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Lecture Plan

@ A probabilistic model for sequences:

(HMMs)
@ Exact inference on a with
variables
° message passing example
° message passing example
@ Using inference to : the Expectation-Maximization
algorithm for HMMs
@ Graphical models with : Dynamic

Bayesian Networks



Hidden Markov Models Generative models for sequences

Sequences

O GOSN CE O

@ A sequencey is a collection of observations y; where t

represent the according to a
(complete) order (e.g. )
@ Reference population is a set of i.i.d sequences y',...,yV
@ Different sequences y',...,y" generally have

T,..., TN



Wi ME DR Generative models for sequences

Markov Chain

First-Order Markov Chain

Directed graphical model for sequences s.t. element X; only
depends on its predecessor in the sequence

P(X;[X:1)

@D DO~

@ Joint probability as
;
P(X) = P(Xi,..., X1) = P(X1) [ P(Xel X -4)
t=2
@ P(Xi|X;_1) is the ; P(Xj) is the

@ General form: an is such that X;
depends on L predecessors



Wi ME DR Generative models for sequences

Observed Markov Chains

Can we use a Markov chain to model the relationship between
observed elements in a sequence?

Of course yes, but...

O -0

Does it make sense to represent P(is|cat)?
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Hidden Markov Model (HMM) (1)

Stochastic process where transition dynamics is disentangled
from observations generated by the process

| |

@ Siate fransition is an unobserved (hidden/latent) process
characterized by the hidden state variables S
e S; are often discrete with value in {1,..., C}
e Multinomial state transition and prior probability
(stationariety assumption)

A,‘/’ = P(St = i|St—1 :f) and T = P(St = I)



Wi ME DR Generative models for sequences

Hidden Markov Model (HMM) (1)

Stochastic process where transition dynamics is disentangled
from observations generated by the process

| |

@ Observations are generated by the emission distribution

bi(yt) = P(Yr = y1|St = i)
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HMM Joint Probability Factorization

Discrete-state HMMs are by 6 = (m, A, B) and
the C

@ State transition and prior distribution A and =

@ Emission distribution B (or its parameters)

6666 &

P(Y:y):ZP(Y:y,S:s)

Z {P S1 = S1)P(Y1 y1|S1 = S1)

H P(St = st|St—1 = st—1)P(Yt = 1| St = St)}
t—2
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HMMs as a Recursive Model

A graphical framework describing
by both probabilistic and neural models

@ Indicates that the hidden state S; at
time t is dependent on
from
e The previous time step s~
e Two time steps earlier s—2
o ...

@ When applying the recursive model to a

% S-l
sequence ( ), it generates the
52 sl

1

corresponding
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HMMs as Automata

[a 0.2] [a0.9]
[ 0.8] 0.7 [b 0.1]

Can be generalized to transducers



Generative models for sequences
Learning and Inference in HMM
Max-Product Inference in HMM

3 Notable Inference Problems

Hidden Markov Models

Definition (Smoothing)

Given a model # and an observed sequence y, determine the

\

Definition (Learning)

Given a dataset of N observed sequences D = {y',...,yM}
and the number of hidden states C,

that maximize the probability of model 6 = {r, A, B}
having generated the sequences in D

A

Definition (Optimal State Assignment)

Given a model 6 and an observed sequence vy, find an
s = s7, ..., s7 for the hidden Markov chain

\




pccenliiaroviiiccels Learning and Inference in HMM

Forward-Backward Algorithm
- How do we determine the posterior P(S; = ily)?
Exploit factorization
P(St = ily) «cP(St = i,y) = P(St = i, Y1.t, Yt1:7)
= P(St = i, Y1.0) P(Yer1.7|St = 1) = (1) B (/)

a-term computed as part of (a1 (i) = bi(y1)m))

C
ar(i) = P(St =i, Y1) = bi(y1) > _ Ajeri—1())
j=1

B-term computed as part of (Br(i) =1, Vi)

C
Bi() = P(Yir1:71Se =) = Z bi(Yt+1)Be1(1)Aj

i=1



pccenliiaroviiiccels Learning and Inference in HMM

Sum-Product Message Passing

The is an example of a
algorithm

"la(Xn 1) nua(Xn) ‘uB(Xn) ;uﬂ(Xn+1)

O— -0 @

A general approach to efficiently perform exact inference in
graphical models
@ a; = ua(Xn) — forward message

Ma Xn Z ¢ Xn 1aXn)Ma(Xn 1)
\w_/ X 1\—,_/\W_/
at(f) L bilA; ai—1(j)

>

@ (3t = ng(Xn) — backward message
Mﬁ Xn Z Y Xn>Xn+1)Mﬁ(Xn+1)



pccenliiaroviiiccels Learning and Inference in HMM

Learning in HMM
Learning HMM parameters 6 = (r, A, B) by

N
£(0) =log [ P(Y"|0)

n=1
N Th
=log [T > PSHPYTIS) ] P(STIST1)P(Y{IS])
n=1 {sf,....sT, t=2

@ How can we deal with the unobserved random variables S;
and the nasty summation in the log?
@ Expectation-Maximization algorithm
e Maximization of the Lc(6)
e Completed with

o 1 if n-th chain is in state / at time t
( 0 otherwise



pccenliiaroviiiccels Learning and Inference in HMM

Complete HMM Likelihood

Introduce indicator variables in £(6) together with model
parameters 6 = (m, A, B)

Lo(6) = log P(X, Z|0) = log [ | {H[P(S1 = i)P(Y{IS] = DI

n=1 \j=1

T, C
[T TI P(sP=ilSpy =)y &-niP(yp|ST = i) }

=2 j=1

N
= {Zzﬂlogw,JrZZzuz(, 1)jlogA,,+ZZzt, log b; yt)}

n=1 = t=2 ij=1 t=1 i=1



pccenliiaroviiiccels Learning and Inference in HMM

Expectation-Maximization

A 2-step iterative algorithm for the maximization of
L¢(0) w.r.t. model parameters 6

E-Step: Given the current estimate of the model
parameters 6(!), compute

QD(0]00) = Ey g [log P(X, Z(0)]
M-Step: Find the new estimate of the model parameters
0+ = argmax QU+ (9|6
(%

lterate 2 steps until | £c(0)" — Lc(0)"!| < € (or stop if maximum
number of iterations is reached)



pccenliiaroviiiccels Learning and Inference in HMM

Compute the expectation of the complete log-likelihood
assuming (estimated)
0! = (n', Al, BY) fixed at time t (i.e. )

Q(t+1)(9|9(f)) = EZ|X,9(0[|09 P(X, 210)]

Expectation w.r.t a (discrete) random variable z is

EfZ]=) z-P(Z=2)
V4
To compute the conditional expectation Q(+") (9|0 for the

complete HMM log-likelihood we need to estimate

Ezy owlzi] = P(St = ily)
Ez iy owlzizi-1y] = P(St =i, St—1 = j|Y)



pccenliiaroviiiccels Learning and Inference in HMM

We know how to compute the posteriors by the
forward-backward algorithm!

N prs — iy — _CaDBeli)
) =P == e a0

at—1(f)Aibi(ye)Be (i)
S5 11 a1 (M) Ambi(y2) Be(1)

i-1()) = P(St =i, St-1 = jIY) =



pccenliiaroviiiccels Learning and Inference in HMM

Solve the

0(+1) = argmax QU+ (9|0®)
0
using the information computed at the E-Step (the posteriors).

As usual
8Q(t+1)(9|0(t))

00

where 6 = (w, A, B) are now variables.

Parameters can be distributions = need to preserve
sum-to-one constraints ( )
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M-Step (1)

State distributions

A= POy Zt_z Vet—1(0:]) and 7 — Zﬁ:}\ﬁf(i)
PID SHPETIN()
Emission distribution (multinomial)
By = Zn 1 Zt 171 (DYt = k)
(|
Zn—1 Zt 17t £(7)

where 4(-) is the indicator function for emission symbols k




HMM in PR - Regime Detection

V (Volatility)

80

pccenliiaroviiiccels Learning and Inference in HMM

2-State HMM (SPX2.r) vs Realized Vol (SPX2.rv)
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Hidden Markov Models

Max-Product Inference in HMM

Decoding Problem

@ Find the s=5j,...,8T
for an observed sequence y given a trained HMM
@ No unique interpretation of the problem

o Identify the s; that maximize the
posterior

77777

e Find the most likely

s* =arg max P(Y,S =)

@ The last problem is addressed by the



Hidden Markov Models

Max-Product Inference in HMM

Viterbi Algorithm

An efficient algorithm based on a

An example of a algorithm )

Recursive backward term

ct-1(S-1) = max P(Yi[ S = 1) P(St = st[Sp-1 = St-1)er(s1),
Root optimal state
sy = arg max P(Y:|S1 = s)P(Si = s)eq(9).
Recursive forward optimal state

s; = arg max P(Yi|St = s)P(S;t = s|Si—1 = s;_1)et(S).



Applications

Input-Output Hidden Markov Models

Lo

@ Translate an input sequence into an output sequence

( )

@ State transition and emissions depend on input
observations ( )

@ Recursive model highlights analogy with




Applications

Wrap-Up

Bidirectional Input-driven Models

Remove that current observation does
not depend on the future and that an
state transition is not dependent on the position in the
sequence

@ Structure and function of a
region of DNA and protein
sequences may depend on
upstream and downstream
information

@ Hidden state transition
distribution changes with
the amino-acid sequence
being fed in input




Applications

Wrap-Up

Coupled HMM

Describing whose observations follow
different dynamics while the underlying generative processes
are interlaced
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Wrap-Up Dynamic Bayesian Networks

Dynamic Bayesian Networks

HMMSs are a specific case of a class of directed models that
represent and data with

@

Structure changing information
Hierarchical HMM

Dynamic Bayesian Networks (DBN)

Graphical models whose structure changes to represent
evolution across time and/or between different samples




WETAL Conclusion

HMM in Matlab

and functions

An official implementation by Mathworks available as a set of J

Estimate distributions (based on initial guess)
%Initial distribution guess
tg = rand(N,N); <%Random init
tg = tg ./ repmat(sum(tg,2),[1 NJ]); %Normalize
. %Similarly for eg
[test, eest] = hmmtrain(seq, tg, eg);

Estimate posterior states

pstates = hmmdecode(seq,test , eest)

Estimate Viterbi states

vstates = hmmuviterbi(seq, test, eest)

Sample a sequence from the model

[seq, states] = hmmgenerate(len,test,eest)



WETAL Conclusion

HMM in Python

° - The official scikit-like implementation of HMM

e 3 classes depending on emission type: MultinomialHMM,
GaussianHMM, and GMMHMM

from hmmlearn.hmm import GaussianHMM

# Create an HWM and fit it to data X

model = GaussianHMM (n_components=4, covariance_type="diag", n_iter=1000). fit (X)
# Decode the optimal sequence of internal hidden state (Viterbi)

hidden_states = model. predict (X)

# Generate new samples (visible , hidden)

X1, Z1 = model.sample(500)

° - A scalable implementation for both
HMMs



WETAL Conclusion

Take Home Messages

@ Hidden Markov Models
o Hidden states used to realize an

o A where selection of the next component is
regulated by the transition distribution
o Hidden states on

subsequences in the data
@ Inference in HMMS

° - Hidden state posterior estimation
° - HMM parameter learning
° - Most likely hidden state sequence

@ Dynamic Bayesian Networks

e A graphical to reflect
information with variable size and connectivity patterns
e Suitable for modeling (sequences, tree, ...)



WETAL Conclusion

Next Lecture

Markov Random Fields
@ Learning in undirected graphical models
@ Introduction to message passing algorithms
@ Conditional random fields
@ Pattern recognition applications
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