
Sentiment
Classification

Andrea Esuli

Sentiment Classification
Given a document d, a sentiment classification problem can be expressed in
Bing Liu’s model, as the problem of extracting from text an opinion quintuple
of the form:

<_, GENERAL, s, _, _>

where _ marks an information that is assumed as known or not relevant,
s is a sentiment label, e.g., positive or negative.

The whole document is considered as a basic unit of information.

The (strong, yet very common) assumption is that d expresses opinions only
on the entity of interest and from a single opinion holder.

https://www.cs.uic.edu/~liub/FBS/SentimentAnalysis-and-OpinionMining.pdf

Supervised/unsupervised
Supervised learning methods are the most commonly used one, yet also
some unsupervised methods have been successfully.

Unsupervised methods rely on the shared and recurrent characteristics of the
sentiment dimension across topics to perform classification by means of
hand-made heuristics and simple language models.

Supervised methods rely on a training set of labeled examples that describe
the correct classification label to be assigned to a number of documents.
A learning algorithm then exploits the examples to model a general
classification function.

Unsupervised methods

Unsupervised Sentiment Classification
Unsupervised methods do not require labeled examples.

Knowledge about the task is usually added by using lexical resources and
hard-coded heuristics, e.g.:

● Lexicons + patterns: VADER

● Patterns + Simple language model: SO-PMI

Neural language models have been found that they learn to recognize
sentiment with no explicit knowledge about the task.

VADER
VADER (Valence Aware Dictionary for sEntiment Reasoning)
uses a curated lexicon derived from well known sentiment
lexicons that assigns a positivity/negativity score to 7k+
words/emoticons.

It also uses a number of hand-written pattern matching
rules (e.g., negation, intensifiers) to modify the contribution
of the original word scores to the overall sentiment of text.

Hutto and Gilbert. VADER: A Parsimonious Rule-based
Model for Sentiment Analysis of Social Media Text. ICWSM
2014.
VADER is integrated into NLTK

https://www.aaai.org/ocs/index.php/ICWSM/ICWSM14/paper/viewPaper/8109
https://www.aaai.org/ocs/index.php/ICWSM/ICWSM14/paper/viewPaper/8109
https://www.aaai.org/ocs/index.php/ICWSM/ICWSM14/paper/viewPaper/8109
http://www.nltk.org/_modules/nltk/sentiment/vader.html

VADER
from nltk.sentiment.vader import SentimentIntensityAnalyzer
vader = SentimentIntensityAnalyzer()

vader.polarity_scores('the best experience I had')
Out: {'neg': 0.0, 'neu': 0.417, 'pos': 0.583, 'compound': 0.6369}

vader.polarity_scores('not the best experience I had')
Out: {'neg': 0.457, 'neu': 0.543, 'pos': 0.0, 'compound': -0.5216}

VADER can be used to bootstrap a training set for
supervised learning.

In this case we can talk of a weakly-supervised or
semi-supervised approach, since training data are not all
validated by a human, and can contain errors.

Thumbs Up or Thumbs Down?
Pointwise Mutual Information has been applied to determine the overall
sentiment of text.

● Short phrases extracted from text using POS patterns, e.g.:
JJ+NN, RB+JJ, JJ+JJ, NN+JJ, RB+VB

● SO-PMI score of each phrase is computed using a search engine and
proximity queries, e.g.: "very solid" NEAR good

● SO-PMI scores for phrases are averaged to produce the document score.

Turney. Thumbs Up or Thumbs Down? Semantic Orientation Applied to
Unsupervised Classification of Reviews. ACL 2002

http://www.aclweb.org/anthology/P02-1053.pdf
http://www.aclweb.org/anthology/P02-1053.pdf

Recurrent Neural Networks
o

A Recurrent Neural Network (RNN) is a neural
network in which connections between units form a
directed cycle.

Cycles allow the network to have a memory of
previous inputs, combining it with current input.

RNNs are fit to process sequences, such as text.

Text can be seen as a sequence of values at many
different levels: characters, words, phrases…

Suggested read

x
U

s
V

W

ot-1xt-1

U
st-1

V

W

otxt

U
st

V

W

ot+1xt+1

U
st+1

V

W

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Char-level LM & text generation
RNNs are key tools in the implementation of
many NLP applications, e.g., machine
translation, summarization, or image captioning.

A RNN can be used to learn a language model
that predicts the next character from the
sequence of previous ones.

Let's build one! The RNN node we use is an Long
Short Term Memory (LSTM), which is robust to
typical issues of RNNs.

na
U

s
V

W

' 'n
U

s
V

W

a' '
U

s
V

W

pa
U

s
V

W

pp
U

s
V

W

lp
U

s
V

W

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Sentiment Classification from a single neuron
A char-level LSTM with 4096 units has been trained
 on 82 millions of reviews from Amazon.

After training one of the units had a very high
correlation with sentiment, resulting in
state-of-the-art accuracy when used as a classifier.

By fixing the sentiment unit to a given value, the
generation process has been forced to produce
reviews with a given sentiment polarity.

Blog post - Radford et al. Learning to Generate Reviews and Discovering
Sentiment. Arxiv 1704.01444

https://blog.openai.com/unsupervised-sentiment-neuron/
https://arxiv.org/abs/1704.01444
https://arxiv.org/abs/1704.01444
https://blog.openai.com/unsupervised-sentiment-neuron/

Supervised methods

Supervised methods
Supervised methods use a traditional ML pipeline, typically exploiting the use
of lexical resources to improve the number and quality of sentiment-related
features extracted from text.

Supervised methods
Supervised classification methods follow a learning by examples metaphor,
exploiting a training set of examples to learn a classification function.

● The correct classification of each document in the training is know.

● The training set is a representative sample of the domain on which
classification takes place.

A learning algorithm observes the document-label pairs in the training set to
determine a classification model 𝛷*(d) that better approximates the true
(unknown) classification function 𝛷(d) on the whole domain.

Supervised methods
A training set for a classifier of cat images.

 𝛷(i) = cat 𝛷(i) = not cat

Supervised methods
Text is usually converted into a vectorial form through a processing pipeline
that combines NLP (tokenization, POS tagging, lemmatization, parsing, lexical
resources) and IR (feature selection, weighting).

● NNs can be built to directly work on sequences of word/characters.

The learned classification model depends on the specific learning algorithm:

● a probability distribution (Naïve Bayes),
● a hyperplane (SVM),
● a tree/a forest (decision trees),
● centroids (KNN),
● weights in matrices (neural networks), and so on...

The classification pipeline
The elements of a classification pipeline are:

1. Tokenization
2. Feature extraction
3. Feature selection
4. Weighting
5. Learning

Steps from 1 to 4 define the feature space and how text is converted into
vectors.

Step 5 creates the classification model.

The classification pipeline
The scikit-learn library defines a rich number of data processing and machine
learning algorithms.

Most modules in scikit implement a 'fit-transform' interface:

● fit method learns the parameter of the module from input data
● transform method apply the method implemented by the module to the

data
● fit_transform does both actions in sequence, and is useful to connect

modules in a pipeline.

http://scikit-learn.org/

Sentiment features
Sentiment lexicon can be exploited to add sentiment information in text
representation.

In this way a general knowledge about language connects words that are
observed in the training set with words that occur only in the test set (which
would have been considered out-of-vocabulary words).

good → SWN_Pos

gentle → SWN_Pos

bad → SWN_Neg

hostile → SWN_Neg

Convolutional Neural Network
A convolutional layer in a NN is composed by a set of filters.
● A filter combines a "local" selection of input values into an output value.

● All filters are "sweeped" across all input.
○ A filter using a window length of 5 is applied to all the sequences of 5 words in a text.

○ 3 filters using a window of 5 applied to a text of 10 words produce 18 output values. Why?

○ Filters have additional parameters that define their behavior at the start/end of
documents (padding), the size of the sweep step (stride), the eventual presence of holes
in the filter window (dilation).

● During training each filter specializes into recognizing some kind of
relevant combination of features.

● CNNs work well on stationary feats, i.e., those independent from position.

https://keras.io/layers/convolutional/#conv1d

CNNs have been successfully applied on images.

● First level of a stack of CNNs capture local pixel features (angles, lines)

● Successive layers
combine features from
lower levels into more
complex, less local,
more abstract features.

[image source]

Convolutional Neural Network

http://vision03.csail.mit.edu/cnn_art/index.html
http://vision03.csail.mit.edu/cnn_art/index.html

A dropout layer hides output of random units from a layer to the next.

● It is a regularization technique that contrasts overfitting (i.e., being too
accurate on training data and not learning to generalize).

A pooling layer aggregates (max, average) output of groups of units into a
single value for the next layer.

● It reduces the number of parameters of the model (downsampling)

● It contrasts overfitting.

● It add robustness to local variations (translation)

● It can be used to reduce variable length inputs to the same length.

Dropout, Pooling

Recurrent Neural Network
A RNN learns to process a sequence and it incrementally builds an abstract
representation of it.

By setting the last output of the network to fit on a classification label, the
RNN learns a classifier.

Output can have many different forms, e.g.:

● another sequence (seq2seq): translation, summarization, text2speech,
speech2text

● an image
● ...or you can have an image as input and an RNN generates a caption.

RNNs model a more natural way to process text over CNNs.

https://google.github.io/seq2seq/
https://arxiv.org/abs/1606.07287
https://cs.stanford.edu/people/karpathy/sfmltalk.pdf

Distant supervision
Producing training data for supervised learning may have a relevant cost.

Distant supervision exploits "cheap" methods that "weakly" label examples to
bootstrap a training set, e.g.:

● labeling tweets with 😄 as positive and those with 😒 as negative.

● using VADER to perform a first labeling (skipping low confidence labels).

The rationale behind distant supervision is that:

● noisy information in training data will cancel out in the learning phase.

● discriminant features that have a decent correlation with the weak labeling
emerge among the other.

http://www-cs.stanford.edu/people/alecmgo/papers/TwitterDistantSupervision09.pdf

Distant supervision likes sentiment
Distant supervision fits better with sentiment analysis
than with topic-related analysis because in the former it
is easier to define negative examples.

A negative sentiment is a concept on its own, opposite to
a positive one.

The "negation" of a topic is just the absence of the topic.
It is harder to define a heuristic to label negative docs.

● How to automatically mark a negative example for a
"soccer" classifier?

● Just use random sampling when nothing else works.

http://deepdive.stanford.edu/generating_negative_examples

