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Statistical Language Model

A statistical language model is a probability distribution P over sequences of
terms.

Given a document d that is composed of a sequence of words w .w,w,, we can
define:

pP(d) = P(w,w,w,) = P(w )P(w,|w )P(w,|lw,w,)

Depending on the assumptions we make on the probability distribution, we
can create statistical model of different complexity.

The formula above makes no assumptions and can exactly model any
language, yet it is impractical because it requires to learn the probability of
any sequence in the language.



Unigram mode|

A unigram model assumes a statistical independence between words, i.e., the
probability of d is the product of the probabilities of its words:

p(d) = P(w,w,w,) = P(w )P(w,|w )P(w,|lw,w,)
= P(w,)P(w,)P(w ) = I1.P(w)

The bayesian classifier that uses this model is called naive for this reason.
Usually the models use the logs of the probabilities to work in a linear space:

log(I1.P(w)) = X log(P(w)

Smoothing, e.g., add one to all frequencies, is used to avoid zero probabilities.



Bigram mode|

A bigram model assumes a statistical dependence of a word from the preceding
one:

p(d) = P(w,w,w,) = P(w )P(w,|w )P(w,|lw,w,)
= P(w,)P(w,|w )P(w,|w,) =I1.P(w,|w,_)

This simple addition is already able to capture a good amount of language
regularities.

In general, the longer the n-gram we adopt for the model:

e the more semantic is captured;
e the less statistical significant is the model (memorization/generalization).



Vector Space Mode|

The Vector Space Model (VSM) is a A 17 bestdaysof the year”
typical machine-processable
representation adopted for text.

d2= “nice weather
on the weekend”

Each vector positions a document
into an n-dimensional space, on
which learning algorithms operate
to build their models

d3= “risk of thunderstorms”

v(d,) = [W Wy vy Wy W]




Vector Space Mode|

After text processing, tokenization... a document is usually represented as
vector in RIF!, where Fis the set of all the distinct features observed in
documents.

Each feature is mapped to a distinct dimension in R¥l using a one-hot vector:

v(played’) =11, 0,0, .., 0,0, .., 0, 0, 0]

v('game’) =[0, 1,0, .., 0,0, .. ,0, 0, 0]
v('match’) =10, 0, 1, .. , 0,0, .., 0, 0, 0]
v('trumpet’) = [0, 0, 0, .. , 0, 1, .., 0, 0, 0]
v('bwoah’) = [0, 0, 0, .. , 0, 0, .., 0, 0, 1]



Vector Space Mode|

A document is represented as the weighted sum of its features vectors:

v(d) = 2 wiv(f)
(] j‘Ed
For example:

d = 'you played a good game'
v(d)= [0,w

played,d’wgame,d’ 0’ """ @: Wgood,d’ 0.. ..

The resulting document vectors are sparse:

[{ilv(d) # 0} <n



Sparse representations

d, = 'you played a game'

d, = 'you played a match’

d3 = 'you played a trumpet'
V(dl) = [0, W olayed,d1 * Wgame,d1 ? 0 , 0, ., 0,0 , 0]
V(dz) = [0, W layed,d2 0 > Woatch.d2 ? O, .., 0, 0 , 0]
V(d3) = [0, W layed,d3 0 , 0 , 0, .., 0, Wi umpet,d3 ? 0]

Semantic similarity between features (game~match) is not captured:

sim(v(d,), v(d,)) ~ sim(v(d ), v(d,)) ~ sim(v(d,), v(d,))



Modeling word similarity

How do we model that game and match are related terms and trumpet is not?
Using linguistic resources: it requires a lot of human work to build them.

Observation: co-occurring words are semantically related.

Pisa is a province of Tuscany
Red is a color of the  rainbow
Wheels area  component ofthe bicycle
*Red isa province of the  bicycle

We can exploit this propriety of language, e.g., following the distributional
hypothesis.



Distributional hypathesis

“You shall know a word by the company it keeps!”

Distributional hypothesis: the meaning of a word is determined by the
contexts in which it is used.

Yesterday we had bwoah at the restaurant.
| remember my mother cooking me bwoah for lunch.
I don't like bwoah, it's too sweet for my taste.
| like to dunk a piece bwoah in my morning coffee.


http://annabellelukin.edublogs.org/files/2013/08/Firth-JR-1962-A-Synopsis-of-Linguistic-Theory-wfihi5.pdf

Word-Context matrix

A word-context (or word-word) matrix is a |F|-|F| matrix X that counts the
frequencies of co-occurrence of words in a collection of contexts (i.e, text

spans of a given length).

You cook the cake twenty minutes in the oven at 220 C.
| eat my steak rare.
I'll throw the steak if you cook it too much.
The engine broke due to stress.
| broke a tire hitting a curb, | changed the tire.

Context_2,+2('cake') = {['cook’,'the’,'twenty’, 'minutes']}
Context_2,+2('tire') = {['broke','a','hitting', 'a'], ['changed’, 'the'l}



Word-Context matrix

Context words

cook eat changed broke
cake e 10 20 e 0 0
steak . 12 22 0 0
bwoah . 7 10 . 0 0
Words
engine . 0 0 3 10
tire . 0 0 10 1

Words = Context words

Rows of X capture similarity yet X is still high dimensional and sparse.



Dense representations

We can learn a projection of feature vectors v(f) into a low dimensional space
RX k < | F|, of continuous space word representations (i.e. word embeddings).

Embed: R¥! — Rk

Embed(v(f)) = e(f)

We force features to share dimensions on a reduced dense space

l

Let's group/align/project them by their syntactic/semantic similarities!



SVD

Singular Value Decomposition is a decomposition method of a matrix X of size
m-n into three matrices UXV", where:

U is an orthonormal matrix of size m-n

2'is a diagonal matrix of size n-n, with values Oy Oye.. O
Vis an orthonormal matrix of size n-n, V" is its conjugate transpose

o, 0,... 0, of X'are the singular values of X, sorted by decreasing magnitude.

Keeping the top k values is a least-square approximation of X

Rows of U, of size m-k are the dense representations of the features
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GloVe

is a count-based model that

implicitly factorizes the word-context matrix based on the observation that the
ratio of conditional probabilities better captures the semantic relations

between words.

Probability and Ratio

k = solid k = gas k = water k = fashion

P(klice)
P(k|steam)
P(klice)/P(k|steam)

\4

19%107* B66%10° 30x10°% 17x107°
22x107° 78x107% 22x10% 18x107°
8.9 8.5 % 102 1.36 0.96

d = Z f (Xij) (W?Wj +bi +Ej - logXij)2

i,j=1


https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/pubs/glove.pdf

GloVe

v
. ~ 2
J = Z f (Xij) (WITWJ' + bi + bj — 10gXiJ')
i.j=1
embedding vectors co-occurrence matrix
Weighting function to filter out (Compressed) (Sparse)
rare co-occurrences and to
avoid frequent ones to dominate This part implements, as a least
—_— square problem, the equation that
s b defines the model:
XY 1 - Pi;
04 F - . . ~ J
al : F(w;, w;, wy) ~ n
0.0 L : 1 L L <\".

aZ max


https://nlp.stanford.edu/pubs/glove.pdf

WordZVec

define tasks of predicting a context
from a word (Skip-gram) or a word from its context (CBoW).

They are both implemented as a two-layers linear neural network in which

input and output words one-hot representations which are encoded/decoded
into/from a dense representation of smaller dimensionality.

Wt Wt—2 Wt- 1 Wt+ 1 Wt+2
Wt-2 Wt-1 Wt+1 Wt+2 W



https://arxiv.org/abs/1301.3781

WordZVec

Embeddings are a byproduct of the word
prediction task.

Even though it is a prediction tasks, the network
can be trained on any text, no need for
human-labeled data!

The context window size ranges between two
and five words before and after the central word.

Longer windows capture more semantic, less syntax.

A typical size for h is 200~300.
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SKip-gram
w vectors are high dimensional, |F|

h is low dimensional (it is the size of the
embedding space)

W, matrixis |F|-|h|. It encodes a word into
a hidden representation.

Each row of W, defines the embedding of
the a word.

W, matrixis |h|-|F|. It defines the
embeddings of words when they appears in
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SKip-gram

h=wW, « histhe embedding of word w,

u=hw, « u,isthe similarity of h with
context embedding of w,in W,

Softmax converts u to a probability
distribution y:

—H =

=

[

>

u

softmax

y;= exp(u, )/Z].EF exp( U )
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t-1
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SKip-gram

Loss: -logpw,_,, w,_,,w, ., Ww,,|w,)=
=-log1l__.exp(u,)/ 2ier exp( U )=
=-Yeecexpu) + Clogy, -exp(u;)

i.e., maximize probability of context

- Yeecexpu,)

and minimize probability of the rest

+C log Yier exp( U )
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u
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Negative sampling

The log 3 -exp(u;) factor has a lots of terms

W
and it is costly to compute. r
W
Solution: compute it only on a small sample of !
negative examples, i.e., :]
log ZjEE exp( U ) |
where words in E are just a few (e.g., 5) and Wo
they are sampled using a biased unigram
. . u
distribution computed on training data:
f(W-)3/4 softmax
SV W, W, , " W,,,




(BoW

CBoW stands for Continuous Bag of
Word.

It's @ mirror formulation of the
skip-gram model, as context words
are used to predict a target word.

h is the average of the embedding for
the input context words.

u. is the similarity of h with the word
embedding w,in W,

t-2

t+1

t+2

N

softmax

l

Wi




Which model to choose?

proved that Word2Vec version that uses skip-gram with

negative sampling (SGNS) implicitly computes a factorization of a variant of X.

ran an extensive comparison of SVD, CBoW, SGNS,

GloVe.

Results indicate no clear overall winner.

Parameters play a relevant role in the outcome of each method.

Both SVD and W2V performed well on most tasks, never underperforming
significantly.

W2V is suggested to be a good baseline, given its lower computational
cost in time and memory.


http://papers.nips.cc/paper/5477-neural-word-embedding-as-implicit-matrix-factorization
https://transacl.org/ojs/index.php/tacl/article/view/570/124

Computing embeddings

The training cost of Word2Vec is linear in the size of the input.

The training algorithm works well in parallel, given the sparsity of words in
contexts and the use of negative sampling. The probability of concurrent
update of the same values by two processes is minimal — let's ignore it when
it happens (a.k.a., ).

Can be halted/restarted at any time.

The model can be updated with any data (concept drift/ domain adaptation).


https://groups.google.com/forum/#!msg/word2vec-toolkit/NLvYXU99cAM/rryQhcaxKSQJ

Computing embeddings

provides an efficient and detailed implementation.

sentences = [['this','is','a', 'sentence'],
['this','is', 'another', 'sentence']]

from gensim.models import Word2Vec
model = Word2Vec(sentences)

is a clean implementation of skip-grams using pytorch.


https://radimrehurek.com/gensim/
https://github.com/fanglanting/skip-gram-pytorch

Which embeddings?

Both W, and W define embeddings, which one to use?

e Usually just W, is used.
e Average pairs of vectors from W, and W into a single one.
e Append one embedding vector after the other, doubling the length.



Testing emheddings

Testing if embeddings capture
syntactic/semantic properties.

WOMAN

MAN /
UNCLE
QUEEN

AUNT

KINGS

KING KING

stands to
as painter standsto
as mouse standsto

France as Rome
book
cats

e('France’) - e('Paris’) + e('Rome’) ~ e('Italy’)

Paris stands to

Writer stands to

Cat stands to
a

d = arg max

b = C

(e(h)=e(a)+e(c))’ e(x)
< le(b)=e(ay+e(c)]

N\

QUEENS

N\

QUEEN


https://aclweb.org/aclwiki/Google_analogy_test_set_(State_of_the_art)

The impact of training data

The source on which a model is trained determines what semantic is captured.

WIKI BOOKS WIKI BOOKS
sega chianti
dreamcast motosega radda merlot
genesis seghe gaiole lambrusco
megadrive seghetto montespertoli grignolino
snes trapano carmignano sangiovese
nintendo smerigliatrice greve vermentino

sonic segare castellina sauvignon



FastText word representation

extends the W2V embedding model to
The word "goodbye" is also represented with a set of ngrams:
"<go" (star of word), "goo","ood", "odb", "dby", "bye", "ye>" (end of word)
The length of the ngram is a parameter.

Typically all ngrams of length from 3 to 6 are included.


https://fasttext.cc/
https://arxiv.org/pdf/1607.04606.pdf

FastText word representation

The embedding of a word is determined as the sum
of the embedding of the word and of the embedding

of its ngrams.

Subword information allows to give an
embedding to OOV words.

Subword information improves
the quality of misspelled words.

Query word? accomodation
sunnhordland ©.775057
accomodations ©.769206
administrational ©.753011
laponian ©.752274
ammenities ©.750805
dachas ©.75026

vuosaari 0.74172
hostelling ©.739995
greenbelts ©.733975
asserbo 0.732465

Query word? gearshift
gearing 0.790762
flywheels ©.779804
flywheel ©.777859
gears ©.776133
driveshafts ©.756345
driveshaft 0.755679
daisywheel ©.749998
wheelsets ©.748578
epicycles 0.744268
gearboxes ©.73986

Query word? accomodation
accomodations ©.96342
accommodation 0.942124
accommodations ©.915427
accommodative 0.847751
accommodating ©.794353
accomodated ©0.740381
amenities 0.729746
catering ©.725975
accomodate 0.703177
hospitality ©.701426


https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
https://fasttext.cc/docs/en/unsupervised-tutorial.html
https://fasttext.cc/docs/en/unsupervised-tutorial.html
https://fasttext.cc/docs/en/unsupervised-tutorial.html

Misspelling Oblivious Embeddings

(MOE) are an extension of
FastText embedding which explicitly model misspellings as a
component of the language model.

bir + ird

bwr + wrd
n

(1—a) > > logP (we|lw;;0)+ ﬁ\—([’[ > log P (we|wm; 0) BRIl

=1 w.eC; (Wm,we)EM bwrd => {bwr, wrd}
X J

\
Y Y

Semantic Loss Spell Correction Loss

A probabilistic model of misspelling is generated by observing query

corrections from a query log (i.e., pairs of queries close in time with
small edit distance).

The misspelling model is used to inject misspellings into text.


https://arxiv.org/abs/1905.09755

Multilingual Embeddings

(Multilingual Unsupervised and Supervised Embeddings) aligns

language models for different languages using two distinct approaches:

supervised: using a bilingual dictionary (or same string words) to transform
one space into the other, so that a word in one language is projected to
the position of its translation in the other language.

unsupervised: using adversarial learning to find a space transformation that
matched the distribution of vectors in the two space (without looking at

the actual words).
(A) (B)

Cat

(C)

| car



https://github.com/facebookresearch/MUSE
https://arxiv.org/pdf/1710.04087.pdf

Exploring emheddings

Embedding Projector

) | Points: 10000 | Dimension: 200

DATA

toud

Word2Vec 10K ©

word

No color map

Sphereize data @

Load data Publish °



http://esuli.it/demo/embeddings/
http://esuli.it/demo/embeddings/
http://projector.tensorflow.org/
http://projector.tensorflow.org/

Word embeddings to documents

How to represent a document using word embeddings?

average

max

max+min (double length)

Doc2Vec

As a layer in a more complex neural network



docid

t+2

Doc2Vec

Proposed by , Doc2Vec
extends Word2Vec by adding input
dimensions for identifiers of documents.

W, matrixis (|D|+|F|)-|h|.

Documents ids are projected in the same
space of words.

The trained model can be used to infer
document embeddings for previously unseen
documents - by passing the words
composing them.

%

Wt-2

Wi

w

t+2



https://arxiv.org/pdf/1405.4053v2.pdf

Exploring emheddings

Documents embedding can be used as vectorial representations of
documents in any task.

When the document id is associated to more than one actual document (e.g.,
id of a product with multiple reviews), Doc2Vec is a great tool to model
similarity between objects with multiple descriptions.



http://esuli.it/demo/embeddings/
http://esuli.it/demo/embeddings/

Embeddings in neural networks

An embedding layer in neural networks is typically the first layer of the
network.

It consists of a matrix W of size |F|- n, where n is the size of the embedding
space.

It maps words to dense representations.
It can be initialized with random weights or pretrained embeddings.

During learning weights can be kept fixed (it makes sense only when using
pretrained weights) or updated, to adapt embeddings to the task.



Embeddings in neural networks

Text:
"all work and no play..."

Sequence of word ids:
[2,4,1,8,10,5,0,0,0,0,0,0]

Example:

Another example:

Pretrained values

Embeddings

Sequence of embedding
vectors:
[[0.2,-0.3,0.9,-0.2...0.8],
[-0.1,0.7,0.7,-0.1...-0.1],
[0.2,-0.3,0.9,-0.2...0.8],
[0.1,0.2,0.3,0.1...0.5],

[0,1,0.4,0,0,0.5,0...0]]

Convolutional

Recurrent



https://github.com/fchollet/keras/blob/master/examples/imdb_cnn.py
https://machinelearningmastery.com/use-word-embedding-layers-deep-learning-keras/
https://machinelearningmastery.com/use-word-embedding-layers-deep-learning-keras/

Embeddings in NN: 00V words and padding

LMs that use a vocabulary do not model out-of-vocabulary words.

Add a special unknown word (and embedding) for such words, to be learned
during training.

NNs usually process examples in batches, i.e., set of k examples.
Input sentences in a batch are usually required to be of the same length.

For this reason a special padding word (and embedding) is added before/after
(be consistent!) words of shorter sentence to match the length of the longest

one.



Recurrent Neural Networks

A Recurrent Neural Network (RNN) is a neural
network in which connections between units form a
directed cycle.

Cycles allow the network to have a memory of
previous inputs, combining it with current input.

RNNSs are fit to process sequences, such as text.

Text can be seen as a sequence of values at many
different levels: characters, words, phrases...

U v
X O o
w
U v
Xt—l St—l Ot—l
w
U v
Xt St Ot
w
U v
Xt+1 St+1 0t+1
w


http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Char-level LM & text generation

RNNs are key tools in the implementation of
many NLP applications, e.g., machine
translation, summarization, or image captioning.

A RNN can be used to learn a language model
that predicts the next character from the
sequence of previous ones.

The typical RNN node that is used is an Long
Short Term Memory (LSTM), which is

<



http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

ELMo

(Embeddings from Language Models) exploits the hidden states of a
deep, bi-directional, character-level LSTM to give contextual representations to
words in a sentence.

e Contextual: representation for each word depends on the entire context
in which it is used.

e Deep: word representations combine all layers of a deep pre-trained
neural network.

e Character based: ELMo representations are character based, allowing the
network to use morphological clues


https://arxiv.org/pdf/1802.05365.pdf

ELMo

(Embeddings from Language Models) exploits the hidden states of a
deep, bi-directional, character-level LSTM to give contextual representations to
words in a sentence.

T Ty The embedding for a word is a
e n oy = task-specific weighted sum of the
st e P concatenation of the f,b vectors
ﬂpf Ef ) &;i’ ]f ) for each level of the LSTM, e.g.:
a—A»D’jLEfLP ai_]li,f_]fﬂ_p |
I I A S A v(token) =w [f, b, ,,, W' [f
ol R DT oken
p f I I p b’ b I
”lF Ty


https://arxiv.org/pdf/1802.05365.pdf

Context Vectors (CoVe]

(Context Vector), trains a sequence-to-sequence network on a Machine
Translation problem (a).

The encoder of the seqg-2-seq network is a two-layer bidirectional LSTM, which
takes in input glove embeddings.

a) Task-specific Model
Translation

Encoder —» Decoder Qder Enc‘D

Word Word Word
Vectors Vectors Vectors

The encoder is then used to enrich the glove embeddings (b).


https://arxiv.org/pdf/1708.00107.pdf

Attention-hased models

is a simple mechanism that relates the elements of two sequences
so as to identify correlations among them.

Attention proved to be effective in
sequence-to-sequence

. The
agreement
on
the
European
Economic
Area
was
signed
in
August
1992
<end>

L'
accord
sur

la

Attention captures the contribution of

économique

each input token to determine the SR
output tokens.



https://arxiv.org/abs/1409.0473
https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/

Transformer

The Transformer is a network architecture for sequence-to-sequence
problems, e.g., machine translation.

It replaces the traditionally used LSTM elements with a set of encoder/decoder
elements based on the attention mechanism.

The transformer was proposed in the paper

The elements of the transformer are at the base of many recently proposed
language models.

Picture in the following slides are taken from by
Jay Alammar.


https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://jalammar.github.io/illustrated-transformer/

Transformer

The Transformer is a network architecture for
sequence-to-sequence problems, e.g., machine

translation.
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Transformer

It replaces the traditionally used LSTM elements with a set of encoder/decoder
elements based on the attention mechanism.
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Transformer

The encoder and decoder elements exploit attention (self-attention) to
combine and transform the input from lower layers (and the last encoder in
the case of the decoder).

4 ? i)
Feed Forward
_ENCOL 1 % Y
\ o
\ E =)
‘ ( Feed Forward J Encoder-Decoder Attention
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G 4 T
Self-Attention Self-Attention

-
.

T f



Transformer - encoder

The encoder elements exploit self-attention to combine and transform the
input from lower layers.

t t t
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t t t
[T ] [T T T1
t t t

t 1 1

x: [ [ [ [ ] xs (IR



Self-attention

Self-attention correlates all the inputs between themselves.

ENCODER #2 k\ JJ

ENCODER#1 /7,

Feed Forward Feed Forward

Neural Network Neural Network

\[ ])

t t

Thinking Machines




Self-attention

Self-attention first transforms the embedding vector of each token into three
vectors: a query vector, a key vector and a value vector.

The query represents the token it

as the input. Embedding [T [T
The key is used to match the other

tokens against the query token. e i o
The value is the contribution of every

token to the self attention output. — T T

The three transformations are
defined by three dedicated Valtes T (TT]
matrices WR, WK WV,



Self-attention

The query vector for a token
is multiplied (dot product) with
every key vector.

The factor eight stabilizes
the computation.

The resulting numbers are
normalized with a softmax and
they become the weights for a
weighted sum of the value vectors.

This concludes single headed
self-attention.

Input

Embedding
Queries
Keys
Values
Score
Divide by 8 (
Softmax
Softmax

X

Sum

Vi )

q1




Self-attention

Self attention can be expressed and efficiently implemented with matrices

wa Q

softmax(
= vy




Self-attention

Different sets of matrices WR, WK, WY, can be used to capture many different
relations among tokens, in a multi-headed attention model.

ATTENTION HEAD #0 ATTENTION HEAD #1




Self-attention

Outputs from each head of the attention model are combined back into a
single matrix with a vector for each token.

1) Concatenate all the attention heads 2) Multiply with a weight
matrix that was trained
jointly with the model

X

3) The result would be the © matrix that captures information
from all the attention heads. We can send this forward to the FFNN

. EHFE



Self-attention - complete view

1) This is our 2) We embed 3) Split into 8 heads. 4) Calculate attention  5) Concatenate the resulting ~ matrices,
input sentence* each word* We multiply X or using the resulting then multiply with weight matrix W* to
R with weight matrices  Q/K/V matrices produce the output of the layer
X b7
K
Thinking Wo " Qo
Machines Wo Ko
Vo Wo
W, @
* |In all encoders other than #0, 'W1 K Q1
we don’t need embedding. W,V K1
We start directly with the output V1
of the encoder right below this one { Q &
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softmax( EEE‘ . @ ) EEEI = EBE‘
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Residual connections

A simply consists in
skip connections that sum the input of a
layer (or more layers) to its output.

Residual connections let the network
learn faster, and be more robust to the
problem of , allowing
much deeper network to be used.

Residual connections are put around any
attention or feed forward layer.

supports the
numerical stability of the process.
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https://arxiv.org/abs/1512.03385
https://en.wikipedia.org/wiki/Vanishing_gradient_problem
https://mlexplained.com/2018/11/30/an-overview-of-normalization-methods-in-deep-learning/

Word order

In order to take into account of the actual
position of tokens in the sequence, the
input embeddings are added with a
positional encoding vector.

POSITIONAL
ENCODING

INPUT

The positional encoding function is a
inear transformation of the token
representation
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https://timodenk.com/blog/linear-relationships-in-the-transformers-positional-encoding/

Transformer - decoder

The decoder elements exploit
attention and self-attention to
combine and transform the
input from lower layers and the
last encoder.

The decoder is applied
repeatedly to form the output
one token at a time:

Decoding time s
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Transformer - decoder

The decoder elements exploit
attention and self-attention to
combine and transform the
input from lower layers and the
last encoder.

The decoder is applied
repeatedly to form the output
one token at a time:

De
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Transformer - decoder

The last linear+softmax Which word in our vocabulary i
is associated with this index?
layer converts the output of
the decoder Stack into Get the index of the cell
e with the highest value >
probabilities over the (argmax)
Vocabulary. log_probs I0I1I2I3I4I5| RN RN -
o . * .. vocab_size
Once trainined, this last ( e )
element can be replaced 7
with other structures logits LU LLL ULl rrllr] [
12345 * .. vocab_size
depending on the tasks, e.g., ( T )
classification, see GPT. 4

Decoder stack output 5 i



Transformer - complete view
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Transformer-hased language models

Many language models stemmed from the Transformer
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https://jalammar.github.io/illustrated-gpt2/

GPT

GPT (Generative Pre-Training), learns a language model using a variant of the
Transformer's decoders that uses masked self-attention.
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https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://blog.openai.com/language-unsupervised/

GPT

( ), learns a language model using a variant of the
Transformer's decoders that uses masked self-attention.

Masked self-attention allows the prediction to be based only on the left
context of the predicted token.

Self-Attention Masked Self-Attention

o



https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://blog.openai.com/language-unsupervised/

GPT

GPT is trained on language generation in an unsupervised fashion, then it can
be attached to additional layers to perform a supervised task.

Text Task
Prediction | Classifier

_‘\f/

Layer Norm

d—

Feed Forward | Start | Text 1 l Delim | Text 2 | Extract I—-| Transformer
Y Similarity = Linear
= l Start | Text 2 l Delim | Text 1 | Extract ‘ ——| Transformer

Layer Norm

Classification | Start | Text ] Extract H—-{ Transformer |—-| Linear |

Entailment I Start | Premise I Delim | Hypothesis | Extract ‘_—-I Transformer H Linear ]

: | Start | Context ] Delim | Answer 1 |Extract l———l Transformer |—-| Linear

Masked Multi
Self Attention
y

Multiple Choice| Start | Context ] Delim | Answer 2 |Extract I———| Transformer |——[ Linear

Text & Position Embed | Start | Context l Delim | Answer N | Extract l_-—| Transformer H Linear




GPT-2

GPT-2
- i i i EXTRA
GPT-2 (paper) is a minor variant of the GPT, e
its main characteristic being the scale, GPT-2 [(-co—
. LARGE coe
with models up to 48 layers and GPT-2 (e
- MEDIUM Na———
1.5 billion parameters. ) | | |- cmm—
ot s ( oEcooeR )| |- ¢ bEcoDER )
It exhibited excellent capabilities of — J =l

controlled text generation, opening
a disucission about possible

unethical or illegal uses.
o ® 6.

117M Parameters 345M Parameters 762M Parameters 1,542M Parameters



https://openai.com/blog/better-language-models/
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://www.nytimes.com/interactive/2019/06/07/technology/ai-text-disinformation.html
https://talktotransformer.com/

BERT

(Bidirectional Encoder Representations from Transformers), uses the

Transformer encoders as building blocks.

ENCODER

The model is bidirectional in the i
sense that the attention model

can peek at both left and right 2|
contexts.

ENCODER

ENCODER

BERT

512


https://arxiv.org/abs/1810.04805

BERT

The model is pre-trained on masked word prediction and next sentence
classification tasks. Fine-tuning on final task is relatively quick.

ﬁp Mask LM Maz LM \ /m /@@AD StartEnd Span\
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Unlabeled Sentence A and B Pair Question Answer Pair

Pre-training Fine-Tuning




BERT

BERT produces contextualized embeddings at each level, if we use them
without fine tuning, which should be used?

Generate Contexualized Embeddings The output of each encoder layer along

each token’s path can be used as a

feature representing that token.

[
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But which one should we use?




BERT

BERT produces contextualized embeddings at each level, if we use them
without fine tuning, which should be used?

What is the best contextualized embedding for “Help” in that context?
For named-entity recognition task CoNLL-2003 NER
Dev F1 Score
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Differences between BERT, GPT and ELMo

(from BERT paper)
BERT (Ours)

OpenAl GPT

Figure 3: Differences in pre-training model architectures. BERT uses a bidirectional Transformer. OpenAl GPT
uses a left-to-right Transformer. ELMo uses the concatenation of independently trained left-to-right and right-to-
left LSTMs to generate features for downstream tasks. Among the three, only BERT representations are jointly
conditioned on both left and right context in all layers. In addition to the architecture differences, BERT and
OpenAl GPT are fine-tuning approaches, while ELMo is a feature-based approach.


https://arxiv.org/pdf/1810.04805.pdf

Megatron-LM

Large language models require efficient distributed GPU computation.

NVidia published , the code to efficiently train BERT , 4 and a
huge GPT2 language model:

e the BERT Large can be trained on 64 Tesla V100 GPUs in 3 days (originally
4 days on 16 TPU = 64 TPU chips, note that

)
e the GPT2 Language model has 72 layers and 8.3 billion parameter. It is

trained using a 8-way model and 64-way data parallelism across 512
GPUs.


https://github.com/NVIDIA/Megatron-LM
https://timdettmers.com/2018/10/17/tpus-vs-gpus-for-transformers-bert/
https://timdettmers.com/2018/10/17/tpus-vs-gpus-for-transformers-bert/

Transformer-XL

The model extended the Transformer model (decoder-based)
in order to overcome its limitation on context length.

The key idea is use recurrent contexts during training, with fixed gradients for
the tokens in the past beyond the context length.

This model work improve efficacy when working with long documents.

® © © ® i

® © 0 © e e o o

) 4

Extended Context

(a) Training phase. (b) Evaluation phase.



https://arxiv.org/pdf/1901.02860.pdf

Other models

. permutation language model to overcome BERT issues:

e No [mask] during fine-tuning.
e Predictions are made independently one from the other.

"| saw a [mask] on a [mask]"
"l saw a cat on a couch"
"| saw a car on a road"
*"| saw a car on a couch"

: from Baidu. Continuous multitask training with task embeddings.


https://arxiv.org/abs/1906.08237
https://arxiv.org/abs/1905.07129

Software

provides general-purpose architectures (BERT, GPT-2, RoBERTa,
XLM, DistilBert, XLNet...) for Natural Language Understanding (NLU) and
Natural Language Generation (NLG) with over 32+ pretrained models in 100+
languages and deep interoperability between TensorFlow 2.0 and PyTorch.

implements BERT and other elements of the Transformer
to support the definition of Transformer-based language models.

is an example of how to use pretrained GPT-2 model weights to
make predictions and generate text.


https://huggingface.co/transformers/
https://github.com/kpot/keras-transformer
https://github.com/CyberZHG/keras-gpt-2
https://github.com/google-research/bert
https://github.com/zihangdai/xlnet

summary

Language models are a powerful tool to collect unsupervised information
from a language or domain and to model it in machine-readable latent
representations.

Such representations allow us to:

e explore alanguage, a domain, and discover its relevant entities and their
syntactic and semantic relations.

e infuse general knowledge about a language or a domain into a supervised
learning task, enabling the learned model to express a better
generalization ability.



