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Dealing with Sequences in NN

• Recurrent Neural Network
• Fully adaptive (Elman, SRN, …)

• Randomized approaches (Reservoir Computing)

• Introduce (deep) gated recurrent networks
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…

𝑡 = 0 𝑡 = 1 𝑡 = 𝑁𝑡 = 2

𝑐3
𝑐𝑁

Neural models need to 
capture dynamic context 
𝑐𝑡 to perform predictions

Variable size data 
describing sequentially 
dependent information



Lecture Outline

• RNN Repetita

• Motivations
• Learning long-term dependencies is difficult

• Gradient issues

• Gated RNN
• Long-Short Term Memories (LSTM)

• Gated Recurrent Units (GRU)

• Advanced topics
• Understanding and exploiting memory encoding

• Applications

Introduction
Deep Gated RNN

Applications

Outline
Recurrent Neural Networks
Gradient Issues



Unfolding RNN (Forward Pass)
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By now you should be familiar with the concept 
of model unfolding/unrolling on the data

…𝑥0 𝑥1 𝑥2 𝑥𝑡

model

data

unfolding

𝑞−1

memory 
encoding

Graphics credit @ 
colah.github.io

Map an arbitrary 
length sequence 
𝑥0. . 𝑥𝑡 to fixed-
length encoding 𝒉𝑡



Supervised Recurrent Tasks
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element to element

input

hidden

output

sequence to item item to sequence sequence to sequence

Graphics credit @ karpathy.github.io



A Non-Gated RNN (a.k.a. Vanilla)
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∑

𝒙𝑡

𝒉𝑡
𝒉𝑡−1

𝑾𝑖𝑛
𝑖 𝒙𝑡

𝑾ℎ
𝑖 𝒉𝑡−1

𝑔𝑡
𝑖

ℎ𝑡
𝑖

𝒈𝑡 𝒉𝑡−1, 𝒙𝑡 = 𝑾ℎ𝒉𝑡−1 +𝑾𝑖𝑛𝒙𝑡 + 𝐛h

𝒉𝑡 = 𝑡𝑎𝑛ℎ(𝒈𝑡)

𝒚𝑡 = 𝑓(𝑾𝑜𝑢𝑡𝒉𝑡 + 𝒃𝑜𝑢𝑡)



Learning to Encode Input History
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Hidden state 𝒉𝑡 summarizes information on the 
history of the input signal up to time 𝑡



Learning Long-Term Dependencies is Difficult
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When the time gap between the observation and the state grows 
there is little residual information of the input inside of the memory  

What is the cause?

J. Hochreiter. Untersuchungen zu dynamischen neuronalen Netzen, TUM, 1991



Exploding/Vanishing Gradient
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Bengio, Simard and Frasconi, Learning long-term dependencies with gradient descent is difficult. TNN, 1994

Short story: Gradients propagated over many stages 
tend to 

• Vanish (often) ⟹ No learning

• Explode (rarely) ⟹ Instability and oscillations

ℎ𝑡

𝑥𝑡

𝑦𝑡

ℎ𝑡−1

𝑥𝑡−1

ℎ𝑡−2

𝑥𝑡−2

ℎ1

𝑥1

…

𝛿𝐿𝑡
𝛿𝑤𝛿𝐿𝑡

𝛿ℎ𝑡

𝛿ℎ𝑡
𝛿ℎ𝑡−1

𝛿ℎ𝑡−1
𝛿ℎ𝑡−2

𝛿ℎ𝑡−2
𝛿ℎ𝑡−3

Weights are shared between time steps ⟹
sum gradient contributions through time



A Closer Look at the Gradient
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𝛿𝐿𝑡

𝛿𝑾
= ∑𝑘=1

𝑡 𝛿𝐿𝑡

𝛿ℎ𝑡

𝛿ℎ𝑡

𝛿ℎ𝑘

𝛿ℎ𝑘

𝛿𝑾

This is a parameter 
matrix ⟹ we have a 
Jacobian

𝛿ℎ𝑡
𝛿ℎ𝑘

=
𝛿ℎ𝑡
𝛿ℎ𝑡−1

×
𝛿ℎ𝑡−1
𝛿ℎ𝑡−2

×⋯×
𝛿ℎ𝑘+1
𝛿ℎ𝑘

Inside here you have chain rule

𝛿𝐿𝑡

𝛿𝑾
= ∑𝑘=1

𝑡 𝛿𝐿𝑡

𝛿ℎ𝑡
ς𝑙=𝑘
𝑡−1 𝛿ℎ𝑙+1

𝛿ℎ𝑙

𝛿ℎ𝑘

𝛿𝑾

The gradient is a recursive product of hidden activation 
gradients (Jacobian)



Bounding the Gradient (I)
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𝛿𝐿𝑡
𝛿𝒉𝑡

=
𝛿𝐿𝑡
𝛿𝒉𝑘

ෑ

𝑙=𝑘

𝑡−1
𝛿𝒉𝑙+1
𝛿𝒉𝑙

=
𝛿𝐿𝑡
𝛿𝒉𝑘

ෑ

𝑙=𝑘

𝑡−1

𝑫𝑙+1𝑾ℎ𝑙
𝑇

𝛿𝒉𝑙+1
𝛿𝒉𝑙

= 𝑫𝑙+1𝑾ℎ𝑙
𝑇Given 𝒉𝑙 = 𝑡𝑎𝑛ℎ(𝑾ℎ𝑙𝒉𝑙−1 +𝑾𝑖𝑛𝒙𝑙)

𝑫𝑙+1 = 𝑑𝑖𝑎𝑔(1 − tanh2 𝑾ℎ𝑙𝒉𝑙 +𝑾𝑖𝑛𝒙𝑙+1 )

then

where the activation Jacobian is

We are interested in the gradient magnitude 
𝛿𝐿𝑡

𝛿𝒉𝑡



Bounding the Gradient (II)
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𝛿𝐿𝑡

𝛿𝒉𝑡
=

𝛿𝐿𝑡

𝛿𝒉𝑘
ෑ

𝑙=𝑘

𝑡−1

𝑫𝑙+1𝑾ℎ𝑙
𝑇 ≤

𝛿𝐿𝑡

𝛿𝒉𝑘
ෑ

𝑙=𝑘

𝑡−1

𝑫𝑙+1𝑾ℎ𝑙
𝑇 =

𝛿𝐿𝑡

𝛿𝒉𝑘
ෑ

𝑙=𝑘

𝑡−1

𝜎 𝑫𝑙+1 𝜎 𝑾ℎ𝑙
𝑇

Bounded by the spectral radius 𝜎

Can shrink to zero or 
increase exponentially 
depending on the 
spectral properties
• 𝜎 < 1 ⟹ vanishish
• 𝜎 > 1 ⟹ exploding 



Gradient Clipping for Exploding Gradients
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• Take 𝑔 =
𝛿𝐿𝑡

𝛿𝑾

• If 𝑔 > 𝜃0 then

𝑔 =
𝜃0

𝑔
𝑔

Rescaling does not work for 
gradient vanish as total gradient 
is a sum of time dependent 
gradients (preserving relative 
contribution from each time 
makes it exponentially decay)

𝛿𝐿𝑡

𝛿𝑾
= ∑𝑘=1

𝑡 𝛿𝐿𝑡

𝛿ℎ𝑡

𝛿ℎ𝑡

𝛿ℎ𝑘
…



Tackling Gradient Issues

• Solution seems to be having the Jacobian with 𝜎 =
1 (activation function?)

• Linear ⇒ dominated by the eigenvalues of 𝑾ℎ to 
the power of t

• Linear with weight 1 (state identity)

𝒉𝑡 = 𝒉𝑡−1 + Ƹ𝑐(𝒙𝑡)
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Has the desired spectral properties but does not 
work in practice as it quickly saturates memory 
(e.g. with replicated/non-useful inputs and 
states)



Gating Units

Mixture of experts ⇒ the origin of gating
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Local Expert 
1

Softmax
Gating 

NetworkLocal Expert 
2

Local Expert 
K

𝑥

…

+

input

output

Jacobs et al (1991), Adaptive Mixtures of Local Experts, …



Long-Short Term Memory (LSTM) Cell
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+

𝒙𝑡

ℎ𝑡
ℎ𝑡−1 Lets start from 

the vanilla RNN 
unit

𝑔𝑡

S. Hochreiter, J. Schmidhuber, Long 
short-term memory". Neural 

Computation, Neural Comp. 1997



LSTM Design – Step 1
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+

𝒙𝑡

ℎ𝑡
ℎ𝑡−1 Introduce a 

linear/identity 
memory 𝑐𝑡

+𝑐𝑡−1

𝑐𝑡

𝑔𝑡

Combines past 
internal state
𝑐𝑡−1 with 
current input 
𝒙𝑡



LSTM Design – Step 2 (Gates)
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𝒙𝑡

ℎ𝑡
ℎ𝑡−1

+𝑐𝑡−1

𝑐𝑡

𝑔𝑡

+

×

Input gate
Controls how 
inputs 
contribute to 
the internal 
state

𝐼𝑡(𝑥𝑡, ℎ𝑡−1)

Logistic 
sigmoid

+



LSTM Design – Step 2 (Gates)
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𝒙𝑡

ℎ𝑡
ℎ𝑡−1

+𝑐𝑡−1

𝑐𝑡

𝑔𝑡

+

×

Forget gate
Controls how 
past internal 
state 𝑐𝑡−1
contributes to 
𝑐𝑡

𝐹𝑡(𝑥𝑡, ℎ𝑡−1)

Logistic 
sigmoid

+

×

+



LSTM Design – Step 2 (Gates)
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𝒙𝑡

ℎ𝑡
ℎ𝑡−1

+𝑐𝑡−1

𝑐𝑡

𝑔𝑡

+

×

Output gate
Controls what 
part of the 
internal state is 
propagated out 
of the cell

𝑂𝑡(𝑥𝑡, ℎ𝑡−1)

Logistic 
sigmoid

+

×

+

×

+



LSTM in Equations

1) Compute activation of input and forget gates
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𝒄𝑡 = 𝑭𝑡⨀𝒄𝑡−1 + 𝑰𝑡⨀𝒈𝑡

𝒈𝑡 = 𝑡𝑎𝑛ℎ(𝑾ℎ𝒉𝑡−1 +𝑾𝑖𝑛𝒙𝑡 + 𝐛h)

𝑰𝑡 = 𝜎(𝑾𝐼ℎ𝒉𝑡−1 +𝑾𝐼𝑖𝑛𝒙𝑡 + 𝐛I)

𝑭𝑡 = 𝜎(𝑾𝐹ℎ𝒉𝑡−1 +𝑾𝐹𝑖𝑛𝒙𝑡 + 𝐛F)

2) Compute input potential and internal state

3) Compute output gate and output state

𝑶𝑡 = 𝜎(𝑾𝑂ℎ𝒉𝑡−1 +𝑾𝑂𝑖𝑛𝒙𝑡 + 𝐛O)

𝒉𝑡 = 𝑶𝑡⨀𝑡𝑎𝑛ℎ(𝒄𝑡)

⨀ element-wise 
multiplication



Deep LSTM
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LSTM CELL LSTM CELL LSTM CELL
𝑦𝑡𝑥𝑡

𝒉𝑡
1

𝒉𝑡
2

𝒉𝑡
3

𝒉𝑡−1
1

𝒉𝑡−1
2

𝒉𝑡−1
3

LSTM layers extract information at increasing levels of 
abstraction (enlarging context)



Training LSTM

• Original LSTM training algorithm was a mixture of 
RTRL and BPTT
• BPTT on internal state gradient

• RTRL-like truncation on other recurrent connections

• No exact gradient calculation!

• All current LSTM implementation use full BPTT 
training
• Introduced by Graves and Schmidhuber in 2005

• Typically use Adam or RMSProp optimizer
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Regularizing LSTM - Dropout
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… …

Randomly disconnect units from the network during training

N. Srivastava et al, Dropout: A Simple Way to Prevent Neural Networks from Overfitting, JLMR 2014



Regularizing LSTM - Dropout

Introduction
Deep Gated RNN

Applications

Gated Networks
Long-Short Term Memory
Gated Recurrent Units

… …

Randomly disconnect units from the network during training

N. Srivastava et al, Dropout: A Simple Way to Prevent Neural Networks from Overfitting, JLMR 2014



Regularizing LSTM - Dropout
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… …

Randomly disconnect units from the network during training

N. Srivastava et al, Dropout: A Simple Way to Prevent Neural Networks from Overfitting, JLMR 2014



Regularizing LSTM - Dropout
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… …

Randomly disconnect units from the network during training

• Regulated by unit 
dropping 
hyperparameter

• Prevents unit 
coadaptation

• Committee machine 
effect

• Need to adapt 
prediction phase

• Drop units for the 
whole sequence!

N. Srivastava et al, Dropout: A Simple Way to Prevent Neural Networks from Overfitting, JLMR 2014



Regularizing LSTM - Dropout
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Randomly disconnect units from the network during training

• Regulated by unit 
dropping 
hyperparameter

• Prevents unit 
coadaptation

• Committee machine 
effect

• Need to adapt 
prediction phase

• Drop units for the 
whole sequence!You can also drop single 

connections (dropconnect)

… …

x

x

x

x

x



Practicalities – Minibatch and Truncated BP
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Training 
Data

Minibatch (MB)

Average gradient on full 
data

Stochastic GD sequence-
by-sequence

MB1

MB2

MBn

𝛿𝐿𝑀𝐵1
𝛿𝑤

…

𝛿𝐿𝑀𝐵2
𝛿𝑤

𝛿𝐿𝑀𝐵𝑛
𝛿𝑤

ℎ𝑘+1ℎ𝑘ℎ𝑘−1ℎ1 … ℎ𝑇…x

Truncated gradient propagation



Gated Recurrent Unit (GRU)
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𝒙𝑡

ℎ𝑡

ℎ𝑡−1

ℎ𝑡

×

+

+

+

+
𝑟𝑡

𝑧𝑡
×

×

−1

𝒓𝑡 = 𝜎(𝑾𝑟ℎ𝒉𝑡−1 +𝑾𝑟𝑖𝑛𝒙𝑡 + 𝐛r)

𝒛𝑡 = 𝜎(𝑾𝑧ℎ𝒉𝑡−1 +𝑾𝑧𝑖𝑛𝒙𝑡 + 𝐛z)

Reset and update gates when 
coupled act as input and forget 
gates

𝒉𝑡 = 𝑡𝑎𝑛ℎ(𝑾ℎℎ(𝒓𝑡⨀𝒉𝑡−1) +𝑾ℎ𝑖𝑛𝒙𝑡 + 𝐛h)

𝒉𝑡 = (1 − 𝒛𝑡) ⨀ 𝒉𝑡−1+ 𝒛𝑡⨀𝒉𝑡

Reset acts directly on output 
state (no internal state and no 
output gate)

C. Kyunghyun et al, Learning Phrase Representations using RNN Encoder-
Decoder for Statistical Machine Translation, EMNLP 2014



Bidirectional LSTM – Character Recognition
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Original input

Preprocessed 
input

LSTM
layers

Character 
distribution

1 output for each character 
plus no output symbol

A. Graves, A novel connectionist system for 
unconstrained handwriting recognition,  TPAMI 2009



Bidirectional LSTM – Character Recognition

Advanced Models & Applications
Software
Conclusions

Introduction
Deep Gated RNN

Applications

Original input

Preprocessed 
input

LSTM
layers

Character 
distribution

1 output for each character 
plus no output symbol

LSTM
left-to-right

LSTM
right-to-left

A. Graves, A novel connectionist system for 
unconstrained handwriting recognition,  TPAMI 2009



Generative Use of LSTM/GRU
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LSTM1

LSTM2

LSTM3

H e l

e l l

Bypass 
connections

Refeeding 
output at 
prediction 
time

Teacher forcing 
at training time

A. Graves, Generating Sequences With Recurrent Neural Networks, 2013



Character Generation Fun
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PANDARUS:
Alas, I think he shall be come approached and 
the day
When little srain would be attain'd into being 
never fed,
And who is but a chain and subjects of his 
death,
I should not sleep.

Second Senator:
They are away this miseries, produced upon 
my soul,
Breaking and strongly should be buried, when I 
perish
The earth and thoughts of many states.

Shakespeare

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


Character Generation Fun
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/*
* If this error is set, we will need anything right after that BSD.
*/
static void action_new_function(struct s_stat_info *wb)
{

unsigned long flags;
int lel_idx_bit = e->edd, *sys & ~((unsigned long) *FIRST_COMPAT);
buf[0] = 0xFFFFFFFF & (bit << 4);
min(inc, slist->bytes);
printk(KERN_WARNING "Memory allocated %02x/%02x, "

"original MLL instead\n"),
min(min(multi_run - s->len, max) * num_data_in),
frame_pos, sz + first_seg);

div_u64_w(val, inb_p);
spin_unlock(&disk->queue_lock);
mutex_unlock(&s->sock->mutex);
mutex_unlock(&func->mutex);
return disassemble(info->pending_bh);

}

Linux Kernel 
Code

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


Generate Sad Jokes
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Why did the boy stop his homework?
Because they’re bunny boo!

What do you get if you cross a famous 
California little boy with an elephant for 
players?
Market holes.

A 3-LSTM layers neural network to generate English 
jokes character by character

Q: Why did the death penis learn string?
A: Because he wanted to have some 
roasts case!



Understanding Memory Representation
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At Layer-3 neuron show some form of 
context induced representation of 

subsequences (words)



Understanding Memory Representation
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Neurons in early recurrent layers tend to 
organize according to sequence suffix



More Differentiable Compositions
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A. Karpathy and L. Fei-Fei, Deep Visual-Semantic Alignments for Generating Image 
Descriptions, CVPR 2015

https://github.com/karpathy/neuraltalk2

CNN-LSTM Composition for image-to-sequence (NeuralTalk)

A cat is sitting on a toilet seat

A woman holding a teddy 
bear in front of a mirror



RNN – A Modern View
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RNN are only for sequential/structured data?

RNN as stateful systems



Software

• Standard LSTM and GRU are available in all deep 
learning frameworks (Python et al) as well as in 
Matlab’s Neural Network Toolbox 

• If you want to play with one-element ahead sequence 
generation try out char-RNN implementations
• https://github.com/karpathy/char-rnn (ORIGINAL)

• https://github.com/sherjilozair/char-rnn-tensorflow

• https://github.com/crazydonkey200/tensorflow-char-rnn

• http://pytorch.org/tutorials/intermediate/char_rnn_generati
on_tutorial.html
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https://github.com/karpathy/char-rnn
https://github.com/sherjilozair/char-rnn-tensorflow
https://github.com/crazydonkey200/tensorflow-char-rnn
http://pytorch.org/tutorials/intermediate/char_rnn_generation_tutorial.html


Take Home Messages

• Learning long-term dependencies can be difficult 
due to gradient vanish/explosion

• Gated RNN solution
• Gates are neurons whose output is used to scale

another neuron’s output
• Use gates to determine what information can enter (or 

exit) the internal state 
• Training gated RNN non always straightforward

• Deep RNN can be used in generative mode
• Can seed the network with neural embeddings

• Deep RNN as stateful and differentiable machines
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Conclusions
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Coming up next week

• A methodology lecture on advanced 
recurrent architectures

• A practical lectures on the Pytorch
framework by Antonio Carta

• … and afterwards
• Practical lecture on Keras/TF by Luca Pedrelli

• Generative and unsupervised deep learning

Introduction
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Advanced Models & Applications
Software
Conclusions

Midterm 3 discussions
Thursday 6th June 2019  - h.13.30-16.30 - Room L1 


