
An introduction to
Tensorflow and Keras

Intelligent Systems for Pattern Recognition (ISPR)

Luca Pedrelli
Postdoctoral Researcher at

Department of Computer Science, Università di Pisa
luca.pedrelli@di.unipi.it

1

2

Deep Learning Frameworks

- High-level Object-oriented interface
for other backand libraries:
➢ Tensorflow, Theano, CNTK.

Why we should use Tensorflow and Keras?

- Data Flow Graph
of tensor operations
➢ Automatic differentiation
➢ High degree of parallelization

Before Deep Learning Frameworks
(Linear Algebra and Numerical Analysis)

Powerful libraries for linear algebra, numerical analysis and statistics:

❖ Very efficient implementation for matrix and tensor operations:
➢ dot product, tensordot, sum, multiplication, ...

❖ Very efficient implementation for linear algebra operations:
➢ matrix factorizations, eigenvalue decomposition, SVD, cholesky, QR, …

❖ Functional programming:
➢ easy data aggregation with lambda expressions, map, reduce, filter, …
➢ easy funcion definition and composition

3

Drawbacks for Deep Learning design:
❖ No general design tools for DL

❖ No automatic differentiation

❖ GPU parallelization by hand

❖ No general parallelization depending on function structure !

However:
❖ NumPy functionalities (numpy.arrays) are widely used in most python

implementations for machine learning approaches (also in Tensorflow and
Keras)

❖ Numpy and Matlab are very useful to understand the design of Neural
Network models. (very intuitive syntax to implement matrix operations and
functions definition)

❖ Tensorflow operations are very inspired by NumPy operations 4

Understanding Deep Learning Frameworks
stemming from NumPy and Matlab

Design of Deep Neural Networks without DL frameworks

❖ Define the model function (i.e., the NN architecture):
➢ composition of differentiable operations

❖ Define the loss function (to minimize or maximize):
➢ differentiable function defined on the basis of model

functon and training data

❖ Compute analytically the derivative of the loss

❖ Implement the forward pass basing on the
model function

❖ Implement the backward pass basing on the
derivative of the loss (i.e., back-propagation)

❖ Implement the gradient descent approach
W1

W2

W3

f1

f2

f3

y = f3(W3 f2(W2 f1(W1x)))

x

MLP architecture example

5

Design of NN Architecture

...

...

... Training Set for a Supervised Learning Task

6

Delta Rule for Top Layer

...

...

...

7

Delta Rule for a generic Hidden Layer

...

...

...

8

MLP: training algorithm

If Output Layer

Otherwise

for l in L-1...0:

for l in 0...L-1:

for k ...:

for i ...:

for p in training_set:
for epoch in epochs:

9

MLP: NumPy implementation (An example)
network initialization

10

MLP: NumPy implementation (An example)
forward pass

11

MLP: NumPy implementation (An example)
backward pass

12

MLP: NumPy implementation (An example)
Online/Batch Gradient Descent

❖ Stochastic gradient descent with mini-batch approach?
❖ Parallel computing?
❖ Other gradient descent approaches? (weight decay, momentum…)
❖ …

13

Design of Deep Neural Networks without DL frameworks
(Conclusions)

❖ Compute analytically the derivative of the loss

❖ Implement the forward pass basing on the
model function

❖ Implement the backward pass basing on the
derivative of the loss (i.e., back-propagation)

W1

W2

W3

f1

f2

f3

 ?

x

MLP architecture example

14

?

?

?

Overall, if we change the topology of the network we need to
recompute the derivative and to recode the backward function!

Two Solutions:
Tensorflow and Keras allow us to
automatically compute the derivative and the
backward pass just defining the forward
pass ! (i.e., the network architecture)

❖ Define NN models by means of tensor operations
(dot product, tensor contraction, sum, multiplication, ...)

❖ Automatic differentiation based on the Graph!
We avoid to implement the backward pass!

❖ Automatic parallelization based on the Graph!
Both for CPU and GPU!

❖ Models represented as a static Data Flow Graph

15

W1

W2

W3

W4

W5

W1 A

W2 A

W3 A

W4 A

W5 A

A

tensordot(W,A,1)Tensor Input Tensor Output

Tensor

❖ A Tensor is a geometric object that can be defined in several ways
depending on the level of abstraction (Algebra, Geometry, Physics,)

❖ From a Computer Science point of view we can see a Tensor as:
➢ A multi-dimensional array:

■ Useful to represent data
➢ A multi-linear map (i.e., tensordot, tensor contraction):

■ Useful to parallelize computation on GPU and CPU

Linear Regression (A simple example)

17

Linear Regression 2 (A simple example)

18

MINST (a dataset of handwritten digits)

❖ Image classification

❖ A baseline task for
computer vision

❖ Very useful to evaluate and
design basic DL models for
computer vision

19

←

Multi Layer Perceptron (MLP) in Tensorflow

20

Cross entropy loss (typically used for classification)

...
Epoch 5: Test accuracy --> 95.40%
Epoch 6: Test accuracy --> 95.75%
Epoch 7: Test accuracy --> 95.77%
Epoch 8: Test accuracy --> 96.16%
Epoch 9: Test accuracy --> 95.83%

21

Convolutional Neural Networks (CNNs) in Tensorflow

22

MLP 95.83% of accuracy -> CNN 98.78% of accuracy❖ Fast design of DL models!

❖ We only need to recode the model structure!

❖ Automatic parallelization! Very fast computation!

❖ Drawbacks:
➢ Fast design only for simple models:

Dropout? BatchNormalization? Early stopping? RNNs?
...

➢ No support for object-oriented coding:
The model extension is difficult

23

❖ Define NN models by means of layer operations
(Dense, Conv1D, Conv2D, MaxPooling2D, Flatten, ...)

❖ Automatic differentiation based on the Graph!
We avoid to implement the backward pass!

❖ Great support for Obect-oriented coding:
➢ You can extend functionalities extending classes:

■ Model class, Layer class, ...

❖ Models represented as a stack of layers

❖ High-level Object-oriented interface for other backand libraries:
➢ Tensorflow, Theano, CNTK.

24

❖ Sequential model
➢ stack of layers
➢ easy to use

❖ Functional API
➢ function of functions
➢ general graph topologies

❖ Object-oriented
➢ model subclassing
➢ make the model extendible

Three ways to define a DL model

25

MLP in Keras

Functional API

Sequential model

Object-oriented

26

CNN in Keras

Very few code lines!
Test accuracy on MNIST -> more that 99% in 3 epochs of training 27

RNN in Keras (Many-to-one)
Classify sequences

RNN in Keras (Many-to-many)
Classify each step

28

Deep RNNs

Bidirectional RNNs

29

30

See Documentations!

https://www.tensorflow.org/ https://keras.io/

