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• Motivation
• Why unsupervised?

• Why generative?

• The DL way to generative learning
• Learning distributions with fully visible information (RNN)

• Learning distribution with latent information (VAE)

• Learning to sample (GAN)

• Applications
• Generating faces and bedrooms

• Latent space arithmetic
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• Characterize the data
• Data distribution

• Data variances 

• To allow
• Understanding data

• Generating new 
observations

• ..and ultimately 
reasoning 

Autoencoders and Manifold Learning



Why Unsupervised?
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A sustainable future for deep learning
• Learning the latent structure of data

• Discover important features

• Learn task independent representations

• Introduce (if any) supervision only on few samples
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Labelled data is costly 
and difficult to obtain



Why Generative?
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• Focusing too much on 
discrimination rather than on 
characterizing data can cause 
issues

• Reduced interpretability

• Adversarial examples
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• Generative models (try to) characterize data 
distribution

• Understand the data ⟹ Understand the world
• Understand data variances ⟹ Learn to steer them 
• Understand normality ⟹ Detect anomalies



Approaching the Problem from a DL Perspective
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Given training data, learn a (deep) neural network 
that can generate new samples from (an 
approximation of) the data distribution
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Training data ~𝑃(𝑥) Generated data ~𝑃𝜃(𝑥)

𝜃



Approaching the Problem from a DL Perspective
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Given training data, learn a (deep) neural network 
that can generate new samples from (an 
approximation of) the data distribution

Outline
Introduction
DL Approach

Two approaches

• Explicit ⟹ Learn a model density 𝑃𝜃(𝑥)

• Implicit ⟹ Learn a process that samples data from 
𝑃𝜃(𝑥) ≈ 𝑃(𝑥)



A Taxonomy
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Generative DL

Explicit Implicit

Visible Latent

Variational Stochastic

Direct Stochastic

Sampling RNN

Variational
Autoencoder

Boltzmann 
Machines

Generative 
Adversarial 
Networks

Generative 
Stochastic 
Networks

Tractable 
densities

Intractable 
densities

Adapted from I. Goodfellow, Tutorial on 
Generative Adversarial Networks, 2017



Learning with Fully Visible Information

Fully Visible Information
Variational Autoencoder
Generative Adversarial Networks

If all information is fully visible the joint distribution 
can be computed from the chain rule factorization
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𝑃 𝒙 =ෑ

𝑖

𝑁

𝑃(𝑥𝑖|𝑥1, … , 𝑥𝑖−1)

Probability of a pixel having a certain 
intensity value, given the known 
intensity of its predecessor

Need to be able to define a 
sensible ordering for the chain rule

Conditional distribution 
difficult to compute

Bayesian 
Networks



Approximating the Conditional Probability

Fully Visible Information
Variational Autoencoder
Generative Adversarial Networks

Using a deep learning approach that we have already 
encountered
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Scan the image according to a schedule and encode the 
dependency from previous pixels in the states of an RNN
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Scan the image according to a schedule and encode the 
dependency from previous pixels in the states of an RNN



Generating Images Pixel by Pixel

Fully Visible Information
Variational Autoencoder
Generative Adversarial Networks
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A. van der Oord et al., Pixel Recurrent Neural Networks, 2016

State

Input

PixelCNN Row LSTM Diagonal BiLSTM



Generating Images Pixel by Pixel - Results

Fully Visible Information
Variational Autoencoder
Generative Adversarial Networks
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A. van der Oord et al., Pixel Recurrent Neural Networks, 2016

32x32 CIFAR-10 32x32 ImageNet



From Visible to Latent Information

Fully Visible Information
Variational Autoencoder
Generative Adversarial Networks
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With only visible information, we try to learn the 𝜃
parameterized model distribution

𝑃𝜃 𝒙 =ෑ

𝑖

𝑁

𝑃𝜃(𝑥𝑖|𝑥1, … , 𝑥𝑖−1)

Now we introduce a latent process regulated by unobservable 
variables 𝒛

𝑃𝜃 𝒙 = න𝑃𝜃 𝒙 𝒛 𝑃𝜃 𝒛 𝑑𝒛

Typically intractable for non 
trivial models (cannot be 
computed for all 𝒛 assignments)



A Neural Network with Latent Variables?
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Fully Visible Information
Variational Autoencoder
Generative Adversarial Networks

𝒛

𝒙

𝒙

Encoder

Decoder

𝑃𝑒(𝒛|𝒙)

𝒙

𝒛

𝒙

𝑃𝑑(𝒙|𝒛)

Autoencoder (AE) 
neural networks

We have already 
introduced a 
probabilistic twist on AE



A Deeper Probabilistic Push
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Fully Visible Information
Variational Autoencoder
Generative Adversarial Networks

As an additional push in the probabilistic interpretation, we 
assume to be able to generate the reconstruction from a sampled 
latent representation

𝒛

𝒙
Sample from the true 
conditional 𝑃(𝒙|𝒛)

Sample latent variables from 
the true prior  𝑃(𝒛)

Of course we don’t have access to the true distributions, 
so how do we approximate them?



Variational Autoencoders (VAE) – The Catch
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Fully Visible Information
Variational Autoencoder
Generative Adversarial Networks

𝒛

𝒙
Represent the 𝑃(𝒙|𝒛)
distribution through a 
neural network g
(remember the denoising
autoencoder)

Decoder g

Sample 𝒛 from a simple 
distribution such as a Gaussian

At training time sample z
conditioned on data x and 
train the decoder g to 
reconstruct x itself from z𝑧~𝒩(𝜇 𝒙 , 𝜎(𝒙))



VAE Training – Is it all this easy?
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Ideally, one would like to train maximizing

Fully Visible Information
Variational Autoencoder
Generative Adversarial Networks

𝐿 𝐷 =ෑ

𝑖=1

𝑁

𝑃 𝒙𝒊 =ෑ

𝑖=1

𝑁

න𝑃 𝒙𝒊 𝒛 𝑃 𝒛 𝑑𝒛

Unfortunately for you: no!

Intractable Non differentiable

Variational
approximation

Reparameterization



Reparameterization Trick
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Fully Visible Information
Variational Autoencoder
Generative Adversarial Networks

𝒛

𝒙

Sample
𝑧~𝒩(𝜇 𝒙 , 𝜎(𝒙))

𝜇 𝒙 𝜎(𝒙)

Non-
differentiable 
operation

𝒛

𝒙

Sample
𝜖~𝒩(0,1)𝜇 𝒙 𝜎(𝒙)

Sampling is limited to non 
differentiated variable 𝜖 ⟹ Can 
backpropagate



Variational Approximation
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The revenge of the ELBO (Evidence Lower BOund)

Fully Visible Information
Variational Autoencoder
Generative Adversarial Networks

log 𝑃 𝑥|𝜃 ≥ 𝔼𝑄 log 𝑃(𝑥, 𝑧) − 𝔼𝑄 log𝑄 𝑧 = ℒ(𝑥, 𝜃, 𝜙)

Maximizing the ELBO allows approximating from below 
the intractable log-likelihood log 𝑃 𝑥

𝐾𝐿 𝑄 𝑧|𝜙 ||𝑃(𝑧|𝜃)

ℒ 𝑥, 𝜃, 𝜙 = 𝔼𝑄 log 𝑃(𝑥|𝑧) + 𝔼𝑄 log 𝑃(𝑧) − 𝔼𝑄 log 𝑄 𝑧

Decoder estimate of the 
conditional, made possible 
and differentiable through 
the reparameterization trick

Need a Q(z) function to 
approximate P(z)



Variational Autoencoder – The Full Picture
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Decoder g

𝒛

𝒙

Sample
𝜖~𝒩(0,1)𝜇 𝒙 𝜎(𝒙)

Decoder 
network 
𝑃(𝒙|𝒛, 𝜃)
with 
parameters 𝜃

×+

Encoder Q

𝒙

Encoder 
network 
𝑄 𝒛|𝒙, 𝜙
with 
parameters 𝜙

Training time architecture

Typically a 
Gaussian



VAE Training
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Fully Visible Information
Variational Autoencoder
Generative Adversarial Networks

Training is performed by backpropagation on 𝜃, 𝜙 to 
optimize the ELBO

ℒ 𝑥, 𝜃, 𝜙 = 𝔼𝑄 log 𝑃(𝑥|𝑧 = 𝜇 𝑥 + 𝜎 Τ1 2 𝑥 ∗ 𝜖, 𝜃)

- 𝐾𝐿 𝑄 𝑧|𝑥, 𝜙 ||𝑃(𝑧|𝜃)

reconstruction

regularization

Can be computed in closed form when 
both Q(z) and P(z) are Gaussians

𝐾𝐿 𝒩(𝜇(𝑥), 𝜎(𝑥)) ||𝒩(0,1)

Train the encoder to 
behave like a Gaussian 
prior with zero-mean and 
unit-variance



Sampling the VAE (a.k.a. testing)
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Fully Visible Information
Variational Autoencoder
Generative Adversarial Networks

At test time detach the 
encoder, sample a random 
encoding and generate the 
sample as the corresponding 
reconstruction

Decoder g

𝒙

Sample
𝒛~𝒩(0,1)

𝜇 𝒛 𝜎(𝒛)

Sample 
𝒙 ~𝒩(𝜇 𝒛 , 𝜎(𝒛))



VAE vs Denoising/Contractive AE

Introduction
Generative DL

Wrap-up

Fully Visible Information
Variational Autoencoder
Generative Adversarial Networks

x
x
x

x
x x

x

x noisy samples x original sampleContractive 
AE

Variational
AE

x

x



VAE Examples - Digits
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Fully Visible Information
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Organization of data in 
the latent space

Reconstruction of 
points sampled from 

latent space
Image credits @ fastfowardlabs.com



VAE Examples - Faces
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Fully Visible Information
Variational Autoencoder
Generative Adversarial Networks

Hou et al, Deep Feature Consistent 
Variational Autoencoder, 2017

Latent space 
interpolation



Distribution Learning Vs Learning to Sample
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• Variational AEs learn to approximate an intractable 
distribution

𝑃𝜃 𝒙 = න𝑃𝜃 𝒙 𝒛 𝑃𝜃 𝒛 𝑑𝒛

then sample it to generate the output

• What if we learn to generate samples rather than 
learning the distribution?

• Generative Adversarial Networks (GAN)

• Game theoretic approach

Fully Visible Information
Variational Autoencoder
Generative Adversarial Networks



The GAN Catch
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• We need to learn to sample from a complex, 
high-dimensional training distribution

• No straightforward way to do this

• The catch
• Sample from a simple distribution:  random noise

• Train a differentiable function (neural network) to 
transform random noise to the training distribution 

Fully Visible Information
Variational Autoencoder
Generative Adversarial Networks



Generative Adversarial Networks
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Fully Visible Information
Variational Autoencoder
Generative Adversarial Networks

Random Noise𝒛

Generator Network

Fake 
images

Original 
images

Dataset

Discriminator Network

Original or Fake

Try to generate real looking samples 
that can fool discriminator

Try to tell original 
samples from fake

Again, a two-steps 
architecture

z size ≥ x size to 

allow the G 

distribution full 

support on x

𝒙𝐺(𝒛)



GAN Training - A Game for 2 Players
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Fully Visible Information
Variational Autoencoder
Generative Adversarial Networks

• Discriminator output is likelihood of input being 
real

• Discriminator tries to maximize 𝐶 s.t.
• 𝐷𝜃𝐷 𝑥 → 1 and 𝐷𝜃𝐷 𝐺𝜃𝐺(𝑧) → 0

• Generator tries to minimize 𝐶 s.t.
• 𝐷𝜃𝐷 𝐺𝜃𝐺(𝑧) → 1

𝐶 = min
𝜃𝐺

max
𝜃𝐷

𝔼𝑥 log 𝐷𝜃𝐷 𝑥 − 𝔼𝑧 log(1 − 𝐷𝜃𝐷 𝐺𝜃𝐺(𝑧) )

Discriminator output 
for real data x

Discriminator output 
for fake data G(z)



Alternate Optimization
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𝐶 = min
𝜃𝐺

max
𝜃𝐷

𝔼𝑥 log 𝐷𝜃𝐷 𝑥 − 𝔼𝑧 log(1 − 𝐷𝜃𝐷 𝐺𝜃𝐺(𝑧) )

1. Discriminator gradient ascent

2. Generator gradient descent

𝐶𝐷 = max
𝜃𝐷

𝔼𝑥 log𝐷𝜃𝐷 𝑥 − 𝔼𝑧 log(1 − 𝐷𝜃𝐷 𝐺𝜃𝐺(𝑧) )

𝐶𝐺 = min
𝜃𝐺

𝔼𝑧 log(1 − 𝐷𝜃𝐷 𝐺𝜃𝐺(𝑧) )

Optimizing this doesn’t really work



The Issue and a Solution
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The cost that the Generator receives in response to 
generate G(z) depends only on the Discriminator response 

𝐶𝐺 = max
𝜃𝐺

𝔼𝑧 log(𝐷𝜃𝐷 𝐺𝜃𝐺(𝑧) )
maximize likelihood of 

discriminator being wrong

Flat gradient when sample is plainly fake



A Hard Two-Player Game
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• The optimal solution 
of the min-max 
problem is a saddle 
point

• Little stability
• Lot of heuristic work

• Open problem

Fully Visible Information
Variational Autoencoder
Generative Adversarial Networks



GAN Training Pseudo-Algorithm
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Fully Visible Information
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Stability trick but difficult to choose k

Expectation



The DCGAN Architecture 
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Generator for image sampling

Random 
vector

Fake image

Upconvolution +  
batch 
normalization

Radford et al, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial 
Networks”, ICLR 2016



GAN and Images
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Radford et al, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial 
Networks”, ICLR 2016



Latent Space Arithmetic
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Can do sensible linear operations on noise vectors 
(arithmetic, interpolation)

𝒛1
𝒛2

𝒛3
𝒛𝐺

𝒛𝐺 = 𝒛1 − 𝒛2 + 𝒛3

Radford et al, “Unsupervised Representation Learning with Deep 
Convolutional Generative Adversarial Networks”, ICLR 2016



Conditional Generation
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Learn a mapping from an observed side information x and a random noise 
vector z to the fooling samples y

𝐺: 𝑥, 𝑧 → 𝑦

Antipov et al, “Face Aging With Conditional Generative Adversarial Networks”, ICIP 2017



Conditional Generation – Image2Image
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Fully Visible Information
Variational Autoencoder
Generative Adversarial Networks

Isola et al, “Image-to-Image Translation with Conditional Adversarial Networks”, 2016



Best of 2 worlds?

Introduction
Generative DL

Wrap-up

Fully Visible Information
Variational Autoencoder
Generative Adversarial Networks

Adversarial autoencoders (AAE)

Force the latent codes to be indistinguishable from samples of 
a priori distribution



Training AAE

• Reconstruction phase - Update the encoder and 
decoder to minimize reconstruction error 

• Regularization phase - Update discriminator to 
distinguish true prior samples from generated 
samples; update generator to fool the discriminator

• Adversarial regularization allows to impose priors 
for which we cannot compute the KL divergence
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Fully Visible Information
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ℒ 𝑥 = 𝔼𝑄 log 𝑃(𝑥|𝑧) - 𝐾𝐿 𝑄 𝑧|𝑥 ||𝑃(𝑧)

Replaced by an adversarial loss



Wasserstein Distance Models

Attempts to solve the hardness of training adversarial 
generators by optimizing the Wasserstein distance (EMD) 
between the generator and empirical distribution filtered 
trough the discriminator function D  
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𝐺∗ = argmin
𝐺

𝑾(𝜇, 𝜇𝐺)

= argmin
𝐺

max
𝐷 𝐿≤1

𝔼𝑥~𝜇 𝐷(𝑥) − 𝔼𝑥~𝜇𝐺 𝐷(𝑥)

𝐷 𝐿 ≤ 1 Requires optimizing D under a constraint 
on Lipschitz seminorm

• Clipping D weights (slow to converge)    



Software

Software
Conclusions

• A TF implementation of PixelCNN

• A list of acknowledged VAE implementations is kept 
by Kingma here

• Plenty of DCGAN implementations
• Torch
• Tensorflow

• Conditional GAN for image-to-image
• Pytorch code 
• Demo

• So many GANs: check out the GAN-Zoo
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https://github.com/openai/pixel-cnn
http://dpkingma.com/?page_id=393
https://github.com/soumith/dcgan.torch
https://github.com/carpedm20/DCGAN-tensorflow
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
https://affinelayer.com/pixsrv/
https://github.com/hindupuravinash/the-gan-zoo


Take Home Messages
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Software
Conclusions

• PixelRNN/ PixelCNN – Learn explicit distributions by 
optimizing exact likelihood

• Yields good samples
• Inefficient sequential generation

• VAE – Learn complex distributions over latent variables 
through a variational approximation using neural 
networks

• Learns a latent representation useful for inference
• Poor generated sample quality

• GAN – Learn to sample rather than learn the 
distribution

• State of the art generated sample quality
• Unstable/difficult to train 
• Cannot perform inference (no distribution learning)
• Need differentiable generator (how to generate discrete 

items?)


