected

Potential Functions

Potential functions ψ(XC) are not probabilities!
Express which configurations of the local variables are
preferred
If we restrict to strictly positive potential functions, the
Hammersley-Clifford theorem provides guarantees on the
distribution that can be represented by the clique
factorization

Definition (Boltzmann distribution)
A convenient and widely used strictly positive representation of
the potential functions is

ψ(XC) = exp {−E(XC)}

where E(XC) is called energy function



Introduction
Probability and Learning Refresher

Graphical Models

Directed Representation
Undirected Representation
Directed Vs Undirected

From Directed To Undirected

Straightforward in some cases

Requires a little bit of thinking for v-structures

Moralization a.k.a. marrying of the parents
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Take Home Messages

Generative models as a gateway for next-gen deep learning

Directed graphical models

Represent asymmetric (causal) relationships between RV
and conditional probabilities in compact way
Difficult to assess conditional independence (v-structures)
Ok for prior knowledge and interpretation

Undirected graphical models

Represent bi-directional relationships (e.g. constraints)
Factorization in terms of generic potential functions (not
probabilities)
Easy to assess conditional independence, but difficult to
interpret
Serious computational issues due to normalization factor
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Generative Models in Code

PyMC3 - Bayesian statistics and probabilistic ML;
gradient-based Markov chain Monte Carlo variational
inference (Python, Theano)
Edward - Bayesian statistics and ML, deep learning, and
probabilistic programming (Python, TensorFlow)
Pyro - Deep probabilistic programming (Python, PyTorch)
TensorFlow Probability - Combine probabilistic models and
deep learning with GPU/TPU support (Python)
PyStruct - Markov Random Field models in Python (some
of them)
Pgmpy - Python package for Probabilistic Graphical
Models
Stan - Probabilistic programming language for statistical
inference (native C++, PyStan package)



Introduction
Probability and Learning Refresher

Graphical Models
Conclusions

Next Lecture

Hidden Markov Model (HMM)
A dynamic graphical model for sequences
Unfolding learning models on structures
Exact inference on a chain with observed and unobserved
variables
The Expectation-Maximization algorithm for HMMs
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