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Boltzmann Machine

Boltzmann Machines

An example of

@ Visible RVv e {0,1}
@ Latent RV h e {0,1}
@ s = [vh]

v

@ A linear energy function
E(s) :——ZM,,s,s, st, ——s ~b's

with connectivity
@ Model parameters 6 = {M,b}
between the variables (observable and not)

Boltzmann machines are a type of )




Boltzmann Machine Neural Interpretation

Boltzmann Machines ad Stochastic Networks

@ A neural network of units whose activation is determined
by a
e The state of a unit at a given timestep is from a
given
e The network learns a probability distribution P(V) from the
training patterns

@ Network includes both
v and h units

@ Network activity is a
sample from

(visible data)




Boltzmann Machine Neural Interpretation

Stochastic Binary Neurons

@ Spiking point neuron with S;
@ Typically model with time into small At
intervals

@ At each time interval(t +1 = t + At), the neuron can

(0 _ 1, with probability p’
0, with probability 1 — p}”

The key is in the definition of the spiking probability (needs to
be a function of Xj)

B = o)




Boltzmann Machine Neural Interpretation

General Sigmoidal Stochastic Binary Network

Network of N neurons with binary activation s;
@ Weight matrix M = [M,-j],-/-e{1 ,,,,, N}
@ Bias vector b = [bjljeqy,...,

Local neuron deflned as usual

X ZM,,S + b
i=1

A chosen neuron fires with spiking probability

1 1
pj(t—H) = = U(Xj(H_ )) = 1)
1+e %

Formulation highlights



Boltzmann Machine
Boltzmann as a Generative Model

Parallel Dynamics

How does the model state (activation of all neurons) evolve in J
time?

Assume RV to be updated in parallel every At (
)

N
P(s(t+1)|s(t H P( (t+1)|s T(s(t+1)|s(f))
j=1

Yielding a for state update

Psit) =¢') =Y " T(s'|s)P(s!) = s)



Boltzmann Machine
Boltzmann as a Generative Model

Glauber Dynamics

@ One neuron at random is chosen for update at each step
( )

@ No fixed-point guarantees for s but it has a
for the network at equilibrium state when its

Given F; as state flip operator for j-th RV s('*) = F;s(!)
1
T(S(t+1)|s(t)) _ NP(Sj(t-H)‘st)
While if s(+1) = (!

1
T(s(t+1)|s(t)) —1_ N Z P(Sj(t+1)|st)
J



Boltzmann Machine
Boltzmann as a Generative Model

The Boltzmann-Gibbs Distribution

Undirected connectivity enforces
P(s)T(s'ls) = P(s')T(s|s')

Ensures reversible transitions guaranteeing existence of

equilibrium ( ) distribution
e E(s)
POO(S) - Z
where
@ E(s)isthe function

0 7= Z e E() s the function
S



Learning

Boltzmann Machine

Training

Ackley, Hinton and Sejnowski (1985)

Boltzmann machines can be trained so that the equilibrium
distribution tends towards
given samples from that distribution

A couple of simplifications to start with
@ Bias b absorbed into weight matrix M
@ Consider s=V
Use probabilistic learning techniques to fit the parameters, i.e.

L

Z log P(v'|M)

given the P visible training patterns v’



Boltzmann Machine

Training

Gradient Approach

@ First, the gradient for a single pattern

OP(viM
with (vivj) = ZP A7

@ Then, the log-likelihood grad|ent

oL

('3_/\/7:7 = —(ViVj) + (ViVj)c

with (Vivj)e

N M‘o



Boltzmann Machine

Training

A Neural Interpretation, Once Again!

Itis !
(Vivj)e — (Viv))
N N~
wake dream
° part is the standard Hebb rule applied to the

empirical distribution of data that the machine sees coming
in from the outside world

° part is an concerning correlation
between units when of
the machine

Can only capture quadratic correlation! J




Boltzmann Machine

Training

Learning with Hidden Variables

@ To efficiently capture higher-order correlations we need to
h

@ Again (s = [vh])

8P v|M)
l Z sisiP(h|v) — Y " sis;P(s)
S

= <S,‘Sj>c — <S,'Sj>

@ Expectations again become due to the



Restricted Boltzmann Machines ALY Yot

Restricted Boltzmann Machines (RBM)

A special Boltzmann machine
° graph
@ Connections only between

° function, highlighting bipartition in hidden (h) and
visible (v) units

E(v,h)=—v'Mh—b’v—c’h

@ Learning (and inference) due to graph
bipartition which



Restricted Boltzmann Machines ALY Yot

The RBM Catch

Hidden units are conditionally independent given visible units,
and viceversa

P(hjlv) = G(Z Mjvi + ¢))

P(vilh) = () M;h; + b))
j

They can be updated in batch! J




Restricted Boltzmann Machines

Training

Training Restricted Boltzmann Machines

Again by likelihood maximization, yields

o, = (e ()
data model
A approach
Dream
Wake @ Don’t clamp units
@ Clamp dataonv @ Let network reach
@ Sample v;h; for all pairs of equilibrium
connected units @ Sample v;h; for all pairs of
@ Repeat for all elements of connected units
dataset @ Repeat many times to get

a good estimate



Restricted Boltzmann Machines

Gibbs-Sampling RBM

Training

oL
8_/\/1,'/':<vihj>c_w
data model
h (000  [000]
7N /N /. N\
v(0oO] [000] (000
t=0 t=1 t=2 t - oo

It is difficult to of the second term J




Restricted Boltzmann Machines

Gibbs-Sampling RBM

Training

Plugging-in Data

(000 000],,,, [ (l600]
)y 7 Ny \ /... N e

v/00o0o| [(000] [000]

t=0 t=1 t=2 t—> o

@ Start with a units

(2] between updating all the hidden units in parallel
and updating all the visible units in parallel ( )

= (Vihj)o — (Vihj) o
—_—  ——

data model

oM,



Restricted Boltzmann Machines L
Training

Contrastive-Divergence Learning

Gibbs sampling can be painfully slow to converge

@ Clamp a training vector v/

on
h (000 ooo @ Update units in
vily)y /7 N4 (vihy), parallel
vi0oo| (00 J © Update the all visible units
t=0 ¢t = in parallel to get a

© Update the hidden units
again
(Vihp)o —  (Vihj)1
N—— ~——

data



Restricted Boltzmann Machines L
Training

What does Contrastive Divergence Learn?

@ Avery of the gradient of the

o It does not even follow the gradient closely

° the gradient of a objective
function called the
e ltignores one tricky term in this objective function so it is
not even following that gradient

@ Sutskever and Tieleman (2010) have shown that it is



Restricted Boltzmann Machines

So Why Using it?

Training

Because e says so!

It works well enough in many significant applications



RBM-CD in Code

Conclusions

for epoch = 1:maxepoch

%—— Compute wake part

data = dataOr > rand(size(data)); %Stochastic clamped input

poshidP = 1./(1 + exp(—datasW — bh)); %Hidden activation probability
wake = data’ * poshidP;

%Alternatively : wake = data’ = (poshidP > rand(size (poshidP)));

%—Compute dream part

poshidS = poshidP > rand(size (poshidP)); %Stochastic hidden activation
reconDataP = 1./(1 + exp(—poshidS«W' — bv)); %Data reconstruction probability
reconData = reconDataP > rand(size(data)); %Stochastic reconstructed data
neghidP = 1./(1 + exp(—reconDatasW — bh));

dream = reconData’xneghidP;

%Alternatively : dream = reconData’x(neghidP > rand(size(neghidP)));

%Reconstruction error
err= sum(sum( (data—negdata).”2 ));

%—CD_1 Update

deltaW = (wake—dream)/numcases;

deltaBh (sum(poshidP)—sum(neghidP))/numcases;
deltaBv (sum(data)—sum(reconData))/numcases;

énd



Conclusions

Boltzmann Machines in Python

@ Boltzmann machines implementations are available in all
major deep learning libraries: Theano, Torch, Tensorflow,

° contains an implementation of a
binary RBM

@ Little support in Python libraries for generative and
graphical models

@ Plenty of personal implementations on Github



e PR Applications

Character Recognition

Learning good features for reconstructing images of number 2
handwriting

50 binary
feature
neurons

Increment weights
between an active pixel/
and an active feature \ / Decrement

weights between

[OOO} [OOO] an active pixel

and an active

- feature
X,

16x16

. Reconstructed
binary .
. image
image

Slide credit goes to G. Hinton



Conclusions PR Applications

Weight Learning



Conclusions PR Applications

Final Weights



Conclusions PR Applications

Digit Reconstruction

5 20 ) S P P e
o |
AR AR R

/' Wen features
= ! data 1
L reconstruction i Im




Code

Conclusions PR Applications

Digit Reconstruction (lI)

What would happen if we supply the RBM with a test digit that it
isnota 2?

It will try anyway to see a 2 in whatever we supply!



Conclusions

PR Applications

One Last Final Reason for Introducing RBM

Deep Belief Network

Classifier/Regressor

QAL

The fundamental building
block for popular deep
learning architectures
(Deep RBM as well)

A network of
trained layer-wise
by
plus a




Conclusions PR Applications

Take Home Messages

@ Boltzmann Machines
o A first bridge between (undirected) generative models and
(recurrent) neural networks
° regulated by stochastic behavior
e Training has both a ML and an interpretation
e Require approximations for computational tractability
@ Restricted Boltzmann Machines

@ Tractable model thanks to
e Trained by a very short Gibbs sampling (

e Can be very powerful if (deep learning)



Conclusions PR Applications

Next Lecture

Bayesian Learning and Variational Inference
@ Bayesian latent variable models

@ Variational bound and its optimization
@ Latent Dirichlet Allocation

o Possibly the simplest Bayesian latent variable model
e Variational Expectation-Maximization
e Applications to machine vision
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