P2P Systems and Blockchains
Spring 2018,
instructor: Laura Ricci
laura.ricci@unipi.it

Lesson 11:
CRYPTOGRAPHIC TOOLBOX FOR BLOCKCHAINS
11/4/2018
OUTLINE OF THE NEXT LESSONS

• Tools for the development of block-chains

• Cryptographic tools
 • Cryptographic hash functions
 • Digital signatures

• Data structures
 • Bloom filters
 • Merkle trees
 • Patricia tries
HASH FUNCTIONS

• Arbitrary-length message to fixed-length digest

• generally used in programming to implement the “dictionary” data structure for fast lookups

• hash value is also called digest

This is a clear text that can easily read without using the key. The sentence is longer than the text above.
HASH FUNCTIONS

- Input:
 - input length is counted in bits, you can hash a 123 bits value.
 - zero input length is permitted, normally a maximum input length.
- Output:
 - fixed length output; normally 128/160/256/512-bit output length
 - a family of hash functions will share the similar design with different parameters and output length
• **Pigeonhole Principle:** states that if \(n \) items are put into \(m \) containers, with \(n > m \), then at least one container must contain more than one item
 • seems rather intuitive and naive, but it is used to demonstrate possibly unexpected results
 • since the codomain is smaller of the domain you can have collisions
HASH FUNCTIONS: PROPERTIES

Let X be the domain and Y the codomain of the hash function:

- for any $x \in X$, it is easy to compute $f(x)$
- preimage resistance, also hiding property: for any $y \in Y$, it is hard to find $x \in X$ such that $f(x) = y$
- one-way function
HASH FUNCTIONS: PROPERTIES

Let X be the domain and Y the codomain of the hash function:

- **second preimage resistance**: given $h = H(M)$, it is hard to find M' that $H(M') = h$
SECOND PREIMAGE

• A function which is not collision resistant: 8-bit block parity

\[m = 110100101000100111100101000101001000100010101 \]

\[b_1 = 11010010 \\
 b_2 = 10001001 \\
 b_3 = 11100101 \\
 b_4 = 00010100 \\
 b_5 = 10100010 \\
 b_6 = 00010100 \]

\[\text{digest} = 00011100 \text{ (column-wise @)} \]

• a simple way to find another message with the same hash:
 • invert any even number of bits in m that are in the same column and the parity will not change

\[m_1 = \begin{array}{c}
 11010010 \\
 10001001 \\
 11100101 \\
 00010100 \\
 10100010 \\
 00010100 \\
\end{array} \quad m_2 = \begin{array}{c}
 11110010 \\
 10001101 \\
 11000101 \\
 00110000 \\
 10100010 \\
 00110100 \\
\end{array} \]

\[\text{digest}(m_2) = 00011100 \]

• Hash which is not preimage resistant
Let X be the domain and Y the codomain of the hash function:

- **collision resistance**: given any x_1, it is hard to find another x_2 different from x_1 such that $H(x_1) = H(x_2)$
nobody can find x and y such that x != y and H(x)=H(y) collision exists, but it is very hard to find them
Question: what is the maximum number of guesses required to certainly find a collision?

- pick $2^{256} + 1$ distinct values in the domain
- compute the hashes of each of them, and check if any two outputs are equal
- the maximum number of guesses required to certainly find a collision is $2^{256} + 1$

$O(2^n)$ time complexity
$O(1)$ space complexity,
where $n = \text{len}(H)$
Question: what is the maximum number of guesses required to certainly find a collision?

- pick random inputs and compute their hash values
- you will find a collision with high probability long before examining $2^{256} + 1$ values
Question: what is the maximum number of guesses required to certainly find a collision?

- \(\approx 50\% \) probability of a collision after \(\approx 2^{128} \)
- randomly choose just \(2^{128} + 1 \) inputs, roughly the square root of the number of possible outputs
- there's a chance that at least two of them are going to collide.

\[
\begin{align*}
O(2^{n/2}) & \text{ time complexity} \\
O(2^{n/2}) & \text{ space complexity, } \\
& \text{where } n = \text{len}(H)
\end{align*}
\]
THE BIRTHDAY PARADOX

• What is the minimum value of k such that the probability is greater than 0.5 that at least two people in a group of k people have the same birthday?

• Given a hash function H, with n possible outputs and a specific value $H(x)$, if H is applied to k random inputs, what must be the value of k so that the probability that at least one input y satisfies $H(y) = H(x)$ is 0.5?
THE BIRTHDAY PARADOX

- Within a group of k people selected at random, what is the probability that two or more will share a birthday?

- Hypothesis:
 - a year is made of 365 days (no leap years)
 - all days are equally probable

- result: if k = 23, then two people will share a birthday with a probability just above 50%.
THE BIRTHDAY PARADOX

- Another formulation: find the smallest number n of people such that ($E=$ expected value)

\[E(\text{pairs of common birthday}) \geq 1 \]

ways to pair 4 people:

\[3 + 2 + 1 = 6 \]

ways to pair n people:

\[
(n-1) + \ldots + 3 + 2 + 1 = \frac{n(n-1)}{2} = \frac{n^2 - n}{2}
\]

\[
E(\text{pairs of common birthday}) = \frac{n^2 - n}{2 \times 365}
\]
HOW MANY COMMON BIRTHDAYS?

\[E(\text{pairs}) = \frac{n^2 - n}{2 \times 365} \]

Using \(n = 30 \):

\[E(\text{pairs}) = \frac{n^2 - n}{2 \times 365} = \frac{900 - 30}{2 \times 365} = 1.192 \]
HOW MANY COMMON BIRTHDAYS?

• in general, if we generalize with respect to the days of the year and select \(n \) items out of \(N \), number of repeats expected

\[
\frac{n^2 - n}{2N}
\]

• we expect first repeat in

\[
n = \Theta(\sqrt{N}) \text{ trials}
\]

• we can find a collision by only examining roughly the square root of the number of possible outputs

 • for output of 256 bits,
 • randomly choose just \(2^{130} + 1 \) inputs, (square root of \(2^{256} \))
 • it turns out there’s a 99.8% chance that at least two of them are going to collide.
CRYPTOGRAPHIC HASH: COLLISION RESISTANCE

- The problem with previous methods is that they both take a very, very long time to do.

- For a hash function with a 256-bit output
 - Compute the hash function $256 + 1$ times in the worst case
 - About 128 times on average.

- If a computer calculates 10,000 hashes per second,
 - More than 10^{27} years to calculate 2^{128} hashes

- If every computer ever made by humanity was computing since the beginning of the entire universe, up to now, the probability that they would have found a collision is still infinitesimally small. [narayanan2016bitcoin]
SECURITY OF HASH FUNCTIONS

• If no design flaws exist, the security of a hash function depends on the bit length of the output hash value.

• Given a m-bit hash function, the attacker needs $2^{m/2}$ brute force computation to find a collision.
 • MD5 is $128/2 = 64$ bits security
 • SHA-1 is $160/2 = 80$ bits security
 • SHA-256 is $256/2 = 128$ bits security
 • SHA-512 is $512/2 = 256$ bits security

• At least 80 bits is required, to assure security

• Bitcoin’s blockchain uses SHA-256 (Secure Hash Algorithm).
REAL LIFE HASH FUNCTIONS

<table>
<thead>
<tr>
<th>Name</th>
<th>Output Length (bits)</th>
<th>Security status</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD5</td>
<td>128</td>
<td>Collisions found</td>
</tr>
<tr>
<td>SHA1</td>
<td>160</td>
<td>Can be broken in $\sim 2^{61}$ iterations</td>
</tr>
<tr>
<td>SHA2</td>
<td>224-512</td>
<td>No known attacks</td>
</tr>
<tr>
<td>\rightarrow SHA-256</td>
<td>\rightarrow 256</td>
<td>No known attacks</td>
</tr>
<tr>
<td>SHA3</td>
<td>224-512</td>
<td>No known attacks</td>
</tr>
</tbody>
</table>

Bitcoin typically uses SHA-256(SHA-256(transaction))

Play with hash functions

http://www.xorbin.com/tools/sha256-hash-calculator
The Merkle-Damgård transform can be used to convert a fixed-length hash function to a hash function taking inputs of arbitrary length, while preserving collision resistance.

- we can focus our attention on designing collision resistant compression functions operating on short, fixed-length inputs, and automatically convert such compression functions into full-fledged hash functions.

- Adopted by most used hash functions.
Merkle Damgard Transform
CRYPTOGRAPHIC HASH APPLICATIONS

- Digital signatures
- Bitcoin transaction ID
- Deduplication
- Password storage
CRYPTOGRAPHIC HASH APPLICATIONS

- Generate data fingerprinting
- Digest: if we know $H(x) = H(y)$
 - then it’s safe to assume that $x = y$.
 - useful because the hash is small: do not compare entire files
- e-Mule, for instance, exploited MD-5 to verify that two files are the same, even if they are described by different keywords
CRYPTOGRAPHIC HASH APPLICATIONS

- File or message integrity

- Use the hash value as the checksum to check if the data is changed or modified.

- to recognize if a content C is the same of a content C1 that we saw before,
 - just remember the hash of C1, hash is a proxy of C1!
 - compute the hash of C and compare with that of C1
 - if the two hashes are equal, the content has not be tampered
CRYPTOGRAPHIC HASH APPLICATIONS

- A distributed hash table (DHT) is a class of a decentralized distributed system that provides a lookup service similar to a hash table: (key, value).
- Pairs are stored in a DHT, and any participating node can efficiently retrieve the value associated with a given key.
CRYPTOGRAPHIC HASH APPLICATIONS

- Bitcoin use block chain (hash chain) to store transaction ledger in a P2P (Peer-to-Peer) network
- tamper freeness property

![Diagram showing hash chain with blocks B1, B2, and B3 connected by hash operations.]
Hash Search Puzzles

- Based on partial pre-image attack

The hash/search puzzle consists of:
- a cryptographic hash function, H
- a random value, r
- a target set, S
- a solution of the puzzle is a value x, such that:

$$m = r|x$$

$$H(m) \in S$$

- Bitcoin Proof of Work (PoW) is based on a hash/search puzzle
512 input bits

S

256 output bits
512 input bits

\[m \]

\[H \]

256 output bits

\[S \]

\[H(m) \in S \]

- \(m \) is a valid puzzle solution
• m is a no valid puzzle solution
The difficulty may be tuned by defining the size of S:

- if S is large, the puzzle is less difficult
- in Bitcoin is defined by the number of leading zeros of SHA-256
Puzzle-friendliness property: a hash function H is said to be puzzle-friendly if

- for every possible n-bit output value y
- if k is chosen from a distribution with high min-entropy,
- then it is infeasible to find x such that $H(k \ || \ x) = y$ in time significantly less than 2^n.

- Puzzle-friendly property implies that no solving strategy to solve a search puzzle is much better than trying random values of x.

CRYPTHOGRAPHIC FUNCTIONS: RECAP

Hash function:

- arbitrary size input
- fixed-size output
- efficiently computable

cryptographic hash function must have also some security properties:

- hiding:
- collision resistance

collision freedom and hiding can be violated trivially through brute force

- compute the hash of all possible values for pre-digest until you find one that produces the desired digest
- have to be rendered computationally infeasible by making sure that domain \(X \) is very large
SYMMETRIC KEY ENCRYPTION: REVIEW
Send a confidential message protected with a public key
• Digital signatures are the second cryptographic primitive needed as building blocks for the cryptocurrencies
DIGISTAL SIGNATURES: A REALISTIC SCENARIO

Bob sends digitally signed message:

- large message m
- H: Hash function
- digital signature (encrypt) $K_B^-(H(m))$
- Bob’s private key K_B^-
- encrypted msg digest $K_B^-(H(m))$

Alice verifies signature and integrity of digitally signed message:

- encrypted msg digest $K_B^-(H(m))$
- large message m
- H: Hash function
- digital signature (decrypt) $K_B^+(H(m))$
- Bob’s public key K_B^+

If the calculated hashcode does not match the result of the decrypted signature, either
- the document was changed after being signed, or
- the signature was not created with the private key of the sender
DIGITAL SIGNATURES

- **data integrity**: authentication of content
- **data origin authentication**: authentication of sender
- **non-repudiation**: signer cannot deny signing message
- does not guarantee data **confidentiality**, the message is sent in clear
- to guarantee confidentiality + data integrity
 - the sender signs the document with its private key and encrypts the document with the public key of the receiver
 - the receiver decrypts the document with its private key and it applies to the resulting document the public key of the sender
 - if the result “makes sense” then return “ok”
API FOR DIGITAL SIGNATURES

\[(sk, pk) := \text{generateKeys}(\text{keysize})\]

\[sk: \text{secret signing key} \]
\[pk: \text{public verification key} \]

\[\text{sig} := \text{sign}(sk, \text{message}) \] /*cipher the message through the secret key and obtain the signature.*/

\[\text{isValid} := \text{verify}(pk, \text{message}, \text{sig}) \] /*decipher the signature through the public key and compare the result with the message*/

and the following property must hold:

\[\text{verify}(pk, \text{message}, \text{sign}(sk, \text{message})) = \text{true} \]
import java.security.KeyPair;
import java.security.KeyPairGenerator;
import java.security.NoSuchAlgorithmException;
import java.security.PrivateKey;
import java.security.PublicKey;
import javax.crypto.Cipher;

public class SignatureTest {

 public static void main(String[] args) throws Exception {
 // generate public and private keys
 KeyPair keyPair = buildKeyPair();
 PublicKey pubKey = keyPair.getPublic();
 PrivateKey privateKey = keyPair.getPrivate();

 // encrypt the message
 byte[] encrypted = encrypt(privateKey, "This is a secret message");
 System.out.println(new String(encrypted)); // <<encrypted message>>

 // decrypt the message
 byte[] secret = decrypt(pubKey, encrypted);
 System.out.println(new String(secret)); // This is a secret message
 }
}
import java.security.KeyPair;
import java.security.KeyPairGenerator;
import java.security.NoSuchAlgorithmException;
import java.security.PrivateKey;
import java.security.PublicKey;
import javax.crypto.Cipher;
public class SignatureTest {
 public static void main(String [] args) throws Exception {
 // generate public and private keys
 KeyPair keyPair = buildKeyPair();
 PublicKey pubKey = keyPair.getPublic();
 PrivateKey privateKey = keyPair.getPrivate();
 // encrypt the message
 byte [] encrypted = encrypt(privateKey, "This is a secret message");
 System.out.println(new String(encrypted)); // <<encrypted message>>
 // decrypt the message
 byte[] secret = decrypt(pubKey, encrypted);
 System.out.println(new String(secret)); // This is a secret message
PLAYING WITH JAVA AND SIGNATURES

public static KeyPair buildKeyPair() throws NoSuchAlgorithmException {
 final int keySize = 2048;
 KeyPairGenerator keyPairGenerator =
 KeyPairGenerator.getInstance("RSA");
 keyPairGenerator.initialize(keySize);
 return keyPairGenerator.generateKeyPair();
}

public static byte[] encrypt(PrivateKey privateKey, String message) throws Exception {
 Cipher cipher = Cipher.getInstance("RSA");
 cipher.init(Cipher.ENCRYPT_MODE, privateKey);
 return cipher.doFinal(message.getBytes());
}

public static byte[] decrypt(PublicKey publicKey, byte[] encrypted) throws Exception {
 Cipher cipher = Cipher.getInstance("RSA");
 cipher.init(Cipher.DECRYPT_MODE, publicKey);
 return cipher.doFinal(encrypted);
}
This is a secret message
• Encryption is two way, and requires a key to encrypt/decrypt

• Hashing is one-way. There is no 'de-hashing'