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Outline

I Recap probabilistic concepts
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I Why do we need it?

I Sampling from univariate distribution

I Sampling from multivariate distribution
I Ancestor sampling
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I Monte Carlo Markov Chain (MCMC)
I Other methods
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Probability recap

I Discrete Random Variable
I x a discrete random variable with C state;
I p(x = i), i ∈ [1,C] is its probability distribution;
I p(x1, . . . , xn) joint distribution of n discrete random variable;

I Expectation
I let f (·) a function over a random variable x ;
I Ep(x) [f (x)] =

∑C
i=1 f (i)× p(x = i) is its expected value;

I Unbiased Estimator
Let X = {x1, . . . , xL} i.i.d. samples from p(x |θ), θ̂(X ) is an
unbiased estimator of θ if

Ep(X|θ)

[
θ̂(X )

]
= θ.

In this lesson we will focus only on discrete variable, but the same
holds in the continue case.

Daniele Castellana | Sampling methods



3

What is sampling?

Sampling consists drawing a set of realisation X = {x1, . . . , xL} of a
random variable x with distribution p(x).

Example.
We would like to sample a dice: p(x = i) = 1/6, i ∈ [1,6].

l xl

1 5
2 3
3 2
4 1
5 5

The set X = {5,3,2,1,5} contains L = 5 samples.
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Why do we need sampling?

Sampling schema are useful to approximate expectations and
integrals.

I if the distribution p(x) is intractable.

In General Boltzmann Machine, the computation of Z requires
exponential time!

I if the distribution p(x) has no closed form.

In Bayesian statistics, the posterior has no closed form if a
non-conjugate priori is used!
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But why sampling?

The use of sampling is justified by two main reasons:

I the empirical distribution converges almost surely to the true
distribution, i.e

lim
L→∞

1
L

L∑
l=1

I[x l = i] = p(x = i),

where I[c] = 1 if and only if c is true;
I the sampling approximation

Ep(x) [f (x)] ≈ 1
L

L∑
l=1

f (xl ) ≡ f̂X (1)

can be an unbiased estimator.
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Sampling Approximation

Let p̃(X ) the distribution over all possible realisations of the sampling
set X , then f̂X is an unbiased estimator if

Ep̃(X )

[
f̂X
]

= Ep(x) [f (x)] . (2)

This is true provided that p̃(xl ) = p(xl )!

The proof is given in the Appendix.
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Variance of Sampling Approximation
Definition

The variance of f̂ (X ) tell us how much we can rely on the
approximation computed using the sampling set X .

Let
∆f̂X = f̂X − Ep̃(X )

[
f̂X
]
, (3)

the variance of f̂ (X ) is given by:

Ep̃X

[(
∆f̂X

)2
]
.

If the variance is low, f̂ (X ) is (quite) always close to Ep(x) [f (x)]!
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Variance of Sampling Approximation

If we assume:
I p̃(xl ) = p(xl ) (same marginals);
I p̃(xl , xl′) = p̃(xl )p̃(xl′) (samples independence);

we obtain

Ep̃X

[(
∆f̂X

)2
]

=
1
L

Varp(x)[f (x)]. (4)

The proof is given in the Appendix.

We can reduce the variance using a small number of samples!

Provided that Varp(x)[f (x)]) is finite.
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Small recap

So far, we have shown that:
I we need sampling!
I p̃(xl ) = p(xl ) must holds to have a valid sampler.
I if p̃(xl , xl′) = p̃(xl )p̃(xl′) holds, we need less samples.

In the next slides we will introduce examples of sampling schema.
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Univariate Sampling

Draw samples of an univariate variable is easy!

We only need a random number generator R which produces a value
uniformly at random in [0,1].

p(x) =


0.4 x = 1
0.4 x = 2
0.2 x = 3

p(x = 1) p(x = 2) p(x = 1)

0 0.4 0.8 1

R x
0.19 1
0.24 1
0.47 2
0.88 3
0.73 2
0.63 2
0.52 2
0.96 3
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Multivariate Sampling

In the multivariate case, p(x) represents the joint distribution of a
set of variables {s1, . . . , sn}, where each si is a discrete variable.

Hence, each sample xl contains n values.

X s1 s2 s3 s4 s5

x1 1 1 2 4 5
x2 4 3 2 1 2
x3 5 2 5 3 4
...

...
...

...
...

...
xL 3 5 6 6 1
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Multivariate Sampling
Naive Approach 1

We build an univariate distribution p(S), where S is a discrete
variable with Cn states (i.e. all possible combination of si variable
states).

S s1 s2 s3 s4 s5 p(S)
1 1 1 1 1 1 p(1,1,1,1,1)
2 1 1 1 1 2 p(2,2,2,2,2)
3 1 1 1 3 3 p(3,3,3,3,3)
...

...
...

...
...

...
...

Cn C C C C C p(C,C,C,C,C)

We can sample from p(S) using the univariate schema!

This approach works only for small values of n!
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Multivariate Sampling
Naive Approach 2

Using the chain rule, we can rewrite the joint distribution as:

p(s1, . . . , sn) = p(s1)p(s2 | s1)p(s3 | s1, s2) . . . p(sn | s1, . . . , sn−1)

Them, we sample variables in the following order:

1. sample s̃1 ∼ p(s1) ;

2. sample s̃2 ∼ p(s2 | s̃1) ;

3. sample s̃3 ∼ p(s3 | s̃1, s̃2) ;

...
n. sample s̃n ∼ p(sn | s̃1, . . . , ˜sn−1) .

Easy because uni-
variate!

Unfortunately, computing the distribution p(si | sj<i ) can require
summation over an exponential number of states!
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Ancestral Sampling

The approach used in the previous slide is called Ancestral
Sampling (AS).

If the distribution p(s1, . . . , sn) is represented by a Belief Network
(BN), we can apply it directly!

s1 s2 s3 s4 s5 s6

The BN ancestral order tell us the sampling order.

{s1, s2, s4} ≺ {s3} ≺ {s6} ≺ {s5}
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Ancestral Sampling
Example

{s1, s2, s4, } ≺ {s3} ≺ {s6} ≺ {s5}

s1 s2 s3 s4 s5 s6

This is a single sample xl !

AS is an exact sampling procedure since each sample xl is indeed
independently drawn from the required distribution.
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Ancestral Sampling
Example

{ 6s1, s2, s4, } ≺ {s3} ≺ {s6} ≺ {s5}
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Ancestral Sampling
Example

{ 6s1, s2, 6s4, } ≺ {s3} ≺ {s6} ≺ {s5}

Sample s̃4 ∼ p(s4)

s̃1 s2 s3 s̃4 s5 s6

This is a single sample xl !

AS is an exact sampling procedure since each sample xl is indeed
independently drawn from the required distribution.
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Ancestral Sampling
Example

{ 6s1, 6s2, 6s4, } ≺ {s3} ≺ {s6} ≺ {s5}

Sample s̃2 ∼ p(s2)

s̃1 s̃2 s3 s̃4 s5 s6

This is a single sample xl !

AS is an exact sampling procedure since each sample xl is indeed
independently drawn from the required distribution.
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Ancestral Sampling
Example

{ 6s1, 6s2, 6s4, } ≺ {6s3} ≺ {s6} ≺ {s5}

Sample s̃3 ∼ p(s3 | s̃1, s̃2)

s̃1 s̃2 s̃3 s̃4 s5 s6

This is a single sample xl !

AS is an exact sampling procedure since each sample xl is indeed
independently drawn from the required distribution.
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Ancestral Sampling
Example

{ 6s1, 6s2, 6s4, } ≺ {6s3} ≺ {6s6} ≺ {s5}

Sample s̃6 ∼ p(s6 | s̃3)

s̃1 s̃2 s̃3 s̃4 s5 s̃6

This is a single sample xl !

AS is an exact sampling procedure since each sample xl is indeed
independently drawn from the required distribution.
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Ancestral Sampling
Example

{ 6s1, 6s2, 6s4, } ≺ {6s3} ≺ {6s6} ≺ {6s5}

Sample s̃5 ∼ p(s5 | s̃4, s̃6)

s̃1 s̃2 s̃3 s̃4 s̃5 s̃6

This is a single sample xl !

AS is an exact sampling procedure since each sample xl is indeed
independently drawn from the required distribution.
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Sampling with evidence

Suppose we that a subset of variables sε are clamped to evidential
states; writing s = sε ∪ s\ε, we would like to sample from:

p(s\ε | sε) =
p(s\ε, sε)

p(sε)

Clamping variables changes the structure of the distribution (in
previous example s1 ⊥⊥ s2, but s1 6⊥⊥ s2 | s3).

Computing the new structure is complex as running exact
inference!

An alternative is to proceed with AS and then discard any samples
which do not match the evidential states.

We discard a lot of samples!
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Gibbs Sampling

The idea is to start from a sample x1 = {s1
1, . . . , s

1
n} and to update

only one variable at a time.

Sample s1 s2 s3 s4 s5

x1 1 1 2 4 5

x2 3 1 2 4 5
x3 3 4 2 4 5
x4 3 4 2 1 5
x5 3 4 6 1 5
...

...
...

...
...

...
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Gibbs Sampling
Pros

During the (i + 1)-th iteration,
I we select a variable sj ;
I we update its value according to

p(sj | s\j ) =
1
Z

p(sj | pa(sj ))
∏

k∈ch(j)

p(sj | pa(sj )),

where variables in s\j are clamped to {si
1, . . . , s

i
j−1, s

i
j+1, . . . , s

i
n}

It depends only on the Markov blanket of sj ! Easy to sample!

Dealing with evidence is easy! We just do not select a variable!

Daniele Castellana | Sampling methods



18

Gibbs Sampling
Pros

During the (i + 1)-th iteration,
I we select a variable sj ;
I we update its value according to

p(sj | s\j ) =
1
Z

p(sj | pa(sj ))
∏

k∈ch(j)

p(sj | pa(sj )),

where variables in s\j are clamped to {si
1, . . . , s

i
j−1, s

i
j+1, . . . , s

i
n}

It depends only on the Markov blanket of sj ! Easy to sample!

Dealing with evidence is easy! We just do not select a variable!

Daniele Castellana | Sampling methods



18

Gibbs Sampling
Pros

During the (i + 1)-th iteration,
I we select a variable sj ;
I we update its value according to

p(sj | s\j ) =
1
Z

p(sj | pa(sj ))
∏

k∈ch(j)

p(sj | pa(sj )),

where variables in s\j are clamped to {si
1, . . . , s

i
j−1, s

i
j+1, . . . , s

i
n}

It depends only on the Markov blanket of sj ! Easy to sample!

Dealing with evidence is easy! We just do not select a variable!

Daniele Castellana | Sampling methods



19

Gibbs Sampling
Cons

The Gibbs sampling draws a new sample xl from q(xl | xl−1).

Samples are highly dependent! This lead to high variance!

We are not sampling from p(x) directly, so we cannot ensure that
the sampling distribution has the same marginals of p(x).

However, if we compute the limit to l →∞, the series {x1, x2, . . . }
converges to samples taken from p(x)!

In the limit of a large number of samples, the Gibbs sampler is valid!
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MCMC Sampling

The idea in Markov Chain Monte Carlo (MCMC) sampling is to build
a Markov Chain whose stationary distribution is p(x).

Let q(x l+1 | x l ) the transition distribution, we must ensure that the
Markov Chain is:
I irreducible→ it is possible to get to any state from any state;
I aperiodic→ at each time-step we can be anywhere.

Hence, the Markov Chain has a unique stationary distribution.

However, there are different q(·) which converge to p(·).

We obtain different MCMC sampling procedure!
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MCMC Sampling
Examples

There are many sampling procedure in the MCMC framework:
I Gibbs Sampling
I Metropolis-Hastings Sampling
I Hybrid Monte Carlo
I Swendson-Wang
I Slice Sampling

...

Each of them has different characteristics!
We should choose the most suitable for our purpose!
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Importance Sampling

Important Sampling (IS) approximates expectations w.r.t. p(x) using
importance distribution q(x):
I we draw samples from q(x);
I we assign weights s.t. Ep(x) [f (x)] = 1

L

∑L
l=1 f (xl )wl .

No samples are drawn from p(x)!

This allow to define recursive sampling procedure, known as
Sequential Importance Filtering (or Sequential Monte Carlo or
Particle Filtering).

We can draw samples from recursive models (e.g. HMC)!
MCMC sampling assumes the number of variables n is known.
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Importance Sampling

Important Sampling (IS) approximates expectations w.r.t. p(x) using
importance distribution q(x):
I we draw samples from q(x);
I we assign weights s.t. Ep(x) [f (x)] = 1

L

∑L
l=1 f (xl )wl .

No samples are drawn from p(x)!

This allow to define recursive sampling procedure, known as
Sequential Importance Filtering (or Sequential Monte Carlo or
Particle Filtering).

We can draw samples from recursive models (e.g. HMC)!
MCMC sampling assumes the number of variables n is known.
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Take home messages

I Sampling is needed to work with intractable distribution
I Sampling methods can be unbiased estimators with low

variance
I In the multivariate case, it is not easy to derive sampling

procedure with these characteristics
I Ancestral Sampling for Bayesian Network

I We can approximate the sampling procedure using the MCMC
I Gibbs Sampling
I Metropolis-Hastings Sampling

I We can use an IS approach to deal with recursive distribution
I Particle Filtering

See Chapter 27 of BRML book!
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Appendix

In the following slides, we provide:
I some properties of the expectation that are useful in the proofs;
I the proof of the average approximation;
I the proof of the variance approximation;
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Expectation properties

The following property are used during the proofs:
I Linearity

Ep(x) [f (x) + g(x)] = Ep(x) [f (x)] + Ep(x) [g(x)]

Ep(x) [c f (x)] = c Ep(x) [f (x)] .
(5)

I Expected value of a constant

Ep(x) [c] = c. (6)

Also, we use the symbol
(n)
= to indicate statement in equation n is

used to make a step in the proof.
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Proof Average Approximation

We want to prove that

Ep̃(X )

[
f̂X
]

= Ep(x) [f (x)] . (2)

assuming
p̃(x) = p(x) (7)

Proof.

Ep̃(X )

[
f̂X
]

(1)
= Ep̃(X )

[
1
L

L∑
l=1

f (xl )

]
(5)
=

1
L

L∑
l=1

Ep̃(xl ) [f (xl )] =

(7)
=

1
L

L∑
l=1

Ep(x) [f (x)] =
1
L
× L× Ep(x) [f (x)] = Ep(x) [f (x)] .
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Proof Variance Approximation I

We want to prove that

Ep̃X

[(
∆f̂X

)2
]

=
1
L

Varp(x)[f (x)]. (4)

assuming

p̃(x) = p(x) (7)
p̃(xi , xj ) = p̃(xi )p̃(xj ) (8)

Proof.

∆f̂X
(3)
= f̂X − Ep̃(X )

[
f̂X
]

(1) + (2)

This holds due to

assumption (7)!

=
1
L

L∑
l=1

f (xl )− Ep(x) [f (x)] =

=
1
L

L∑
l=1

f (xl )−
1
L

L∑
l=1

Ep(x) [f (x)] =
1
L

L∑
l=1

(
f (xl )− Ep(x) [f (x)]

) (9)
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Proof Variance Approximation II

Then, naming
∆f (xl ) = f (xl )− Ep(x) [f (x)] , (10)

we obtain

Ep̃X

[(
∆f̂X

)2
]

(9)
= Ep̃X

(1
L

L∑
l=1

(
f (xl )− Ep(x) [f (x)]

))2 (10)
=

= Ep̃X

(1
L

L∑
l=1

∆f (xl )

)2 = Ep̃X

 1
L2

L∑
l,l′

∆f (xl )∆f (xl′)

 (5)
=

=
1
L

Ep̃(x)
[
(∆f (x))2]+

1
L2

∑
l 6=l′

Ep̃(xl ,xl′ )
[∆f (xl )∆f (xl′)] .

(11)
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Proof Variance Approximation III

The term

1
L2

∑
l 6=l′

Ep̃(xl ,xl′ )
[∆f (xl )∆f (xl′)]

(8)
=

=
1
L2

∑
l 6=l′

Ep(xl ) [∆f (xl )] Ep(xl′ )
[∆f (xl′)] = 0,

(12)

since
Ep(xl ) [∆f (xl )]

(10)
= Ep(xl )

[
f (xl )− Ep(x) [f (x)]

] (5)+(6)
=

= Ep(x) [f (x)]− Ep(x) [f (x)] = 0.

Finally, combining (11) and (12), we obtain

Ep̃X

[(
∆f̂X

)2
]

=
1
L

Ep̃(x)
[
(∆f (x))2] =

1
L

Varp(x)[f (x)].
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