
Sampling methods
Intelligent Systems for Pattern Recognition (ISPR)

Daniele Castellana

Department of Computer Science
Università di Pisa

daniele.castellana@di.unipi.it



1
Outline

I Recap probabilistic concepts

I Sampling
I What is it?
I Why do we need it?
I Properties of samplers

I Sampling from univariate distributions

I Sampling from multivariate distributions
I Ancestor sampling
I Gibbs Sampling
I Monte Carlo Markov Chain (MCMC)
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Probability recap

I Discrete Random Variables
I x is a discrete random variable with C state;
I p(x = i), i ∈ [1,C] is its probability distribution;
I p(x1, . . . , xn) joint distribution of n discrete random

variable;

I Expectation
I let f (·) a function over a random variable x ;
I Ep(x) [f (x)] =

∑C
i=1 f (i)p(x = i) is its expected value;

In this lesson, we will focus only on discrete variables, but the
same results hold in the continue case.
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What is sampling?

Sampling consists in drawing a set of realisations
X = {x1, . . . , xL} of a random variable x with distribution p(x).

Example:
We would like to sample a dice: p(x = i) = 1/6, i ∈ [1,6].

l x l

1 5
2 3
3 2
4 1
5 5

The set X = {5,3,2,1,5} contains L = 5 samples.
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Why do we need sampling?
Approximating expectations

Suppose that we want to compute the expectation Ep(x) [f (x)].

If p(x) is intractable, we cannot compute it enumerating all
the states of x .

If we have a sample set X = {x1, . . . , xL}, then we can
approximate the expectation as:

Ep(x) [f (x)] ≈ 1
L

L∑
l=1

f (x l) ≡ f̂X (1)

There are a lot of cases where p(x) is intractable:

I the distribution of a Boltzmann Machine;

I the posterior P(θ, z | w, α, β) in LDA;

I posteriors when non-conjugate priors are used.
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Why do we need sampling?
Learning parameters

In Bayesian models, parameters are random variables.

We can learn the model parameters by sampling their
posteriors!

In LDA, we can learn the model parameters by sampling:

θ, z, β ∼ P(θ, z, β | w , α)

Sampling from the posterior is also useful to classify new
instances!

In this case, we sample:

θ∗, z∗ ∼ P(θ, z | w∗, α, β),

where w∗ are the words in the new documents.
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Properties of sampling

The most important properties of sampling are:

I the empirical distribution converges almost surely to the
true distribution:

lim
L→∞

1
L

L∑
l=1

I[x l = i] = p(x = i), x l ∼ p(x)

where I[c] = 1 if and only if c is true;
I the sampling approximation f̂X of the expectation can be

an unbiased estimator;
I the sampling approximation f̂X of the expectation can

have low variance;

The last two properties are desirable but difficult to ensure!
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Unbiased Sampling Approximation

Quick refresh:
Unbiased estimator θ̂
of the unknown θ.

the approximation is
exact on average.

Let p̃(X ) the distribution over all possible realisations of the
sampling set X , then f̂X is an unbiased estimator if:

Ep̃(X )

[
f̂X
]

= Ep(x) [f (x)] . (2)

This is true provided that p̃(x l) = p(x)!

The proof is given in the Appendix.

Thi equality ensure us that we are sampling the desired
distribution, i.e. we are using a valid sampler!
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Variance of Sampling Approximation
Definition

The variance of f̂ (X ) tell us how much we can rely on the
approximation computed using the sampling set X .

Let
∆f̂X = f̂X − Ep̃(X )

[
f̂X
]
, (3)

the variance of f̂ (X ) is given by:

Ep̃X

[(
∆f̂X

)2
]
.

If the variance is low, f̂ (X ) is (quite) always close to its
expected value, i.e Ep(x) [f (x)]!
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Variance of Sampling Approximation

If we assume:
I p̃(x l) = p(x l) (same marginals);
I p̃(x l , x l ′) = p̃(x l)p̃(x l ′) (samples independence);

we obtain

Ep̃X

[(
∆f̂X

)2
]

=
1
L

Varp(x)[f (x)]. (4)

The proof is given in the Appendix.

We can reduce the variance using a small number of samples!

Provided that Varp(x)[f (x)]) is finite.
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Sampling procedures as distributions

The quality of the sampling approximation depends on the
properties of p̃(X ), i.e. the probability to obtain a sample set
X .

~p(X ) 6= p(x)

p(x)
The distribution to
sample

p̃(X )
The distribution of
the samples.

Does not depdend on
the sampling proce-
dure.

Depdends on the sam-
pling procedure.
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Small recap

So far, we have shown that:
I we need sampling:

I to approximate expectations;
I to do inference in Bayesian models.

I properties of the sampling procedure depends on p̃(X ):
I p̃(x l ) = p(x l ) =⇒ valid sampler;
I p̃(x l , x l′) = p̃(x l )p̃(x l′) =⇒ low approximation variance.

In the next slides, we introduce examples of sampling
procedures:
I sampling from univariate distributions;
I sampling from multivariate distributions:

I naive approaches;
I exact procedures;
I approximated procedures.
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Univariate Sampling

Drawing samples from an univariate distribution is easy!

We only need a random number generator R which produces
a value uniformly at random in [0,1].

p(x) =


0.4 x = 1
0.4 x = 2
0.2 x = 3

p(x = 1) p(x = 2) p(x = 1)

0 0.4 0.8 1

R x
0.19 1
0.24 1
0.47 2
0.88 3
0.73 2
0.63 2
0.52 2
0.96 3
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Multivariate Sampling

In the multivariate case, p(x) represents the joint distribution
of a set of variables {s1, . . . , sn}, where each si is a discrete
variable with C states.

Hence, each sample x l contains n values.

X s1 s2 s3 s4 s5

x1 1 1 2 4 5
x2 4 3 2 1 2
x3 5 2 5 3 4
...

...
...

...
...

...
xL 3 5 6 6 1

How can we sample from p(x)?
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Naive Multivariate Sampling - 1

We build an univariate distribution p(S), where S is a
discrete variable with Cn states (i.e. all possible combination
of si variable states).

S s1 s2 s3 s4 s5 p(S)

1 1 1 1 1 1 p(1,1,1,1,1)
2 1 1 1 1 2 p(1,1,1,1,2)
3 1 1 1 1 3 p(1,1,1,1,3)
...

...
...

...
...

...
...

Cn C C C C C p(C,C,C,C,C)

We can sample from p(S) using the univariate schema!

S has O(Cn) states! Computationally infeasible!
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Naive Multivariate Sampling - 2

Using the chain rule, we can rewrite the joint distribution as:

p(s1, . . . , sn) = p(s1)p(s2 | s1)p(s3 | s1, s2) . . . p(sn | s1, . . . , sn−1)

Them, we sample the variables in the following order:

1. sample s̃1 ∼ p(s1) ;

2. sample s̃2 ∼ p(s2 | s̃1) ;

3. sample s̃3 ∼ p(s3 | s̃1, s̃2) ;
...

n. sample s̃n ∼ p(sn | s̃1, . . . , ˜sn−1) .

Easy because
univariate!

Unfortunately, computing the distribution p(si | sj<i) can require
summation over an exponential number of states!
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Ancestral Sampling

The approach used in the previous slide is called Ancestral
Sampling (AS).

If the distribution p(s1, . . . , sn) is already represented as a
Belief Network (BN), we can apply it directly!

s1 s2 s3 s4 s5 s6

The BN ancestral order tell us the sampling order.

{s1, s2, s4} ≺ {s3} ≺ {s6} ≺ {s5}
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Ancestral Sampling
Example

{s1, s2, s4, } ≺ {s3} ≺ {s6} ≺ {s5}
Sample s̃1 ∼ p(s1)

s1 s4s2 s3 s6s5

This is a single sample x l !

AS performs exact sampling since each sample x l is drawn
from p(x).

The samples are also independent!
Thus, AS has low variance!
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Ancestral Sampling
Example

{ 6s1, s2, s4, } ≺ {s3} ≺ {s6} ≺ {s5}
Sample s̃4 ∼ p(s4)

s̃1 s4s2 s3 s6s5

This is a single sample x l !

AS performs exact sampling since each sample x l is drawn
from p(x).

The samples are also independent!
Thus, AS has low variance!
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Ancestral Sampling
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Ancestral Sampling
Example

{ 6s1, 6s2, 6s4, } ≺ { 6s3} ≺ {s6} ≺ {s5}
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Ancestral Sampling
Example
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Sampling with evidence

Suppose that a subset of variables sε are visible; writing
s = sε ∪ s\ε, we would like to sample from:

p(s\ε | sε) =
p(s\ε, sε)

p(sε)

Can we still use AS?

I Clamping variables changes the structure of the BN.
In previous example s1 ⊥⊥ s2, but s1 6⊥⊥ s2 | s3.

Computing the new structure is complex as running exact
inference!

I We can run AS on the old structure and then discard any
samples which do not match the evidence.

We discard a lot of samples!
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The needing of new sampling procedures

Sampling under evidence is important!

In probabilistic models, the inference is based on the posterior:

p(h | v) =
p(h, v)

p(v)
,

where:
I where h is set of hidden variables
I where v is set of visible variables (i.e. the data)

We need an efficient method to sample under evidence!

In the next slide, we introduce the Gibbs sampling procedure.
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Gibbs Sampling
Example

The idea is to start from a sample x1 = {s1
1, . . . , s

1
n} and to

update only one variable at a time.

Sample s1 s2 s3 s4 s5

x1 1 1 2 4 5

x2 3 1 2 4 5
x3 3 4 2 4 5
x4 3 4 2 1 5
x5 3 4 6 1 5
...

...
...

...
...

...
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Gibbs Sampling
Definition

During the (l + 1)-th iteration,
I we select a variable sj ;
I we sample its value according to

sl+1
j ∼ p(sj | s\j) =

1
Z

p(sj | pa(sj))
∏

k∈ch(j)

p(sk | pa(sk )),

where variables s\j are clamped to {sl
1, . . . , s

l
j−1, s

l
j+1, . . . , s

l
n}.

It depends only on the Markov blanket of sj ! Easy to sample!

Dealing with evidence is easy!
We just do not select a variable!
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LDA Gibbs Sampling

Start form initial guess {z0
ij , θ

0
i , β

0}.
Do:

1. z l+1
ij ∼ P(zij | w, z l

−ij , θ
l , β l , α)

2. θl+1
i ∼ P(θi | w, zl+1, β l , α)

3. β l+1 ∼ P(β | w, zl+1, θl+1, α)

Repeat until convergence.

The derivation of the sampling formulas can require strong
mathematical skills!

The convergence criteria is based on P(z,w, θ, β, α).
The procedure terminates when the likelihood stop increasing.
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Gibbs Sampling
Properties

The Gibbs sampling draws a new sample x l from q(x l | x l−1).
I Is the Gibbs sampling a valid sampling procedure?

We are not sampling from p(x)!

We cannot ensure that the sampling distribution has the same
marginals of p(x).

However, if we compute the limit to L→∞, the series
{x1, . . . , xL} converges to samples taken from p(x)!

In the limit of infinite samples, the Gibbs sampler is valid!

I Has the Gibbs sampler low variance?

No, samples are highly dependent!

Daniele Castellana | Sampling methods



23

Gibbs Sampling
Properties

The Gibbs sampling draws a new sample x l from q(x l | x l−1).
I Is the Gibbs sampling a valid sampling procedure?

We are not sampling from p(x)!

We cannot ensure that the sampling distribution has the same
marginals of p(x).

However, if we compute the limit to L→∞, the series
{x1, . . . , xL} converges to samples taken from p(x)!

In the limit of infinite samples, the Gibbs sampler is valid!

I Has the Gibbs sampler low variance?

No, samples are highly dependent!

Daniele Castellana | Sampling methods



23

Gibbs Sampling
Properties

The Gibbs sampling draws a new sample x l from q(x l | x l−1).
I Is the Gibbs sampling a valid sampling procedure?

We are not sampling from p(x)!

We cannot ensure that the sampling distribution has the same
marginals of p(x).

However, if we compute the limit to L→∞, the series
{x1, . . . , xL} converges to samples taken from p(x)!

In the limit of infinite samples, the Gibbs sampler is valid!

I Has the Gibbs sampler low variance?

No, samples are highly dependent!

Daniele Castellana | Sampling methods



24

MCMC Sampling Framework

Gibbs sampling is a specialisation of the Markov Chain
Monte Carlo (MCMC) sampling framework.

The idea is to build a Markov Chain whose stationary
distribution is p(x).

Let q(x l+1 | x l) the MC state-transition distribution, we must
ensure that the Markov Chain is:
I irreducible→ it is possible to reach any state from

anywhere;
I aperiodic→ at each time-step, we can be anywhere.

Hence, the Markov Chain has a unique stationary
distribution.

There are different q(·) which converge to p(·).
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MCMC Sampling Procedures

There are many sampling procedures in the MCMC
framework, defining different state-transition distribution q(·):
I Gibbs Sampling
I Metropolis-Hastings Sampling
I Particle Filtering
I Hybrid Monte Carlo
I Swendson-Wang

...

Each of them has different characteristics!
We should choose the most suitable for our purpose!
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MCMC Sampling Procedures

There are many sampling procedures in the MCMC
framework, defining different state-transition distribution q(·):
I Gibbs Sampling

I q(·) relies on marginals p(sj | s\j )!
I it works well when variables are not strogly related!

I Metropolis-Hastings Sampling
I based on a proposal distribution q̃(x l+1 | x l ) !
I the choice of q̃(·) is crucial!

I Particle Filtering
I it is used in recursive models such as HMM!

I Hybrid Monte Carlo
I Swendson-Wang

...

Each of them has different characteristics!
We should choose the most suitable for our purpose!
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Take home messages

I Sampling is useful to deal with intractable p(x):
I we can approximate expectations;
I we can perform inference in Bayesian models;

I p(x) univariate→ sampling is easy!
I p(x) multivariate→ sampling is difficult!

I naive approaches are not feasible;
I if p(x) is a BN, we can use AS (valid and with low variance);
I AS does not work with evidence (we always have it!);

I MCMC framework approximates sampling procedure:
I we can easily deal with evidence;
I the sampler defines a MC whose stationary distr. is p(x);

I the sampler is valid in the limit l → ∞;
I different state-trans. q leads to different procedures:

I Gibbs Sampling, Metropolis-Hastings Sampling, . . .

See Chapter 27 of BRML book!
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Appendix

In the following slides, we provide:
I some properties of the expectation that are useful in the

proofs;
I the proof of the average approximation;
I the proof of the variance approximation;
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Expectation properties

The following property are used during the proofs:
I Linearity:

Ep(x) [f (x) + g(x)] = Ep(x) [f (x)] + Ep(x) [g(x)]

Ep(x) [c f (x)] = c Ep(x) [f (x)] .
(5)

I Expected value of a constant:

Ep(x) [c] = c. (6)

Also, we use the symbol
(n)
= to indicate that the statement in the

equation (n) is used to make a step in the proof.

Daniele Castellana | Sampling methods



3

Proof Average Approximation

We want to prove that

Ep̃(X )

[
f̂X
]

= Ep(x) [f (x)] . (2)

assuming
p̃(x l) = p(x) (7)

Proof.

Ep̃(X )

[
f̂X
]

(1)
= Ep̃(X )

[
1
L

L∑
l=1

f (x l)

]
(5)
=

1
L

L∑
l=1

Ep̃(x l )

[
f (x l)

]
=

(7)
=

1
L

L∑
l=1

Ep(x) [f (x)] =
1
L
× L× Ep(x) [f (x)] = Ep(x) [f (x)] .
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Proof Variance Approximation I

We want to prove that

Ep̃X

[(
∆f̂X

)2
]

=
1
L

Varp(x)[f (x)]. (4)

assuming

p̃(x l) = p(x) (7)

p̃(x i , x j) = p̃(x i)p̃(x j) (8)

Proof.

∆f̂X
(3)
= f̂X − Ep̃(X )

[
f̂X
]

(1)+ (2)

This holds due

to assumption

(7)!

=
1
L

L∑
l=1

f (x l)− Ep(x) [f (x)] =

=
1
L

L∑
l=1

f (x l)− 1
L

L∑
l=1

Ep(x) [f (x)] =
1
L

L∑
l=1

(
f (x l)− Ep(x) [f (x)]

)
(9)
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Proof Variance Approximation II

Then, naming

∆f (x l) = f (x l)− Ep(x) [f (x)] , (10)

we obtain

Ep̃X

[(
∆f̂X

)2
]

(9)
= Ep̃X

(1
L

L∑
l=1

(
f (x l)− Ep(x) [f (x)]

))2 (10)
=

= Ep̃X

(1
L

L∑
l=1

∆f (x l)

)2 = Ep̃X

 1
L2

L∑
l,l ′

∆f (x l)∆f (x l ′)

 (5)
=

=
1
L

Ep̃(x)

[
(∆f (x))2

]
+

1
L2

∑
l 6=l ′

Ep̃(x l ,x l′ )

[
∆f (x l)∆f (x l ′)

]
.

(11)
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Proof Variance Approximation III

The term

1
L2

∑
l 6=l ′

Ep̃(x l ,x l′ )

[
∆f (x l)∆f (x l ′)

]
(8)
=

=
1
L2

∑
l 6=l ′

Ep(x l )

[
∆f (x l)

]
Ep(x l′ )

[
∆f (x l ′)

]
= 0,

(12)

since

Ep(x l )

[
∆f (x l)

]
(10)
= Ep(x l )

[
f (x l)− Ep(x) [f (x)]

]
(5)+(6)

=

= Ep(x) [f (x)]− Ep(x) [f (x)] = 0.

Finally, combining (11) and (12), we obtain

Ep̃X

[(
∆f̂X

)2
]

=
1
L

Ep̃(x)

[
(∆f (x))2

]
=

1
L

Varp(x)[f (x)].
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