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Deep Learning Frameworks

- High-level Object-oriented interface 
for other backand libraries: 
➢ Tensorflow, Theano, CNTK.

Why we should use Tensorflow and Keras?

- Data Flow Graph
of tensor operations
➢ Automatic differentiation
➢ High degree of parallelization



Before Deep Learning Frameworks 
(Linear Algebra and Numerical Analysis)

Powerful libraries for linear algebra, numerical analysis and statistics:

❖ Very efficient implementation for matrix and tensor operations: 
➢ dot product, tensordot, sum, multiplication, ...

❖ Very efficient implementation for linear algebra operations: 
➢ matrix factorizations, eigenvalue decomposition, SVD, cholesky, QR, …

❖ Functional programming: 
➢ easy data aggregation with lambda expressions, map, reduce, filter, …
➢ easy funcion definition and composition
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Drawbacks for Deep Learning design:
❖ No general design tools for DL

❖ No automatic differentiation

❖ GPU parallelization by hand

❖ No general parallelization depending on function structure !

However:
❖ NumPy functionalities (numpy.arrays) are widely used in most python 

implementations for machine learning approaches (also in Tensorflow and 
Keras)

❖ Numpy and Matlab are very useful to understand the design of Neural 
Network models. (very intuitive syntax to implement matrix operations and 
functions definition)

❖ Tensorflow operations are very inspired by NumPy operations 4

Understanding Deep Learning Frameworks 
stemming from NumPy and Matlab



Design of Deep Neural Networks without DL frameworks

❖ Define the model function (i.e., the NN architecture):
➢ composition of differentiable operations 

❖ Define the loss function (to minimize or maximize):
➢ differentiable function defined on the basis of model 

functon and training data

❖ Compute analytically the derivative of the loss

❖ Implement the forward pass basing on the 
model function

❖ Implement the backward pass basing on the 
derivative of the loss (i.e., back-propagation) 

❖ Implement the gradient descent approach
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MLP architecture example

5



Design of NN Architecture

...

...

... Training Set for a Supervised Learning Task
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Delta Rule for Top Layer

...

...

...

7



Delta Rule for a generic Hidden Layer

...

...

...
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MLP: training algorithm

If Output Layer

Otherwise

for l in L-1...0:

for l in 0...L-1:

for k ...:

for i ...:

for p in training_set:
for epoch in epochs:
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MLP: NumPy implementation (An example)
network initialization
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MLP: NumPy implementation (An example)
forward pass
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MLP: NumPy implementation (An example)
backward pass
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MLP: NumPy implementation (An example)
Online/Batch Gradient Descent

❖ Stochastic gradient descent with mini-batch approach?
❖ Parallel computing?
❖ Other gradient descent approaches? (weight decay, momentum…)
❖ …
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Design of Deep Neural Networks without DL frameworks
(Conclusions)

❖ Compute analytically the derivative of the loss

❖ Implement the forward pass basing on the 
model function

❖ Implement the backward pass basing on the 
derivative of the loss (i.e., back-propagation) 
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MLP architecture example
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Overall, if we change the topology of the network we need to 
recompute the derivative and to recode the backward function!

Two Solutions:
Tensorflow and Keras allow us to 
automatically compute the derivative and the 
backward pass just defining the forward 
pass ! (i.e., the network architecture)



❖ Define NN models by means of tensor operations 
(dot product, tensor contraction, sum, multiplication, ...)

❖ Automatic differentiation based on the Graph! 
We avoid to implement the backward pass!

❖ Automatic parallelization based on the Graph! 
Both for CPU and GPU!

❖ Models represented as a static Data Flow Graph
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Tensor

❖ A Tensor is a geometric object that can be defined in several ways 
depending on the level of abstraction (Algebra, Geometry, Physics, ....)

❖ From a Computer Science point of view we can see a Tensor as:
➢ A multi-dimensional array:

■ Useful to represent data
➢ A multi-linear map (i.e., tensordot, tensor contraction):

■ Useful to parallelize computation on GPU and CPU



Linear Regression (A simple example)
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Linear Regression 2 (A simple example)
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MINST (a dataset of handwritten digits)

❖ Image classification

❖ A baseline task for 
computer vision

❖ Very useful to evaluate and 
design basic DL models for 
computer vision
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←

Multi Layer Perceptron (MLP) in Tensorflow
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Cross entropy loss (typically used for classification)

...
Epoch 5: Test accuracy --> 95.40%
Epoch 6: Test accuracy --> 95.75%
Epoch 7: Test accuracy --> 95.77%
Epoch 8: Test accuracy --> 96.16%
Epoch 9: Test accuracy --> 95.83%
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Convolutional Neural Networks (CNNs) in Tensorflow
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MLP 95.83% of accuracy -> CNN 98.78% of accuracy❖ Fast design of DL models!

❖ We only need to recode the model structure!

❖ Automatic parallelization! Very fast computation!

❖ Drawbacks:
➢ Fast design only for simple models:

Dropout? BatchNormalization? Early stopping? RNNs? 
...

➢ No support for object-oriented coding:
The model extension is difficult
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❖ Define NN models by means of layer operations 
(Dense, Conv1D, Conv2D,  MaxPooling2D, Flatten, ...)

❖ Automatic differentiation based on the Graph! 
We avoid to implement the backward pass!

❖ Great support for Obect-oriented coding:
➢ You can extend functionalities extending classes:

■ Model class, Layer class, ...

❖ Models represented as a stack of layers

❖ High-level Object-oriented interface for other backand libraries: 
➢ Tensorflow, Theano, CNTK.
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❖ Sequential model
➢ stack of layers
➢ easy to use

❖ Functional API
➢ function of functions
➢ general graph topologies

❖ Object-oriented
➢ model subclassing
➢ make the model extendible

Three ways to define a DL model
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MLP in Keras

Functional API

Sequential model

Object-oriented
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CNN in Keras

Very few code lines!
Test accuracy on MNIST -> more that 99% in 3 epochs of training 27



RNN in Keras (Many-to-one)
Classify sequences

RNN in Keras (Many-to-many)
Classify each step
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Deep RNNs

Bidirectional RNNs
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See Documentations!

https://www.tensorflow.org/ https://keras.io/


