Markov Random Fields

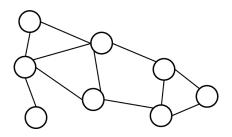
Davide Bacciu

Dipartimento di Informatica Università di Pisa bacciu@di.unipi.it

Intelligent Systems for Pattern Recognition (ISPR)

Refresher Potential Functions Factorization Factor Graphs

Markov Random Fields (MFRs)

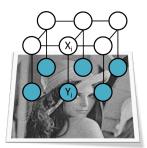


- Undirected graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ (a.k.a. Markov Networks)
- Nodes $v \in \mathcal{V}$ represent random variables X_v
 - Shaded ⇒ observed
 - Empty \Rightarrow un-observed
- Edges e ∈ E describe bi-directional dependencies between variables (constraints)

Graph often coherent with data structure

Refresher Potential Functions Factorization Factor Graphs

MRF Applications



Machine vision uses MRF to impose smoothness constraints on neighboring pixels

- Image denoising
 - Lattice Markov Network (Ising model)
 - $Y_i \rightarrow$ observed value of the noisy pixel
 - $X_i \rightarrow$ unknown (unobserved) noise-free pixel value
- Complexity of (exact) inference and learning can be impossible/impractical for complex graph structures

Refresher Potential Functions Factorization Factor Graphs

Likelihood Factorization

Define $\mathbf{X} = X_1, \dots, X_N$ as the RVs associated to the *N* nodes in the undirected graph \mathcal{G}

$$P(\mathbf{X}) = \frac{1}{Z} \prod_{C} \psi_{C}(\mathbf{X}_{C})$$

- $X_C \rightarrow RV$ associated with nodes in the maximal clique C
- $\psi_{\mathcal{C}}(\mathbf{X}_{\mathcal{C}}) \rightarrow \text{potential function for clique } \mathcal{C}$
- $Z \rightarrow$ partition function ensuring normalization

$$Z = \sum_{\mathbf{X}} \prod_{C} \psi_{C}(\mathbf{X}_{C})$$

Refresher Potential Functions Factorization Factor Graphs

Potential Functions

- Potential functions $\psi_C(\mathbf{X}_C)$ are not probabilities!
- Express which configurations of the local variables are preferred
- If we restrict to strictly positive potential functions, the Hammersley-Clifford theorem provides guarantees on the distribution that can be represented by the clique factorization

Definition (Boltzmann distribution)

A convenient and widely used strictly positive representation of the potential functions is

$$\psi_{\mathcal{C}}(\mathbf{X}_{\mathcal{C}}) = \exp\left\{-\mathcal{E}(\mathbf{X}_{\mathcal{C}})\right\}$$

where $E(\mathbf{X}_{C})$ is called energy function

Refresher Potential Functions Factorization Factor Graphs

Factorizing Potential Functions

In general, we will assume to work with MRF where the partition functions factorize as

$$\psi_{C}(\mathbf{X}_{C}) = \exp\left(\sum_{k} \theta_{Ck} f_{Ck}(\mathbf{X}_{C})\right)$$

where

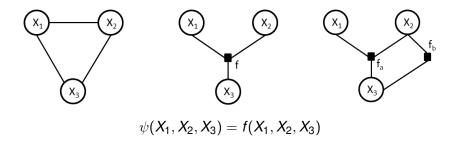
- *f_{Ck}* (or *f_k*) are feature functions or sufficient statistics to compute the potential of clique *C*
- $\theta_{Ck} \in \mathbb{R}$ are parameters
- *k* indexes over the available feature functions

Undirected graphical models do not express the factorization of potentials into feature functions \Rightarrow factor graphs

Refresher Potential Functions Factorization Factor Graphs

Factor Graphs

- RV are again circular nodes
- Factors *f_{Ck}* are denoted as square nodes
- Edges connect a factor to the RV



 $\psi(X_1, X_2, X_3) = f_a(X_1, X_2, X_3) f_b(X_2, X_3)$

Refresher Potential Functions Factorization Factor Graphs

Sum-Product Inference

- A powerful class of exact inference algorithms
- Use factor graph representation to provide a unique algorithm for directed/undirected models
- Inference is feasible for chain and tree structures
 - Forward-backward algorithm in HMMs
 - Computationally more impacting in MRF due to partition function
- Inference in general MRF
 - Restructure the graph to obtain a tree-like structure to perform message passing (junction tree algorithm)
 - Approximated inference (variational, sampling)

Constrain the MRF to obtain tractable classes of undirected models

Restricting to Conditional Probabilities

In ML a part of the random variables can be assumed to be always observable \Rightarrow input data

- \mathbf{X}_k observable inputs in the factor k
- Y_k hidden (or partly observable) RV
- $f_k(\mathbf{X}_k, \mathbf{Y}_k)$ factor feature function

Under this assumption we can directly model the conditional distribution

$$P(\mathbf{Y}|\mathbf{X}) = \frac{1}{Z(\mathbf{X})} \prod_{k} \exp \left\{ \theta_k f_k(\mathbf{X}_k, \mathbf{Y}_k) \right\}$$

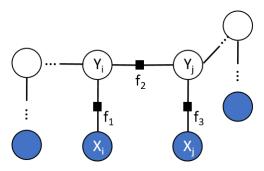
where X is the joint input that is always available

$$Z(\mathbf{X}) = \sum_{\mathbf{y}} \prod_{k} \exp \left\{ \theta_k f_k(\mathbf{X}_k, \mathbf{Y}_k = \mathbf{y}_k) \right\}$$

Model Linear CRF Inference and Learning

Conditional Random Field (CRF)

Constrained MRF models representing input-conditional distributions



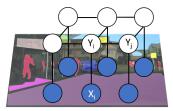
 $P(\mathbf{Y}|\mathbf{X},\theta) = \frac{1}{Z(\mathbf{X})} \exp(\theta_1 f_1(X_i, Y_i) + \theta_2 f_2(Y_i, Y_j) + \theta_3 f_i(X_j, Y_j) + \dots)$

Model Linear CRF Inference and Learning

Feature functions

What does a feature function $f_k(\mathbf{X}_k, \mathbf{Y}_k)$ do?

- Represent couplings or constraints between random variables
- Often very simple, such as linear functions



 Make noisy binary pixel X_i and its clean version Y_i have same sign

$$f_i(X_i, Y_i) = X_i Y_i$$

 Constrain nearby interpretations to be similar

$$f_{ij}(Y_i, Y_j) = Y_i^T Y_j$$

Discriminative Learning in Graphical Models

 ${\bf X}$ is always observable input while ${\bf Y}$ can be unobserved

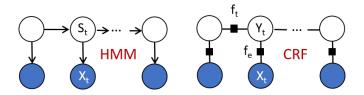
- Let us simplify the problem by considering to have a single *Y* and multiple **X**
- Let us assume that we can observe the Yⁿ corresponding to Xⁿ for some samples n
- We can use this information to fit θ in $P(Y|\mathbf{X}, \theta)$
- What does P(Y|X', θ) do for a new X' sample without observable Y'? Performs a prediction (e.g. classification if Y is multinomial)

The model above describes the Logistic Regression/Classifier: a discriminative version of Naive Bayes

Model Linear CRF Inference and Learning

A CRF for Sequences

The undirected and discriminative equivalent of an HMM

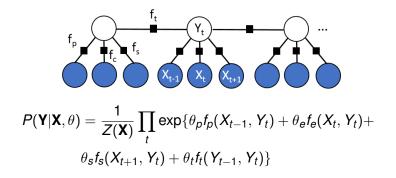


Is this all about substituting emission probability with feature f_e and transition distribution with f_t ?

Model Linear CRF Inference and Learning

A Generalization of HMM

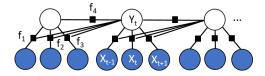
Modeling relative influence of suffix and prefix symbols



Model Linear CRF Inference and Learning

Generic LCRF Formulation

Modeling explicitly input influence on transition



General Linear CRF Likelihood:

$$P(\mathbf{Y}|\mathbf{X},\theta) = \frac{1}{Z(\mathbf{X})} \prod_{t} \exp\left\{\sum_{k} \theta_{k} f_{k}(Y_{t}, Y_{t-1}, \mathbf{X}_{t})\right\}$$

Use indicator variables in f_k definition to include or disregard the influence of specific RV, e.g. $\mathbb{1}_{Y_t=i}\mathbb{1}_{X_t=o}$

Model Linear CRF Inference and Learning

Posterior Inference in LCRF

Is there an equivalent of the smoothing problem in LCRF? Yes: $P(Y_t, Y_t - 1 | \mathbf{X})$

- Solved by (exact) forward-backward inference
- Sum-product message passing on the LCRF factor graph $P(Y_t, Y_t 1 | \mathbf{X}) \propto \alpha_{t-1}(Y_{t-1}) \psi_t(Y_t, Y_{t-1}, X_t) \beta_t(Y_t)$

Clique weighting

Forward Message

$$\psi_t(Y_t, Y_{t-1}, X_t) = \\ \exp \left\{ \theta_e f_e(X_t, Y_t) + \theta_t f_t(Y_{t-1}, Y_t) \right\}$$

$$\alpha_t(i) = \sum_j \psi_t(i, j, X_t) \alpha_{t-1}(j)$$

Backward Message

$$\beta_t(j) = \sum_i \psi_{t+1}(i, j, X_{t+1}) \beta_{t+1}(i)$$

Model Linear CRF Inference and Learning

Other Inference Problems

- Max-product inference can be performed as in the Viterbi algorithm for HMM
- The computationally expensive part is the computation of exponential summation in *Z*(**X**) term
 - The forward-backward algorithm computes it efficiently as normalization term of $P(Y_t, Y_t 1 | \mathbf{X})$
- Exact inference in CRF other than chain-like is likely to be computationally impractical
 - Markov Chain Monte Carlo (sample y rather than estimate P(y))
 - Variational Belief Propagation (reduce to message passing on trees)

Model Linear CRF Inference and Learning

Training LCRF

Maximum (conditional) log-likelihood

$$\max_{\theta} \mathcal{L}(\theta) = \max_{\theta} \sum_{n=1}^{n} \log P(\mathbf{y}^{n} | \mathbf{x}^{n}, \theta)$$

Substituting LCRF conditional formulation

$$\mathcal{L}(\theta) = \sum_{n} \sum_{t} \sum_{k} \theta_{k} f_{k}(Y_{t}^{n}, Y_{t-1}^{n}, \mathbf{X}_{t}^{n}) - \sum_{n} \log Z(\mathbf{X}^{n}) - \sum_{k} \frac{\theta_{k}^{2}}{2\sigma^{2}}$$

Penalized with a regularization term, e.g. based on $\|\theta\|_2$

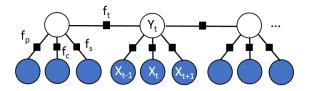
Model Linear CRF Inference and Learning

Optimizing the Likelihood

- Typically $\mathcal{L}(\theta)$ cannot be maximized in closed form
- Use partial derivatives

$$\frac{\partial \mathcal{L}(\theta)}{\partial \theta_k} = \sum_{n,t} f_k(Y_t^n, Y_{t-1}^n, \mathbf{X}_t^n) - \sum_{n,t} \sum_{y,y'} f_k(y, y', \mathbf{X}_t^n) \mathcal{P}(y, y' | \mathbf{X}^n) - \frac{\theta_k}{\sigma^2}$$

- First term is E[f_k] under the empirical distribution (i.e. with y, y' clamped)
- Second term is the $\mathbb{E}[f_k]$ under model distribution
- When gradient is zero these are equal (apart for regularization)



Model Linear CRF Inference and Learning

0

Stochastic Gradient Descent

In practice we can learn the θ parameters by SGD (or variants)

$$\theta^m = \theta^{m-1} - \nu_m \nabla \mathcal{L}_n(\theta^{m-1})$$

where

$$\nabla \mathcal{L}_{nk}(\theta) = \sum_{t} f_k(Y_t^n, Y_{t-1}^n, \mathbf{X}_t^n) - \sum_{t} \sum_{y, y'} f_k(y, y', \mathbf{X}_t^n) P(y, y' | \mathbf{X}^n) - \frac{\theta_k}{N\sigma^2}$$

and $P(y, y' | \mathbf{X}^n)$ is estimated by sum-product inference

Sequences Vision Code

Engineering Features

Linear CRF have found wide applications

- Text processing: POS-tagging, semantic role identification
- Bioinformatics: sequence alignment, protein structure prediction

Feature functions have often the form $f_k(\mathbf{X}_k, \mathbf{Y}_k) = \mathbb{1}_{\mathbf{y}_k = \hat{\mathbf{y}}_k} q(\mathbf{X}_c)$

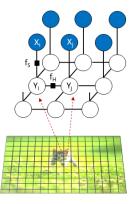
- f_k is non-zero only for a specific output configuration $\hat{\mathbf{y}}_k$
- *f_k* then depends only on X_k (i.e. parameters are not shared by classes)

Observation functions $q(\mathbf{X}_c)$: word begins with capital, ends with -ing, ...

Sequences Vision Code

MRF/CRF in Vision

- Define bi-dimensional lattice on the image
 - Regular grid, patches, superpixels, segments
- Background/Foreground segmentation
 - X_i Observable label
 - Y_i Region annotation as background/foreground
- Impose constraints
 - *f*_S(*Y_i, X_i*) ⇒ Cost of disregarding available annotation
 - *f_H(X_i, X_j)* ≈ [*x_i* ≠ *x_j*]*w_{ij}* ⇒ Label affinity constraint weighted by region similarity *w_{ij}*

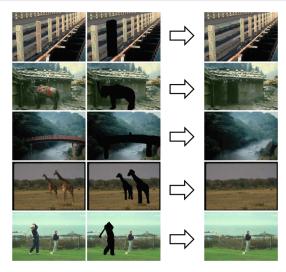


Sequences Vision Code

Background Segmentation

Sequences Vision Code

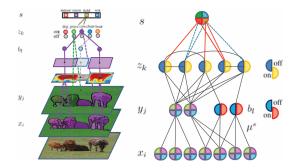
Image Completion



N. Komodakis. Image Completion Using Global Optimization. CVPR 2006

Sequences Vision Code

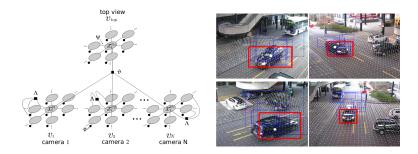
Semantic Segmentation



J. Yao, S. Fidler and R. Urtasun, "Describing the scene as a whole: Joint object detection, scene classification and semantic segmentation," ICCV 2012

Sequences Vision Code

Integrating Prior Information



Roig et al "Conditional Random Fields for multi-camera object detection," ICCV 2011

Sequences Vision Code

MRF Software

- CRFsuite Fast implementation of linear/chain CRFs for NLP applications (native C++; Scikit-like package python-crfsuite)
- PyStruct Python CRF package including 2D lattices, graph structures and several inference algorithms
- pgmpy Python library for graphical models (includes CRF, MRF and more)
- Pyro Ubers' own PyTorch provide an implementation of Deep CRF
- UGM Matlab library for Markov Random Fields
- CRF implementations (in particular linear) are present in major DL libraries (e.g. Tensorflow, PyTorch)

Sequences Vision Code

A Python Example

```
from pampy, models import MarkovModel
from pgmpy.factors.discrete import DiscreteFactor
import numpy as np
from pgmpy.inference import BeliefPropagation
MM=MarkovModel();
# Add edges (and nodes if not existent)
MM. add edges from ([('f1', 'f2'), ('f2', 'f3'),('o1', 'f1'),('o2', 'f2'),('o3', 'f3')])
#Generate transition feature
transition=np.array([10, 90, 90, 10]);
#Generate corresponding factor
factorH1= DiscreteFactor(['f1','f2'], cardinality=[2, 2], values=transition)
#Add it to the model
MM. add factors (factorH1)
#Solve smoothing by belief propagation (i.e. estimate hidden RV)
belief propagation = BeliefPropagation (MM)
ymax=belief propagation.map_query(variables=['f1', 'f2', 'f3'],\
evidence = { 'o1 ': toVal('class1'), 'o2': toVal('class1'), 'o3': toVal('class2')})
```

Take Home Messages

- Markov Random Fields
 - Undirected graphical models
 - Allow to express constraints between RV without needing to use probabilities
 - Topology follows data structure/relations and allow embedding prior information
- Conditional Random Fields
 - Constrained MRF learning discriminative posteriors
 - Feature functions to model constraints (often simple hand-coded feature detectors)
 - Parameters allow to linearly combine features
- CRF/MRF are often used as final refinement (segmentation, POS tagging, ...)

Boltzmann Machines

- A first bridge between (undirected) generative models and (recurrent) neural networks
- Restricted Boltzmann Machines
- Contrastive Divergence training