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Generative Graphical Models

Module Introduction Generative Models Wrap-up
Deep Learning Module
Lecture

w

z

N

M

α

K

β

θ

• Unsupervised data 
understanding

• Interpretability

• Weak on supervised 
performance

Yi Yj

Xi

Bayesian Models/Nets Markov Random Fields

• Knowledge and 
constraints  through 
feature functions

• CRF: the supervised 
way to generative

• Computationally 
heavy

S2
2

S2
1

S2
3

Y2

Q1
2

Q2
2

t

Dynamic Models

• Topology unfolds 
on data structure

• Structured data 
processing

• Complex causal 
relationships



Module’s Take Home Messages

• Consider using generative models when
• Need interpretability
• Need to incorporate prior knowledge
• Unsupervised learning or learning with partially observable 

supervision 
• Need reusable/portable learned knowledge

• Consider avoiding generative models when
• Having tight computational constraints
• Dealing with raw, noisy low-level data

• Variational inference and sampling
• Efficient ways to learn an approximation to intractable 

distributions

• Neural networks can be used as variational functions or 
to implement sampling processes
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Deep Learning
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Module Outline
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• Recurrent, recursive and contextual (already covered by 
Micheli)
• Recurrent NN training refresher
• Recursive NN
• Graph processing

• Foundational models
• Convolutional Neural Networks
• Deep Autoencoders and RBM
• Gated Recurrent Networks (LSTM, GRU, …)

• Advanced topics
• Memory networks, attentional, Neural Turing machines
• Variational deep learning and generative adversarial learning

API and applications seminars



Reference Book
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Ian Goodfellow and Yoshua Bengio and 
Aaron Courville, Deep Learning, MIT Press

Freely available online

• Chapters 6-10, 14,20

• Integrated by course slides and 
additional readings



Module’s Prerequisites

• Cost function optimization
• Backpropagation/SGD
• Regularization

• Neural network hyper-parameters and model 
selection
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Lecture

• Formal model of neuron

• Neural network
• Feed-forward 

• Recurrent



Lecture Outline

• Introduction and historical perspective

• Dissecting the components of a CNN
• Convolution, stride, pooling

• CNN architectures for machine vision
• Putting components back together

• From LeNet to ResNet

• Advanced topics
• Interpreting convolutions

• Advanced models and applications

Introduction
Convolutional NN
Advanced Topics

Outline
History
Convolution Fundamentals

Split in two 
lectures
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Convolutional Neural Networks



Introduction
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Destroying Machine Vision research 
since 2012

Convolutional Neural Networks



Neocognitron
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• Hubel-Wiesel (‘59) 
model of brain visual 
processing
• Simple cells responding 

to localized features
• Complex cells pooling 

responses of simple 
cells for invariance

• Fukushima (‘80) built 
the first hierarchical 
image processing 
architecture exploiting 
this modelTrained by unsupervised learning



CNN for Sequences

• Apply a bank of 16 convolution 
kernels to sequences (windows 
of 15 elements) 

• Trained by backpropagation
with parameter sharing 

• Guess who introduced it?
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Time delay neural network 
(Waibel & Hinton, 1987)

…yeah, HIM!



CNN for Images

First convolutional neural network for images dates 
back to 1989 (LeCun)
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A Revised Bio-Inspired Model (HMAX)

Learning hierarchical representation of objects with 
the Hubel-Wiesel model (Riesenhuber&Poggio, 1999)
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Dense Vector Multiplication

Processing images: the dense way
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32x32x3 image

Reshape it into 
a vector

3072

𝒙

100x3072

𝑾

𝑾𝒙𝑻

An input-sized weight 
vector for each 
hidden neuron

100
Each element contains the 
activation of 1 neuron



Convolution (Refresher)
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32x32

Matrix input preserving 
spatial structure

5x5
filter

sum 25 multiplications + bias



Adaptive Convolution
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1 0 1

2 3 4

1 0 1

1 0 1

0 2 0

1 0 1

𝑤1 𝑤2 𝑤3

𝑤4 𝑤5 𝑤6

𝑤7 𝑤8 𝑤9

𝒘𝑇𝒙2,2

𝑐1

𝑐2

𝑐2 = 𝑤1+ 𝑤3 + 2𝑤5 + 𝑤7 + 𝑤9

Convolutional filter (kernel) with 
(adaptive) weights 𝑤𝑖

𝑐1 = 𝑤1+ 𝑤3 + 2𝑤4 + 3𝑤5 +4𝑤6 + 𝑤7 + 𝑤9

𝒘𝑇𝒙9,7



Convolutional Features
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32x32

Slide the filter on the image 
computing elementwise products 
and summing up

28x28

Convolution 
features



Multi-Channel Convolution
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32x32x3

5x5x3 Convolution 
filter has a 
number of
slices equal to 
the number of 
image channels



Multi-Channel Convolution
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28x28

All channels are typically convolved together
• They are summed-up in the convolution
• The convolution map stays bi-dimensional



Stride

• Basic convolution slides 
the filter on the image 
one pixel at a time
• Stride = 1
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Stride

• Basic convolution slides 
the filter on the image 
one pixel at a time
• Stride = 1

• Can define a different 
stride
• Hyperparameter
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Stride

• Basic convolution slides 
the filter on the image 
one pixel at a time
• Stride = 1

• Can define a different 
stride
• Hyperparameter
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stride = 2

Works in both directions!



Stride

• Basic convolution slides 
the filter on the image 
one pixel at a time
• Stride = 1

• Can define a different 
stride
• Hyperparameter

• Stride reduces the 
number of 
multiplications
• Subsamples the image
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Stride

• Basic convolution slides 
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• Can define a different 
stride
• Hyperparameter

• Stride reduces the 
number of 
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Activation Map Size
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What is the size of the image after application of a filter with a 
given size and stride?

H=7

W=7
Take a 3x3 filter with stride 1

K=3, S=1

Output image is: 5x5



Activation Map Size
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What is the size of the image after application of a filter with a 
given size and stride?

H=7

W=7
Take a 3x3 filter with stride 2

K=3, S=2

Output image is: 3x3



Activation Map Size
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What is the size of the image after application of a filter with a 
given size and stride?

H=7

W=7
General rule

𝑊′ =
𝑊 −𝐾

𝑆
+ 1

𝐻′ =
𝐻 − 𝐾

𝑆
+ 1



Activation Map Size
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What is the size of the image after application of a filter with a 
given size and stride?

H=7

W=7
Take a 3x3 filter with stride 3

K=3, S=3

Output image is:

Doesn’t fit! Cannot scan the 
whole image



Zero Padding

Introduction
Convolutional NN
Advanced Topics

Outline
History
Convolution Fundamentals

0 0 0 0 0 0 0 0 0

0

0

0

0

0

0

0

0

Add columns and rows of zeros to the border of the 
image

H=7

W=7



Zero Padding
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0 0 0 0 0 0 0 0 0

0

0

0

0

0

0

0

0

Add columns and rows of zeros to the border of the 
image

K=3, S=1

Output image is?

𝑊′ =
𝑊 −𝐾 + 2𝑃

𝑆
+ 1

7x7

H=7 
(P = 1)

W=7 (P=1)



Zero Padding
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0 0 0 0 0 0 0 0 0

0

0

0

0

0

0

0

0

Add columns and rows of zeros to the border of the 
image

H=7 
(P = 1)

W=7 (P=1)

Zero padding serves to 
retain the original size 
of image

𝑃 =
𝐾 − 1

2

Pad as necessary to 
perform convolutions 
with a given stride S



Feature Map Transformation

• Convolution is a linear operator

• Apply an element-wise nonlinearity to obtain a 
transformed feature map
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32x32x3 32x32

K=3,S=1, 
P=1

𝒘𝑇𝒙𝑖,𝑗 + 𝑏

32x32

𝒎𝒂𝒙(𝟎,𝒘𝑇𝒙𝑖,𝑗 + 𝑏)



Pooling

• Operates on the feature map to make the 
representation
• Smaller (subsampling)

• Robust to (some) transformations
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1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

6 8

3 4

Max pooling

2x2 filters
stride = 2

feature map

pooled map

W=4

H=4

W’=2

H’=2



Pooling Facts

• Max pooling is the one used more frequently, but other forms 
are possible

• Average pooling

• L2-norm pooling

• Random pooling

• It is uncommon to use zero padding with pooling
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𝑊′ =
𝑊 −𝐾

𝑆
+ 1



The Convolutional Architecture
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Convolutional Filters
(Strided adaptive conv)

Nonlinearity
(ReLu)

Pooling
(max)

Input

Convolutional 
layer

To next layer

• An architecture made by a 
hierarchical composition 
of the basic elements

• Convolution layer is an 
abstraction for the 
composition of the 3 basic 
operations

• Network parameters are in 
the convolutional 
component



A Bigger Picture
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Input

CL 1 

CL 2

CL 3 
CL 4 

FCL 1

FCL 2

Sparse 
connectivity

Dense 
connectivity

CL -> Convolutional Layer
FCL -> Fully Connected Layer

Output

Contains several convolutional 
filters with different size and 
stride



Convolutional Filter Banks
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𝐾 × 𝐾 × 𝐷𝐼 × 𝐷𝐾

𝐻 ×𝑊 × 𝐷𝐼

𝐷𝐾 convolutional 
filters of size KxK

𝐻′ ×𝑊′ × 𝐷𝐾

Feature map 
+ nonlinearity

𝐻′′ ×𝑊′′ × 𝐷𝐾

Number of model 
parameters due to this 
convolution element 
(add 𝐷𝐾 bias terms)

Pooling is often (not 
always) applied 
independently on the 𝐷𝐾
convolutions

Pooling



Specifying CNN in Code (Keras)
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model = Sequential()

model.add(Conv2D(32, kernel_size=(5, 5), strides=(1, 1),

activation='relu',

input_shape=input_shape))

model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))

model.add(Conv2D(64, (5, 5))

model.add(Activation='relu'))

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Flatten())

model.add(Dense(1000, activation='relu'))

model.add(Dense(num_classes, activation='softmax'))

Number of convolution filters 𝐷𝑘 Define input size (only first 
hidden layer)

Does for you all the calculations to determine the 
final size to the dense layer (in most frameworks, 
you have to supply it)



A Note on Convolution

• We know that discrete convolution between 
and image I and a filter/kernel K is
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(𝐼 ∗ 𝐾)(𝑖, 𝑗) = σ𝑚σ𝑛 𝐼 𝑖 − 𝑚, 𝑗 − 𝑛 𝐾(𝑚, 𝑛)

• In practice, convolution implementation in 
DL libraries does not flip the kernel

(𝐼 ∗ 𝐾)(𝑖, 𝑗) = σ𝑚σ𝑛 𝐼 𝑖 + 𝑚, 𝑖 + 𝑛 𝐾(𝑚, 𝑛)

and it is commutative.

Which is cross-correlation and it is not 
commutative.



CNN as a Sparse Neural Network

Let us take a 1-D input (sequence) to ease graphics
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Convolution amount to sparse connectivity (reduce 
parameters) with parameter sharing (enforces 
invariance)

b
c b

ca b
ca b

ca ba

Convolution

Input



Dense Network

The dense counterpart would look like this
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Strided Convolution
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Make connectivity sparser



Max-Pooling and Spatial Invariance
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Pooling

Feature map

Pooling

Feature map

A feature is detected even if it is spatially translated 



Cross Channel Pooling and Spatial Invariance
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Input

Feature 
map 1

Feature 
map 3

Input

Feature 
map 1

Feature 
map 3



Hierarchical Feature Organization
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The deeper the larger the receptive field of a unit



Zero-Padding Effect
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Assuming no 
pooling



CNN Training
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Variants of the standard backpropagation that account for 
the fact that connections share weights (convolution 
parameters)

𝑤1 𝑤2𝑤3

𝑤1

𝑤2

𝑤3

𝑤1
𝑤2

𝑤3

𝑎1 𝑎2 𝑎3 The gradient ∆𝑤𝑖 is 
obtained by summing the 
contributions from all 
connections sharing the 
weight

Backpropagating gradients from convolutional layer N to N-1 
is not as simple as transposing the weight matrix (need 
deconvolution with zero padding)



Backpropagating on Convolution
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K=3, S=1

Convolution

Input is a 4x4 image
Output is a 2x2 image

Backpropagation step requires 
going back from the 2x2 to the 
4x4 representation

Can write convolution as dense multiplication with shared weights

Backpropagation is performed by multiplying the 4x1 
representation to the transpose of this matrix



Deconvolution (Transposed Convolution)
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K=3, S=1, P=0

We can obtain the transposed convolution using the same logic 
on the forward convolution

If you had no padding in the forward convolution, you need to 
pad much when performing transposed convolution



Deconvolution (Transposed Convolution)
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K=3, S=2, P=1

If you have striding, you need to fill in the convolution map with 
zeroes to obtain a correctly sized deconvolution

https://github.com/vdumoulin/conv_arithmetic



LeNet-5 (1989)

• Grayscale images
• Filters are 5x5 with stride 1 (sigmoid nonlinearity)
• Pooling is 2x2 with stride 2
• No zero padding
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AlexNet (2012) - Architecture

Introduction
Convolutional NN
Advanced Topics

Model
Notable Architectures
Visualizing Convolutions

• RGB images 227x227x3

• 5 convolutional layers + 3 fully connected layers

• Split into two parts (top/bottom) each on 1 GPU 

ImageNet Top-5 : 15.4%



AlexNet - Innovations
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• Use heavy data augmentation (rotations, random crops, 
etc.)

• Introduced the use of ReLu

• Dense layers regularized by dropout



ReLU Nonlinearity
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• ReLu help counteract gradient vanish
• Sigmod first derivative vanish as we increase or decrease z

• ReLu first derivative is 1 when unit is active and 0 elsewhere

• ReLu second derivative is 0 (no second order effects)

• Easy to compute (zero thresholding)

• Favors sparsity

saturation

Non zero-
centered

Dead 
Units!!!



AlexNet - Parameters
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• 62.3 millions of parameters (6% in convolutions)

• 5-6 days to train on two GTX 580 GPUs (95% time in 
convolutions)



VGGNet – VGG16 (2014)
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• Standardized convolutional layer
• 3x3 convolutions with stride 1
• 2x2 max pooling with stride 2 (not after every convolution)

• Various configuration analysed, but best has
• 16 Convolutional + 3 Fully Connected layers
• About 140 millions parameters (85% in FC)

ImageNet Top-5 : 7.3%



GoogLeNet (2015)
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Inception Module

• Kernels of different 
size to capture 
details at varied 
scale

• Aggregated before 
sending to next 
layer

• Average pooling

• No fully connected 
layers

Why 1x1 
convolutions?

ImageNet Top-5 : 6.7%



1x1 Convolutions are Helpful
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56x56x64

Take 5 kernels

1x1x64

56x56x5

By placing 1x1 convolutions before larger kernels in the 
Inception module, the number of input channels is reduced, 
saving computations and parameters



Back on GoogLeNet
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• Only 5 millions of parameters

• 12X less parameters than AlexNet

• Followed by v2, v3 and v4 of the Inception module
• More filter factorization

• Introduce heavy use of Batch Normalization

Auxiliary outputs 
to inject gradients 
at deeper layers



Batch Normalization

• Very deep neural network are subject to internal covariate 
shift
• Distribution of inputs to a layer N might vary (shift) with different 

minibatches (due to adjustments of layer N-1)

• Layer N can get confused by this

• Solution is to normalize for mean and variance in each minibatch
(bit more articulated than this actually) 
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𝜇𝑏 =
1

𝑁𝑏
෍

𝑖=1

𝑁𝑏

𝑥𝑖

𝜎𝑏
2 =

1

𝑁𝑏
෍

𝑖=1

𝑁𝑏

𝑥𝑖 − 𝜇𝑏
2

ො𝑥𝑖 =
𝑥𝑖 − 𝜇𝑏

𝜎𝑏
2 + 𝜖

𝑦 = 𝛾 ො𝑥𝑖 + 𝛽

Trainable linear transform potentially 
allowing to cancel unwanted zero-
centering effects (e.g. sigmoid) 

Normalization

Scale and shift

Need to backpropagate through this!



ResNet (2015)
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Begin of the Ultra-Deep Network Era (152 Layers)

Why wasn’t this 
working before?

Gradient vanishes when backpropagating too deep!

ImageNet Top-5 : 3.57%



ResNet Trick
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3x3 
convolution

3x3 
convolution

ReLu

X

+

X

F(X)

F(X)+X

Residual 
block

The input to the block X bypasses the 
convolution and is then combined with its 
residual F(X) resulting from the 
convolutions 

When backpropagating the gradient 
flows in full through these bypass 
connections

ReLu



CNN Architecture Evolution
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Understanding CNN Embedding

tSNE projection of 
AlexNet last 
hidden dense 
layer
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https://cs.stanford.edu/people/
karpathy/cnnembed/



Interpreting Intermediate Levels

• What about the information captured in 
convolutional layers?

• Visualize kernel weights (filters)
• Naïve approach

• Works only for early convolutional layers

• Map the activation of the convolutional kernel back 
in pixel space
• Requires to reverse convolution

• Deconvolution
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Zeiler&Fergus, Visualizing and Understanding Convolutional Networks, ICML 2013



Deconvolutional Network (DeConvNet)
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• Attach a DeConvNet to a target layer

• Plug an input and forward propagate activations 
until layer

• Zero activations of target neuron

• Backpropagate on the DeConvNet and see what 
parts of the reconstructed image are affected



Filters & Patches – Layer 1
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Zeiler&Fergus, Visualizing and Understanding Convolutional Networks, ICML 2013

Reconstructed filters in pixel space

Corresponding top-9 image patches 



Filters & Patches – Layer 2
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Zeiler&Fergus, Visualizing and Understanding Convolutional Networks, ICML 2013



Filters & Patches – Layer 3
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Zeiler&Fergus, Visualizing and Understanding Convolutional Networks, ICML 2013



Filters & Patches – Layer 4
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Zeiler&Fergus, Visualizing and Understanding Convolutional Networks, ICML 2013



Filters & Patches – Layer 5
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Zeiler&Fergus, Visualizing and Understanding 
Convolutional Networks, ICML 2013



Occlusions

• Measure what happens to feature maps and object 
classification if we occlude part of the image

• Slide a grey mask on the image and project back 
the response of the best filters using deconvolution
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Occlusions
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Zeiler&Fergus, Visualizing and Understanding Convolutional Networks, ICML 2013



Dense CNN
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batch normalization + ReLU + 3x3 conv

• Gradient flows well in bypass 

connections

• Each layer in the dense block 

has access to all information 

from previous layers

Transition layers 

batch normalization + 1×1 convolutional 

+ 2×2 average pooling layer

Huang et al, Densely Connected Convolutional Networks, CVPR 2017



Causal Convolutions
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Preventing a convolution from allowing to see into the 
future…

time

Problem is the context size grows slow with depth



Causal & Dilated Convolutions
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(𝐼 ∗ 𝐾)(𝑖, 𝑗) = σ𝑚σ𝑛 𝐼 𝑖 − 𝑙𝑚, 𝑖 − 𝑙𝑛 𝐾(𝑚, 𝑛)

Oord et al, WaveNet: A Generative Model for Raw Audio, ICLR 2016

Similar to striding, but size is preserved



Semantic Segmentation
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Traditional CNN cannot be used for this task due to the 
downsampling of the striding and pooling operations



Fully Convolutional Networks (FCN)
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Convolutional part to 
extract interesting 
features at various scales

Fuse information from feature maps 
of different scale

Learn an upsampling function of 
the fused map to generate the 
semantic segmentation map

Shelhamer et at, Fully Convolutional Networks for Semantic Segmentation, PAMI 2016



Deconvolution Architecture
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Badrinarayanan et al, SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation, 
PAMI 2017

Maxpooling indices transferred to decoder to 
improve the segmentation resolution.



SegNet Segmentation 
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Demo here: http://mi.eng.cam.ac.uk/projects/segnet/



Use Dilated Convolutions

Introduction
Convolutional NN
Advanced Topics

Advanced Convolutional Models
Applications
Conclusions

Always perform 3x3 convolutions with no pooling at each level 

Context increases without
• Pooling (changes map size)
• Increasing computational complexity

Yu et al, Multi-Scale Context Aggregation by Dilated Convolutions, ICLR 2016

Level 1 Level 2 Level 3



Segmentation by Dilated CNN
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Yu et al, Multi-Scale Context Aggregation by Dilated Convolutions, ICLR 2016

Dilated CNN GT Dilated CNN GT



CNN & Genomic Sequences
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…

…

1D convolutions throughout the input sequence
• Trained to respond to task-specific motifs
• Applied to small sequence regions 



DeepBind
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Alipanahi et al. "Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning." Nature 
biotechnology 2015 - http://tools.genes.toronto.edu/deepbind/

• 927 CNN models predicting 
a binding score for 
transcription factors and 
RNA-binding proteins
• Score new sequences

• Assess mutations that 
deplete/increase binding 
score

• Use convolution 
visualization to interpret
results of CNN training

Mutation Maps



DeepSea
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919 outputs predicting chromatin 
features

The feature detectors in the deeper layers 
are shared between the predictive tasks

Zhou et al, Predicting effects of noncoding variants with deep learning–based 
sequence model. Nature methods. 2015 - http://deepsea.princeton.edu



Software

• CNN are supported by any deep learning 
framework (TF, Torch, Pytorch, MS Cognitive TK,…) 

• Caffe was one of the initiators and basically built 
around CNN
• Introduced protobuffer network specification 

• ModelZoo of pretrained models (LeNet, AlexNet, …)

• Support for GPU
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Caffe Protobuffer
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name: "LeNet"
layer {

name: "data"
type: "Input"
…
input_param { shape: { dim: 64 dim: 1 dim: 28 dim: 28 } }

}
layer {

name: "conv1"
type: "Convolution"
bottom: "data"
…
convolution_param {

num_output: 20
kernel_size: 5
stride: 1
weight_filler {

type: "xavier"
}



Software

• CNN are supported by any deep learning 
framework (TF, Torch, Pytorch, MS Cognitive TK, 
Intel OpenVino) 

• Caffe was one of the initiators and basically built 
around CNN
• Introduced protobuffer network specification 

• ModelZoo of pretrained models (LeNet, AlexNet, …)

• Support for GPU

• Caffe2 is Facebook’s extensions to Caffe
• Less CNN oriented

• Support from large scale to mobile nets

• More production oriented than other frameworks
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Other Software

• Matlab distributes its Neural Network Toolbox 
which allows importing pretrained models from 
Caffe and Keras-TF

• Matconvnet is an unofficial Matlab library 
specialized for CNN development (GPU, modelzoo, 
…)

• Want to have a CNN in your browser?
• Try ConvNetJS

(https://cs.stanford.edu/people/karpathy/convnetjs/)
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https://cs.stanford.edu/people/karpathy/convnetjs/


GUIs 

Major hardware producers have GUI and toolkits
wrapping Caffe, Keras and TF to play with CNNs
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NVIDIA Digits
Intel OpenVino

Plus 
others…

Barista



Take Home Messages

• Key things
• Convolutions in place of dense multiplications allow sparse 

connectivity and weight sharing
• Pooling enforces invariance and allows to change resolution but 

shrinks data size
• Full connectivity compress information from all convolutions but 

accounts for 90% of model complexity

• Lessons learned
• ReLU are efficient and counteract gradient vanish
• 1x1 convolutions are useful
• Need batch normalization
• Bypass connections allow to go deeper

• Dilated (à trous) convolutions

• You can use CNN outside of machine vision
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Next Lecture

• Guest seminar by Jan Philip Göpfert
(Bielefeld University)

Monday 06 May 2018 , h14-16, Room B

Adversarial Attacks & Generative Adversarial 
Networks

Introduction
Convolutional NN
Advanced Topics

Advanced Convolutional Models
Applications
Conclusions

Deep learning module will continue next week 
on deep autoencoders and recurrent gated 
networks


