Bayesian Learning and Variational Inference

Davide Bacciu

Dipartimento di Informatica Università di Pisa bacciu@di.unipi.it

Intelligent Systems for Pattern Recognition (ISPR)

Tractability Problem Definitions Variational Bound

Outline and Motivations

• Introduce the basic concepts of variational learning useful for both generative models and deep learning

• Bayesian latent variable models

- A class of generative models for which variational or approximated methods are needed
- Latent Dirichlet Allocation
 - Possibly the simplest Bayesian latent variable model
 - Many applications in unsupervised text analytics, machine vision, ...
- A very quick intro to variational EM

Tractability Problem Definitions Variational Bound

Problem Setup

Latent Variable Models

Latent variables

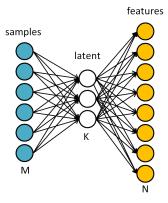
- Unobserved RV that define an hidden generative process of observed data
- Explain complex relation between a large number of observable variables
- E.g. hidden states in HMM/CRF

Latent variable models likelihood

$$P(x) = \int_{\mathbf{z}} \prod_{i=1}^{N} P(x_i | \mathbf{z}) P(\mathbf{z}) d\mathbf{z}$$

Tractability Problem Definitions Variational Bound

Define a latent space where high-dimensional data can be represented



Latent Space

Assumption

Latent variables conditional and marginal distributions are more tractable than the joint distribution $P(\mathcal{X})$ (e.g $K \ll N$)

Tractability Problem Definitions Variational Bound

Tractability

- Introducing hidden variables can produce couplings between the distributions (i.e. one depending on the other) which can make their posterior intractable
- Bayesian learning introduces priors which introduce integrals in the posterior computations which are not always analytically or computationally tractable

This lecture is about how we can approximate such intractable problems

• Variational view of EM (used in variational DL)

Tractability Problem Definitions Variational Bound

Kullback-Leibler (KL) Divergence

An information theoretic measure of closeness of two distributions p and q

$$extsf{KL}(q||p) = \mathbb{E}_q\left[\lograc{q(z)}{p(z|x)}
ight] = \langle \log q(z)
angle_q - \langle \log p(z|x)
angle_q$$

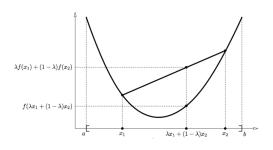
Note:

- A specialized definition for our latent variable setting
 - If q high and p high \Rightarrow happy
 - If q high and p low \Rightarrow unhappy
 - If $q \text{ low} \Rightarrow \text{don't care}$ (due to expectation)
- Its a divergence \Rightarrow it is not symmetric

Tractability Problem Definitions Variational Bound

Jensen Inequality

Property of linear operators on convex/concave functions



Generalizes to

$$\frac{\sum_{i} a_{i} f(x_{i})}{\sum a_{i}} \geq f \frac{\sum_{i} a_{i} x_{i}}{\sum a_{i}}$$

Applied in probability theory

 $f(\mathbb{E}[X]) \geq \mathbb{E}[f(X)]$

 $\lambda f(x) + (1 - \lambda)f(x) \ge f(\lambda x + (1 - \lambda)x)$

Introduction Tractability Proble Bayesian Learning Definitions Applications Variational Bound

Bounding Log-Likelihood with Jensen

The log-likelihood for a model with a single hidden variable *Z* and parameters θ (assume single sample for simplicity) is

$$\log P(x|\theta) = \log \int_{z} P(x, z|\theta) dz = \log \int_{z} \frac{Q(z|\phi)}{Q(z|\phi)} P(x, z|\theta) dz$$

which holds for $Q(z|\phi) \neq 0$ with parameters ϕ Given the definition of expectation this rewrites as (Jensen)

$$\log P(x|\theta) = \log \mathbb{E}_{Q} \left[\frac{P(x,z)}{Q(z)} \right] \ge \mathbb{E}_{Q} \left[\log \frac{P(x,z)}{Q(z)} \right]$$
$$= \underbrace{\mathbb{E}_{Q} \left[\log P(x,z) \right]}_{\text{Expectation of Joint Distribution}} - \underbrace{\mathbb{E}_{Q} \left[\log Q(z) \right]}_{\text{Entropy}} = \mathcal{L}(x,\theta,\phi)$$

Introduction Trad Bayesian Learning Def Applications Var

Iractability Problem Definitions Variational Bound

How Good is this Lower Bound?

 $\log P(x|\theta) - \mathcal{L}(x,\theta,\phi) = ?$

Inserting the definition of $\mathcal{L}(x, \theta, \phi)$

$$\log P(x) - \int_{z} Q(z) \log \frac{P(x,z)}{Q(z)}$$

Introducing Q(z) by marginalization $(\int_z Q(z) = 1)$

$$\int_{z} Q(z) \log P(x) - \int_{z} Q(z) \log \frac{P(x,z)}{Q(z)} = KL(Q(z|\phi)||P(z|x,\theta))$$

Introduction Tractability Proble Bayesian Learning Definitions Applications Variational Bound

Defining and Interpreting the Bound

We can assume the existence of a probability $Q(z|\phi)$ which allows to bound the likelihood $P(x|\theta)$ from below using $\mathcal{L}(x, \theta, \phi)$

The term $\mathcal{L}(x, \theta, \phi)$ is called variational bound or evidence lower bound (ELBO)

The optimal bound is obtained for $KL(Q(z|\phi)||P(z|x,\theta)) = 0$, that is if we choose $Q(z|\phi) = P(z|x,\theta)$

Minimizing *KL* is equivalent to maximize the ELBO \Rightarrow change a sampling problem with an optimization problem

Introduction Tract Bayesian Learning Defin Applications Varia

Definitions Variational Bound

Variational View of Expectation Maximization

EM Learning Reformulated

Maximum likelihood learning with hidden variables can be approached by maximization of the ELBO

$$\max_{\theta,\phi} \sum_{n=1}^{N} \mathcal{L}(x_n,\theta,\phi)$$

where θ are the model parameters and ϕ serve in $Q(z|\phi)$

- If $P(z|x,\theta)$ is tractable \Rightarrow use it as $Q(z|\phi)$ (optimal ELBO)
- O.w. choose $Q(z|\phi)$ as a tractable family of distributions
 - find ϕ that minimize $KL(Q(z|\phi)||P(z|x,\theta))$, or
 - find ϕ that maximize $\mathcal{L}(\cdot, \phi)$

Latent Dirichlet Allocation Approximated Inference

A Generative Model for Multinomial Data

A Bag of Words (BOW) representation of a document is the classical example of multinomial data (for text, images, graphs,...)

A BOW dataset (corpora) is the $N \times M$ term-document matrix

$$\mathbf{X} = \begin{bmatrix} x_{11} & \dots & x_{1i} & \dots & x_{1M} \\ \dots & \dots & \dots & \dots & \dots \\ x_{j1} & \dots & x_{ji} & \dots & x_{jM} \\ \dots & \dots & \dots & \dots & \dots \\ x_{N1} & \dots & x_{Ni} & \dots & x_{NM} \end{bmatrix}$$

- N: number of vocabulary items w_j
- *M*: number of documents d_i
- $x_{ij} = n(w_j, d_i)$: number of occurrences of w_j in d_i

Documents as Mixtures of Latent Variables

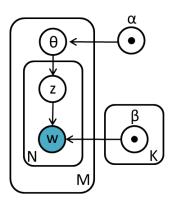
Latent topic models consider documents (i.e. item containers) as a mixture of topics

- A topic identifies a pattern in the co-occurrence of multinomial items w_i within the documents
- Mixture of topics ⇒ Associate an interpretation (topic) to each item in a document, whose interpretation is then a mixture of the items' topics

$$\mathbf{X} = \begin{bmatrix} x_{11} & \dots & x_{1i} & \dots & x_{1M} \\ \dots & \dots & \dots & \dots & \dots \\ x_{j1} & \dots & x_{ji} & \dots & x_{jM} \\ \dots & \dots & \dots & \dots & \dots \\ x_{N1} & \dots & x_{Ni} & \dots & x_{NM} \end{bmatrix}$$

Latent Dirichlet Allocation Approximated Inference

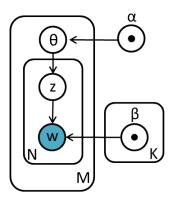
Latent Dirichlet Allocation (LDA)



- LDA models a document as a mixture of topics *z*
 - Assigning one topic z to each item w with probability P(w|z, β)
 - Pick one topic for the the whole document with probability P(z|θ)
- Key point Each document has its personal topic proportion θ sampled from a distribution
 - θ defines a multinomial distribution but it is a random variable as well

Latent Dirichlet Allocation Approximated Inference

LDA Distributions



- *P*(*w*|*z*, β) multinomial item-topic distribution
- P(z|θ) multinomial topic distribution with document-specific parameter θ
- $P(\theta|\alpha)$ Dirichlet distribution with hyperparameter α
 - A distribution for vectors that sum to 1 (simplex)
 - The elements of a multinomial are vector that sum to 1!

Latent Dirichlet Allocation Approximated Inference

Dirichlet Distribution

• Why a Dirichlet distribution?

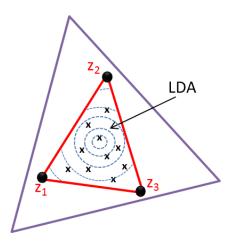
- Conjugate prior to multinomial distribution
- If the likelihood is multinomial with a Dirichlet prior then posterior is Dirichlet
- Dirichlet distribution

$$P(\theta|\alpha) = \frac{\Gamma\left(\sum_{k=1}^{K} \alpha_k\right)}{\prod_{k=1}^{K} \Gamma(\alpha_k)} \prod_{k=1}^{K} \theta_k^{\alpha_k - 1}$$

- Dirichlet parameter α_k is a prior count of the k-th topic
- It controls the mean shape and sparsity of multinomial parameters θ

Latent Dirichlet Allocation Approximated Inference

Geometric Interpretation

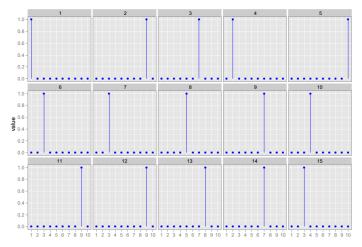


LDA finds a set of K projection functions on the K-dimensional topic simplex

Latent Dirichlet Allocation Approximated Inference

Effect of the α parameter

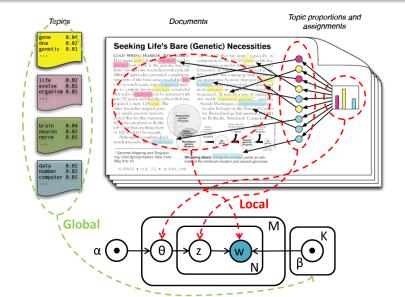
lpha= 0.001



Slide Credit - Blei at KDD 2011 Tutorial

Latent Dirichlet Allocation Approximated Inference

LDA and Text Analysis



Latent Dirichlet Allocation Approximated Inference

LDA Generative Process

For each of the *M* documents

- Choose $\theta \sim \text{Dirichlet}(\alpha)$
- For each of the N items
 - Choose a topic $z \sim \text{Multinomial}(\theta)$
 - Pick an item *w_j* with multinomial probability *P*(*w_j*|*z*, β)

Multinomial topic-item parameter matrix $[\beta]_{K \times V}$

$$\beta_{kj} = P(w_j = 1 | z_k = 1)$$

or $P(w_j = 1 | z = k)$

 $P(\theta, \mathbf{z}, \mathbf{w} | \alpha, \beta) = P(\theta | \alpha) \prod_{j=1}^{N} P(z_j | \theta) P(w_j | z_j, \beta)$

Latent Dirichlet Allocation Approximated Inference

Learning in LDA

Marginal distribution (a.k.a. likelihood) of a document $d = \mathbf{w}$

$$P(\mathbf{w}|\alpha,\beta) = \int \sum_{\mathbf{z}} P(\theta, \mathbf{z}, \mathbf{w}|\alpha, \beta) d\theta$$
$$= \int P(\theta|\alpha) \prod_{j=1}^{N} \sum_{z_j=1}^{k} P(z_j|\theta) P(w_j|z_j, \beta) d\theta$$

Given $\{\mathbf{w}_1, \dots, \mathbf{w}_M\}$, find (α, β) maximizing

$$\mathcal{L}(\alpha,\beta) = \log \prod_{i=1}^{M} P(\mathbf{w}_i | \alpha, \beta)$$

Learning with hidden variables \Rightarrow Expectation-Maximization Key problem is inferring latent variables posterior

$${m P}(heta, {f z} | {f w}, lpha, eta) = rac{{m P}(heta, {f z}, {f w} | lpha, eta)}{{m P}({f w} | lpha, eta)}$$

Posterior Inference

• Optimal ELBO is achieved when *Q*(*z*) is equal to the latent variable posterior

$$P(\theta, \mathbf{z} | \mathbf{w}, \alpha, \beta) = \frac{P(\theta, \mathbf{z}, \mathbf{w} | \alpha, \beta)}{P(\mathbf{w} | \alpha, \beta)}$$

- Key problem is that computation of the posterior is not tractable
- Computation of the denominator is intractable due to the couplings between β and θ in the summation over topics

$$P(\mathbf{w}|\alpha,\beta) = \frac{\Gamma\left(\sum_{k=1}^{K} \alpha_{k}\right)}{\prod_{k=1}^{K} \Gamma(\alpha_{k})} \int \prod_{k=1}^{K} \theta_{k}^{\alpha_{k}-1} \left(\prod_{j=1}^{N} \sum_{k=1}^{K} \prod_{\nu=1}^{V} \left(\theta_{k} \beta_{k\nu}\right)^{w_{j}^{\nu}}\right) d\theta$$

Approximating Parameter Inference in LDA

Variational Inference

- Maximize the variational bound without using the optimal posterior solution
 - Write a Q(z|\u03c6) function that is sufficiently similar to the posterior but tractable
 - $Q(\mathbf{z}|\phi)$ should be such that β and θ are no longer coupled
 - Fit φ parameter so that Q(z|φ) is close to P(w|α, β) according to KL
- Variational LDA: Blei, Ng and Jordan, 2003
- Takes hours to converge (but it is an approximation)

Sampling Approach

- Construct a Markov chain on the hidden variables whose limiting distribution is the posterior
- Sampling LDA: Griffiths and Steyvers, 2004
- Takes days to converge (but it is accurate)

Latent Dirichlet Allocation Approximated Inference

Variational Inference

Key Idea

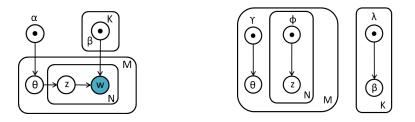
Assume that our distribution $Q(\mathbf{z}|\phi)$ factorizes (it is tractable) \rightarrow mean-field assumption

$$Q(\mathbf{z}|\phi) = Q(z_1,\ldots,z_K|\phi) = \prod_{k=1}^K Q(z_k|\phi_k)$$

- Can be made more general by factorizing on groups of latent variables
- Does not contain the true posterior because hidden variables are dependent
- Variational inference
 - Optimize ELBO using Q(z|φ) factorized distribution
 - Coordinate ascent inference Iteratively optimize each variational distribution holding the others fixed

Latent Dirichlet Allocation Approximated Inference

Variational LDA Distribution



Given $\Phi = \{\gamma, \phi, \lambda\}$ as variational approximation parameters

$$Q(\theta, \mathbf{z}, \beta | \Phi) = Q(\theta | \gamma) \prod_{n=1}^{N} Q(z_n | \phi_n) \prod_{k=1}^{K} Q(\beta_k | \lambda_k)$$

Then we have the model parameters $\Psi = \alpha, \beta$ of sample distribution $P(\theta, \mathbf{z}, \mathbf{w} | \alpha, \beta) = P(\theta, \mathbf{z}, \mathbf{w} | \Psi)$

Latent Dirichlet Allocation Approximated Inference

Variational Expectation-Maximization

Find the Φ, Ψ that maximize the ELBO

 $\mathcal{L}(\mathbf{w}, \Phi, \Psi) = \mathbb{E}_{Q}\left[\log P(\theta, \mathbf{z}, \mathbf{w} | \Psi)\right] - \mathbb{E}_{Q}\left[\log Q(\theta, \mathbf{z}, \Psi | \Phi)\right]$

by alternate maximization

- repeat
- **2** Fix Ψ : update variational parameters Φ^* (E-STEP)
- Six $\Phi = \Phi^*$: update model parameters Ψ^* (M-STEP)
- until little likelihood improvement

Unlike EM, variational EM has no guarantee to reach a local maximizer of $\ensuremath{\mathcal{L}}$

Introduction LDA in Bayesian Learning Softwa Applications Conclu

LDA in Pattern Recognition Software Conclusions

LDA Applications

Why using latent topic models?

- Organize large collections of documents by identifying shared topics
- Understanding the documents semantics (unsupervised)
- Documents are of different nature
 - Text
 - Images
 - Video
 - Relational data (graphs, time-series, etc..)
- In short: a model for collections of high-dimensional vectors whose attributes are multinomial distributions

Understanding Image Collections

How can we apply latent topic analysis to visual documents?

- We need a way to represent visual content as in text
 - Text \equiv collection of discrete items \Rightarrow words
 - Image ≡ collection of discrete items ⇒ ?
- Visual patches
 - Feature detectors to identify relevant image parts (MSER)
 - Feature descriptors to represent content (SIFT)
 - How can I obtain a discrete vocabulary for visual terms?

LDA in Pattern Recognition Software Conclusions

Building a Visterm Vocabulary

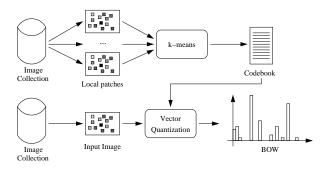
Given a dataset of images

- For each image I
 - Identify interesting points (MSER/SIFT/grid)
 - Extract the corresponding descriptors (SIFT)
- Concatenate the image descriptors in a $128 \times N$ matrix, where *N* is the total number of descriptors extracted
- Cluster the descriptors in C groups to obtain a vocabulary of C visterms (k-means)

You know all the necessary techniques to build this system!

Representing Image as a Bag of Items

- Each image *I* is a document and each visual patch inside it is an item
- Associate each patch to the nearest cluster/visterm c
- Count the occurrences of each dictionary visterm *c* in your image
- Represent the image as a vector of visterm counts



LDA in Pattern Recognition Software Conclusions

LDA Image Understanding

Assigning a topic to each visual patch



Unsupervised Semantic Segmentation

Combine latent topics with Markov random fields

- Use LDA to identify topics of some pixel patches
- Use MRF to diffuse LDA topics and enforce coherent pixel-level semantic segmentation

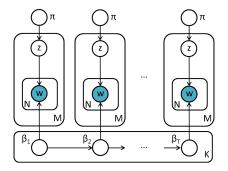
Zhao, Fei-Fei and Xing, Image Segmentation with Topic Random Field, ECCV 2010

LDA in Pattern Recognition Software Conclusions

Dynamical Topic Models

LDA assumes that the document order does not count

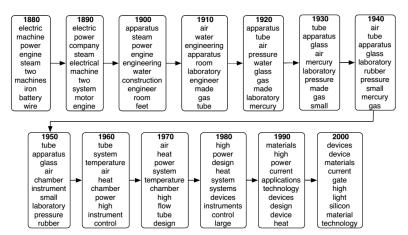
- What if we want to track topic evolution over time?
- Tracking how language changes over time
- Videos are image documents over time



Blei and Lafferty. Dynamic topic models, ICML 2006

LDA in Pattern Recognition Software Conclusions

Topic Evolution over Time



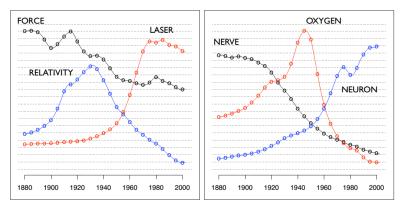
https://github.com/blei-lab/dtm

LDA in Pattern Recognition Software Conclusions

Topic Trends

"Theoretical Physics"

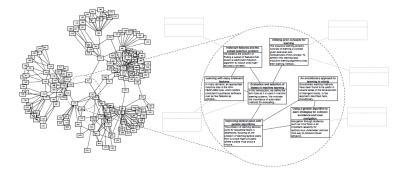
"Neuroscience"



https://github.com/blei-lab/dtm

LDA in Pattern Recognition Software Conclusions

Relational Topic Models



- Using topic models with relational data (graphs)
- Community discovery and connectivity pattern profiles (Kemp, Griffiths, Tenenbaum, 2004)
- Joint content-connectivity analysis (Blei, Chang, 2010)

Introduction LDA in Pattern Recog ayesian Learning Software Applications Conclusions

Variational Learning in Code

- PyMC3 Python library with particular focus on variational algorithms (not PyMC!)
- Edward Python library with lots of variational inference from the father of LDA
- Bayespy Variational Bayesian inference for conjugate-exponential family only
- Autograd Variational and deep learning with differentiation as native Python operator (no strange backend)
- Matlab does not have official support for variational learning but standalone implementation of various models (check Variational-Bayes.org)
- LDA is implemented in many Python libraries: scikit-learn, pypi, gensim (efficient topic models)

LDA in Pattern Recognition Software Conclusions

Take Home Messages

- Bayesian learning amounts to treating distributions as random variables sampled from another distribution
 - Add priors to ML distributions
 - Learn functions instead of point estimates
- Latent Dirichlet Allocation
 - Bayesian model to organize collections of multinomial data
 - Unsupervised latent representation learning
- Variational lower bound
 - Maximizing a lower bound of an intractable likelihood
 - Alternatively estimate variational parameters and maximize w.r.t model parameters
 - A fundamental concept to understand variational deep learning

LDA in Pattern Recognition Software Conclusions

Next Lecture

Sampling Methods

- Introduction to sampling methods
- Ancestral sampling
- Gibbs Sampling
- MCMC family and advanced methods