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Dynamical	Recurrent	Models
} Neural	network	architectures	with	feedback	connections	
are	able	to	deal	with	temporal	data	 in	a	natural	fashion

} Computation	is	based	on	dynamical	systems
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dynamical component

feed-forward component



Recurrent	Neural	Networks	(RNNs)
} Feedbacks	allows	the	representation	of	the	temporal context in	
the	state	(neural	memory)

} Discrete-time	non-autonomous	dynamical	system
} Potentially	the	input	history	can	be	maintained	for	arbitrary	
periods	of	time

} Theoretically	very	powerful
} Universal	approximation	through	learning
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Learning	with	RNNs	(repetita)
} Universal	approximation	of	RNNs	(e.g.	SRN,	NARX)	through	
learning

} Training	algorithms	involve	some	downsides	that	you	
already	know
} Relatively	high	computational	training	costs	and	potentially	
slow	convergence

} Local	minima	of	the	error	function	(which	is	generally	non-
convex)

} Vanishing	of	the	gradients	and	problem	of	learning	long-term	
dependencies
} Alleviated	by	gated	recurrent	architectures	(although	training	is	made	
quite	complex	in	this	case)
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Dynamical	Recurrent	Networks	trained	easily

Question:
} Is	it	possible	to	train	RNN	architectures	more	efficiently?

} We	can	shift	the	focus	from	training	algorithms	to	the	
study	of	initialization	conditions	and	stability of	the	
input-driven	system

} To	ensure	stability	of	the	dynamical	part	we	must	
impose	a	contractive	property	to	the	system	dynamics
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Liquid	State	Machines
} W.	Maas,	T.	Natschlaeger,	H.	Markram (2002)

} Originated	from	the	study	of	biologically	inspired	spiking	neurons
} The	liquid	should	satisfy	a	pointwise	separation	property
} Dynamics	provided	by	a	pool	of	spiking	neurons	with	bio-inspired	arch.	
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W. Maass, T. Natschlaeger, and H. Markram, Real-time computing without
stable states: A new framework for neural computation based on perturbations,
Neural Computation. 14(11), 2531–2560, (2002)

Integrate-and-fire

Izhikevich



Fractal	Prediction	Machines
} P.	Tino,	G.	Dorffner (2001)

} Contractive	Iterated	Function	Systems
} Fractal	Analysis
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Tino, P., Dor®ner, G.: Predicting the future of discrete sequences from 
fractal representations of the past. Machine Learning 45 (2001) 187-218



Echo	State	Networks
} H.	Jaeger	(2001)

} Control	the	spectral	properties	of	the	recurrence	matrix
} Echo	State	Property
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Jaeger, H.: The "echo state" approach to analysing and training recurrent neural networks. 
Technical Report GMD Report 148, German National Research Center for Information Technology 
(2001)

Jaeger, H., Haas, H.: Harnessing nonlinearity: Predicting chaotic systems and saving energy 
in wireless communication. Science 304 (2004) 78-80
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Reservoir	Computing
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} Reservoir:	untrained	non-linear	recurrent	hidden	layer
} Readout:	(linear)	output	layer

} Initialize	𝐖() and	𝐖*
randomly

} Scale	𝐖* to	meet	the	
contractive/stability	property

} Drive	the	network	with	the	
input	signal

} Discard	an	initial	transient
} Train	the	readout	

𝐱 t = tanh(𝐖()𝒖 𝑡 +𝐖* 	𝐱(t − 1))

𝐲 t = 	𝐖678𝒙 𝑡

Verstraeten, David, et al. "An experimental
unification of reservoir computing
methods." Neural networks 20.3 (2007): 391-403.
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Echo	State	Networks



Echo	state	Network:	Architecture
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Input Space: Reservoir State Space: Output Space:

} Reservoir:	untrained,	large,	sparsely	connected,	non-linear	layer

} Readout:	trained,	linear	layer



Echo	state	Network:	Architecture
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Input Space: Reservoir State Space: Output Space:

Reservoir
} Non-linearly	embed	the	input	into	a	higher	dimensional	feature	space	where	

the	original	problem	is	more	likely	to	be	solved	linearly	(Cover’s	Th.)
} Randomized	basis	expansion	computed	by	a	pool	of	randomized	filters
} Provides	a	“rich”	set	of	input-driven	dynamics
} Contextualize	each	new	input	given	the	previous	state:	memory

Efficient:	the	recurrent	part	is	left	completely	untrained



Echo	state	Network:	Architecture
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Input Space: Reservoir State Space: Output Space:

Readout
} Compute	the	features	in	the	reservoir	state	space	for	the	output	
computation

} Typically	implemented	by	using	linear	models



Reservoir:	State	Computation
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} It	is	also	useful	to	consider	the	iterated	version	of	the	state	
transition	function
} the	reservoir	state	after	the	presentation	of	an	entire	input	sequence

} The	reservoir	layer	implements	the	state	transition	function	of	
the	dynamical	system



Echo	State	Property	(ESP)
A	valid	ESN	should	satisfy	the	“Echo	State	Property”	(ESP)
} Def.	An	ESN	satisfies	the	ESP	whenever:

} The	state	of	the	network	asymptotically	depends	only	on	the	
driving	input	signal

} Dependencies	on	the	initial	conditions	are	progressively	lost
} Equivalent	definitions:	state	contractivity,	state	forgetting	and	
input	forgetting
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Conditions	for	the	ESP
The	ESP	can	be	inspected	by	controlling	the	algebraic	properties	
of	the	recurrent	weight	matrix	
} Theorem.	If	the	maximum	singular	value	of							is	less	than	1	
then	the	ESN	satisfies	the	ESP.
} Sufficient	condition	for	the	ESP	(contractive	dynamics	for	every	input)

} Theorem. If	the	spectral	radius	of							is	greater	than	1	than	
(under	mild	assumptions)	the	ESN	does	not	satisfy	the	ESP.
} Necessary	condition	for	the	ESP	(stable	dynamics)

} recall:	the	spectral	radius	is	the	maximum	among	the	absolute	values	
of	the	eigenvalues
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ESN	Initialization:	How	to	setup	the	Reservoir
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} Elements	in	𝐖() are	selected	randomly	in	[−𝑠𝑐𝑎𝑙𝑒(), 𝑠𝑐𝑎𝑙𝑒()]
} 𝐖* initialization	procedure:

} Start	with	a	randomly	generated	matrix	𝐖*AB)C
} Scale	𝐖*AB)C to	meet	the	condition	for	the	ESP	(usually:	the	necessary	one)



ESN	Training
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} Run	the	network	on	the	whole	input	sequence	and	collect	the	
reservoir	states

} Discard	an	initial	transient	(washout)
} Solve	the	least	squares	problem	defined	by

s



Training	the	Readout
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} On-line	training	is	not	the	standard	choice	for	ESNs
} Least	Mean	Squares	is	typically	not	suitable

} High	eigenvalue	spread	(i.e.	large	condition	number)	of	X

} Recursive	Least	Squares	is	more	suitable

} Off-line	training	is	standard	in	most	applications
} Closed	form	solution	of	the	least	squares	problem	by	direct	
methods
} Moore-Penrose	pseudo-inversion

} Possible	regularization	using	random	noise	in	the	states

} Ridge-regression

} 𝝀𝒓 is	a	regularization	coefficient	(the	higher,	the	more	the	readout	is	regularized)



Training	the	Readout/2
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} Multiple	readouts	for	the	same	reservoir
} Solving	more	than	1	task	with	the	same	reservoir	dynamics

} Other	choices	for	the	readout:
} Multi-layer	Perceptron
} Support	Vector	Machine
} K-Nearest	Neighbor
} …



ESN	– Algorithmic	Description:	Training
} Initialization

} Win = 2*rand(Nr,Nu) - 1; Win = scale_in * Win;

} Wh = 2*rand(Nr,Nr) - 1; Wh = rho * (Wh / max(abs(eig(Wh)));

} state = zeros(Nr,1);

} Run	the	reservoir	on	the	input	stream
} for t = 1:trainingSteps

state = tanh(Win * u(t) + Wh * state);
X(:,end+1) = state;

end

} Discard	the	washout
} X = X(:,Nwashout+1:end);

} Train	the	readout
} Wout = Ytarget(:,Nwashout+1:end)*X’*inv(X*X’+lambda_r*eye(Nr));

} The	ESN	is	now	ready	for	operation	(estimations/predictions)
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ESN	– Algorithmic	Description:	Operation	Phase
} Run	the	reservoir	on	the	input	stream	(test	part)

} for t = testSteps
state = tanh(Win * u(t) + Wh * state);
output(:,end+1) = Wout * state;

end

} Note:	when	working	on	a	single	time-series	you	do	not	need	to
} re-initialize	the	state
} discard	the	initial	transient
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ESN	Hyper-parameterization	&	Model	Selection
Implement	ESNs	following	a	good	practice	for	model	
selection	(like	for	any	other	ML/NN	model)
} Careful	selection	of	network’s	hyper-parameters

} reservoir	dimension	
} spectral	radius
} input	scaling
} readout		regularization	
} …
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ESN	Major	Architectural	Variants
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} direct	connections	from	the	input	to	the	readout

} feedback	connections	from	the	output	to	the	reservoir

} might	affect	the	stability	of	the	network’s	dynamics
} small	values	are	typically	used



ESN	for	sequence-to-element	tasks
} The	learning	problem	requires	one	single	output	for	each	input	sequence
} Granularity	of	the	task	is	on	entire	sequences	(not	on	time-steps)

} example:	sequence	classification
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input	sequence

output	element

time	→

𝒙(𝟏)

𝒙(𝟑)

𝒙(𝟒)
𝒙(𝟓)

𝒙(𝟐)

𝒙(𝒔) 𝒚(𝒔)

} Last	state
} 𝒙 𝑠 = 𝒙 𝑁N

} Mean	state
} 𝒙 𝑠 = O

PQR ∑ 𝒙(𝑡)PQ
8TO

} Sum	state
} 𝒙 𝑠 = ∑ 𝒙(𝑡)PQ

8TO

𝒔 = [𝒖 𝟏 ,… , 𝒖 𝑵𝒔 ]



Leaky	Integrator	ESN	(LI-ESN)
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} Use	leaky	integrator	reservoir	units

} Apply	an	exponential	moving	average	to	reservoir	states
} low-pass	filter	to	better	handle	input	signals	that	change	slowly	with	

respect	to	the	sampling	frequency

} the	leaking	rate	parameter 𝑎 ∈ 0,1
} controls	the	speed	of	reservoir	dynamics	in	reaction	to	the	input
} smaller	values	imply	reservoir	that	react	more	slowly	to	the	input	changes
} if	a	=	1 then	standard	ESN	dynamics	are	obtained
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Examples	of	Applications



Applications	of	ESNs:	Examples	/1
} ESNs	for	modeling	chaotic	time	series
} Mackey-Glass	time	series
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contraction coefficient reservoir dimension

} for	α	>	16.8	the	system	has	a	chaotic	attractor

} most	used	values	are	17	and	30

ESN	performance	on	the	MG17	task



Applications	of	ESNs:	Examples	/2
} Forecasting	of	indoor	user	movements
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Generalization	of	predictive	performance	to	unseen	
environments

https://archive.ics.uci.edu/ml/datasets/Indoor+User+Movement+Prediction+from+RSS+data
Dataset	is	available	online	on	the	UCI	repository

q Deployed	WSN:	4	fixed	sensors	(anchors)	
&	1	sensor	worn	by	the	user	(mobile)

q Predict	if	the	user	will	change	room	
when	she	is	in	position	M

q Input:	received	signal	strength	(RSS)	data	
from	the	4	anchors	(10	dimensional	
vector	for	each	time	step,	noisy	data)

q Target:	binary	classification	(change	
environmental	context	or	not)

http://fp7rubicon.eu/



Applications	of	ESNs:	Examples	/2
} Forecasting	of	indoor	user	movements	– Input	data
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example	of	the	RSS	traces	
gathered	from	all	the	4	
anchors	in	the	WSN,	for	
different	possible	
movement	paths



Applications	of	ESNs:	Examples	/3
} Human	Activity	Recognition	(HAR)	and	Localization
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q Input from	heterogeneous	sensor	sources	(data	fusion)
q Predicting	event	occurrence	and	confidence
q High	accuracy of	event	recognition/indoor	localization

>	90	%	on	test	data
q Effectiveness	in	learning a	variety	of	HAR tasks	
q Effectiveness	in	training	on	new events



Applications	of	ESNs:	Examples	/4
} Robotics
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q Indoor	localization	estimation	in	critical	environment	
(Stella	Maris	Hospital)

q Precise	robot		localization	estimation	using	noisy	RSSI	
data	(35	cm)

q Recalibration	in	case	of	environmental	alterations	or	
sensor	malfunctions

q Input:	temporal	sequences	of	RSSI	values	
(10	dimensional	vector	for	each	time	step,	noisy	data)

q Target:	temporal	sequences	of	laser-based	localization	
(x,y)



Applications	of	ESNs:	Examples	/7
} Human	Activity	Recognition
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q Classification	of	human	daily	activities from	RSS	data	
generated	by	sensors	worn	by	the	user

q Input:	temporal	sequences	of	RSS	values	
(6	dimensional	vector	for	each	time	step,	noisy	data)

q Target:	classification	of	human	activity	
(bending,	cycling	,	lying,	sitting,	standing,	walking)

q Extremely	good	accuracy	(	≈	0,99)	and	F1	score	(	≈	0,96)

q 2nd	Prize	at	2013	EvAAL International	Competition

http://archive.ics.uci.edu/ml/datasets/Activity+Recognition+system+based+on+Multisensor+data+fusion+%28AReM%29
Dataset	is	available	online	on	the	UCI	repository



Applications	of	ESNs:	Examples	/8
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Wii 
Balance 
Board

BBS

} Autonomous	Balance	Assessment
} An	unobtrusive	automatic	system	for	balance	assessment	in	elderly
} Berg	Balance	Scale	(BBS)	test:	14	exercises/items	(̴30	min.)

} Input:	stream	of	pressure	data	gathered	from	the	4	corners	Nintendo	Wii	board	
during	the	execution	of	just	1	(over	the	14)	BBS	exercises

} Target:	global	BBS	score	of	the	user	(0-56)
} The	use	of	RNNs	allow	to	automatically	exploit	the	richness	of	the	signal	

dynamics oremi



Applications	of	ESNs:	Examples	/8

36

} Autonomous	Balance	Assessment
} Excellent	prediction	performance	using	LI-ESNs

} Practical	example	of	how	performance	can	be	improved	in	a	real-world	case
} By	an	appropriate	design	of	the	task	
e.g.	inclusion	of	clinical	parameters	in	input

} By	an	appropriate	choices	for	the	network	design
e.g.	by	using	a	weight	sharing	approach	on	the	input-to-reservoir	connections

LI-ESN	model Test	MAE	
(BBS	points)

Test	R

standard 4,80	± 0,40 0,68

+	weight 4,62	± 0,30 0,69

LR weight	sharing	(ws) 4,03	± 0,13 0,71

ws	+	weight 3,80	± 0,17 0,76

q Very	good	comparison	

q with	related	models	
(MLPs,	TDNN,	RNNs,	NARX,	…)

q with	literature	approaches

oremi



Applications	of	ESNs:	Examples	/9
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} Phones	recognition	with	reservoir	networks
} 2-layered	ad-hoc	reservoir	architecture

} layers	focus	on	different	ranges	of	frequencies	(using	appropriate	
leaky	parameters)	and	focus	on	different	sub-problems

Triefenbach, Fabian, et al. "Phoneme recognition with large hierarchical 
reservoirs." Advances in neural information processing systems. 2010.

Triefenbach, Fabian, et al. "Acoustic modeling with hierarchical reservoirs." IEEE 
Transactions on Audio, Speech, and Language Processing 21.11 (2013): 2439-2450.
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Extensions	to	Structured	Data



Learning	in	Structured	Domains
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Sequences Trees Graphs

QSPR analysis of Alkanes

Boiling 
Point

Predictive Toxicology  ChallengeMG -Chaotic Time Series Prediction

{−1, +1}

} In	many	real-world	application	domains	the	information	of	interest	can	be	
naturally	represented	by	the	means	of	structured	data	representations.

} The	problems	of	interest	can	be	modeled	as	regression	or	classification	
tasks	on	structured	domains.



Learning	in	Structural	Domains
} Recursive	Neural	Networks	extend	the	applicability	of	RNN	methodologies	

to	learning	in	domains	of	trees	and	graphs
} Randomized	approaches	enable	efficient	training	and	state-of-the	art	

performance
} Echo	State	Networks	extended	to	discrete	structures:

Tree	and	Graph	Echo	State	Networks

} Basic	Idea:	the	reservoir	is	applied	to	each	node/vertex	of	the	input	
structure	

[C. Gallicchio, A. Micheli, Priceedings of IJCNN 2010] [C. Gallicchio, A. Micheli, Neurocomputing, 2013]



Learning	in	Structured	Domains
} The	reservoir	operation	is	generalized	from	temporal	
sequences	to	discrete	structures

} State	transition	systems	on	discrete	tree/graph	structures

41

Standard ESN Tree ESN Graph ESN



TreeESN:	Reservoir
} Large,	sparsely	connected,	untrained	layer	of	non-linear	
recursive	units

} Input	driven	dynamical	system	on	discrete	tree	structures
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TreeESN:	State	mapping	and	Readout
} State	Mapping	function	for	tree-to-element	tasks

} one	single	output	vector	(unstructured)	is	required	for	each	
input	tree

} example:	document	classification

} Readout	computation	and	training	is	as	in	the	case	of	
standard	Reservoir	Computing	approaches
} tree-to-tree	(isomorphic	transductions)
} tree-to-element

43

( )x t

Root State Mapping

Mean State Mapping



TreeESN:	Echo	State	Property
} The	recursive	reservoir	dynamics	can	be	left	untrained	
provided	that	a	stability	property	is	satisfied

} Tree	ESP:	asymptotic	stability	conditions	on	tree	structures

} for	two	any	initial	states,	the	state	computed	for	the	root	of	the	input	tree	should	
converge	for	increasing	height	of	the	tree

} the	influence	of	a	perturbation	in	the	label	of	a	node	will	progressively	fade	away

} Sufficient	condition	for	the	ESP	for	trees
} being	contractive

} Necessary	condition
} being	stable

44

[C. Gallicchio, A. Micheli, Information Sciences, 2019]

degree



TreeESN:	Efficiency
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Computational Complexity
Extremely efficient RC approach: only the linear readout parameters are trained

Encoding Process

For each tree t

• Scales linearly with the number of nodes and the reservoir dimension
• The same cost for training and test
• Compares well with state of art methods for trees:

• RecNNs: extra cost (time + memory) for gradient computations
• Kernel methods: higher cost of encoding (e.g. Quadratic in PT kernels)

number of nodes max degree number of reservoir unitsdegree of 
connectivity

Output Computation
• Depends on the method used (e.g.  Direct using SVD or iterative)
• The cost of training the linear TreeESN readout is generally inferior to the cost 

of training MLPs or SVMs (used in RecNNs and Kernels)



Reservoir	in	Graph	Echo	State	Networks
} Input-driven	dynamical	system	on	discrete	graphs
} The	same	reservoir	architecture	is	applied	to	all	the	
vertices	in	the	structure	

} Stability	of	the	state	update	ensures	a	solution	even	in	
case	of	cyclic	dependencies	among	state	variables

46
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GraphESN:	Echo	State	Property
} A	stability	constraint	is	required	to	achieve	usable	
dynamics

} Foundational	idea:	resort	to	contractive	dynamics
} Contractive	dynamics	ensure	the	convergence	of	the	encoding	
process	(Banach Th.)

} Enables	an	iterative	computation	of	the	encoding	process

} Sufficient	condition
} Necessary	condition

47



Research	on	Reservoir	Computing	(In	our	group)
} Applications	to	complex	real-world	tasks

} NLP,	earthquake	time-series,	human	monitoring,	…

} Gated	Reservoir	Computing	Models
} RC-based	analysis	of	fully	trained	RNNs
} Unsupervised	adaptation	of	reservoirs

} edge	of	stability/chaos
} Bayesian	optimization

} Deep	Echo	State	Networks
} Advanced	mathematical	analysis
} Architectural	construction	of	hierarchical	RC

} Deep	RC	for	Structures

48
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Echo	State	Network	Dynamics



Echo	State	Property
} Assumption:	Input	and	state	spaces	are	compact	sets
} A	reservoir	network	whose	state	update	is	ruled	by

satisfies	the	ESP	if	initial	conditions	are	asymptotically
forgotten

} The	state	dynamics	provides	a	pool	of		“echoes”	of	the	driving	
input

} Essentially,	this	is	an	stability condition	(global	asymptotic	
stability	in	the	sense	of	Lyapunov)

50



Echo	State	Property:	Stability
} Why	a	stable	regime	is	so	important?
} An	unstable	network	exhibits	sensitivity	to	input	
perturbations
} Two	slightly	different	(long)	input	sequences	drive	the	network	
into	(asymptotically	very)	different	states

} Good	for	training
} The	state	vectors	tend	to	be	more	and	more	linearly	separable	
(for	any	given	task)

} Bad	for	generalization:	overfitting!
} No	generalization	ability	if	a	temporal	sequence	similar	to	one	
in	the	training	set	drives	the	network	into	completely	different	
states

51



ESP:	Sufficient	Condition
} The	sufficient	condition	for	the	ESP	analyzes	the	case	of	
contractive dynamics of	the	state	transition	function

} Whatever	is	the	driving	input	signal:
If	the	system	is	contractive	then	it	will	exhibit	stability

} In	what	follows,	we	assume	state	transition	functions	of	
the	form:

52

input previous statenew state

input weight matrix recurrent weight matrix



Contractivity
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The	reservoir	state	transition	function	rules	the	evolution	of	the	
corresponding	dynamical	system

} Def.	The	reservoir	has	contractive	dynamics	whenever	its	state	
transition	function	F is	Lipschitz	continuous	with	constant	C	<	1



Contractivity and	the	ESP
} Theorem. If	an	ESN	has	a	contractive	state	transition	function	F	(and	bounded	

state	space),	then	it	satisfies	the	Echo	State	Property
} Assumption:	F is	contractive	with	parameter	C	<	1

} Given	this	condition:

} We	want	to	show	that	the	ESP	holds	true:

54

(Contractivity)

(ESP)



Contractivity and	the	ESP
} Theorem. If	an	ESN	has	a	contractive	state	transition	function	F,	then	it	

satisfies	the	Echo	State	Property
} Assumption:	F is	contractive	with	parameter	C	<	1

55

goes to 0 as n goes to infinity à the ESP holds



Contractivity and	Reservoir	Initialization
} If	the	reservoir	is	initialized	to	implement	a	contractive	mapping	
than	the	ESP	is	guaranteed	(in	any	norm,	for	any	input)

} Formulation	of	a	sufficient	condition	for	the	ESP
} Assumptions:	

} Euclidean	distance	as	metric	in	the	state	space	(use	L2-norm)
} Reservoir	units	with	tanh activation	function	(note:	squashing	nonlinearities	
bound	the	state	space)

56



Markovian	Nature	of	state	space	organizations
} Contractive	dynamical	systems	are	related	to	suffix-based	state	
space	organizations

} States	assumed	in	correspondence	of	different	input	sequences		
sharing	a	common	suffix	are	close	to	each	other	proportionally	to	
the	length	of	the		common	suffix
} similar	sequences	are	mapped	to	close	states
} different	sequences	are	mapped	to	different	states
} similarities	and	dissimilarities	are	intended	in	a	suffix-based	fashion

} RNNs	initialized	with	small	weights	(with	contractive	state	transition	
function)		and	bounded	state	space	implement	(approximate	
arbitrarily	well)	definite	memory		machines
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Markovian	Nature	of	state	space	organizations
} Markovian	Architectural	bias	of	RNNs

} recurrent	weights	are	typically	initialized	with	small	values
} this	leads	to	a	typically	contractive	initialization	of	recurrent	
dynamics

} Iterated	Function	Systems,	fractal	theory,	architectural	bias	of	
RNNs	

} RNNs	initialized	with	small	weights	(with	contractive	state	
transition	function)		and	bounded	state	space	implement	
(approximate	arbitrarily	well)	definite	memory		machines

} This	characterization	is	a	bias	 for	fully	trained	RNNs:	holds	in	the	
early	stages	of	learning
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Markovianity and	ESNs
} Using	dynamical	systems	with	contractive	state	transition	functions	
(in	any	norm)	implies	the	Echo	State	Property	(for	any	input)

} ESNs	featured	by	fixed	contractive	dynamics
} Relations	with	the	universality	of	RC	for	bounded	memory	
computation	(LSMs	theory)

} ESNs	with	untrained	contractive	reservoirs	are	already	able	to	
distinguish	input	sequences	on	a	suffix-based	fashion

} In	the	RC	framework	this	is	no	longer	a	bias,	it	is	a	fixed	
characterization	of	the	RNN	model
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Why	do	Echo	State	Networks	work?
} Because	they	exploit	the	Markovian	state	space	organization
} The	reservoir	constructs	a	high-dimensional	Markovian	state	space	

representation	of	the	input	history
} Input	sequences	sharing	a	common	suffix	drive	the	system	into	close	states

} The	states	are	close	to	each	other	proportionally	to	the	length	of	the	common	
suffix

} A	simple	output	(readout)	tool	can	then	be	sufficient	to	separate	the	different	
cases
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When	do	Echo	State	Networks	work?
} When	the	target	matches	the	Markovian	assumption	behind	the	reservoir	

state	space	organization
} Markovianity can	be	used	to	characterize	easy/hard	tasks	for	ESNs

Example:	easy	task
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When	do	Echo	State	Networks	work?
} When	the	target	matches	the	Markovian	assumption	behind	the	reservoir	

state	space	organization
} Markovianity can	be	used	to	characterize	easy/hard	tasks	for	ESNs

Example:	hard	task
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ESP:	Necessary	Condition
} Investigating the	stability of	reservoir	dynamics	from	a	
dynamical	system	perspective

} Theorem. If	an	ESN	has	unstable	dynamics	around	the	zero	
state	and	the	zero	sequence	is	an	admissible	input,	then	the	
ESP	is	not	satisfied.

} Approach	this	study	by	linearizing	the	state	transition	function	
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ESP:	Necessary	Condition
} Linearization	around	the	zero	state	and	for	null	input

} Remember:	

} The	Jacobian	with	tanh neurons	is	given	by	
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ESP:	Necessary	Condition
} Linearization	around	the	zero	state	and	for	null	input

} Remember:	

} The	Jacobian	with	tanh neurons	is	given	by	
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ESP:	Necessary	Condition
} The	linearized	system	now	reads:

} 0	is	a	fixed	point.	Is	it	stable?
} Linear	dynamical	systems	theory	tells	us	that	
If	𝜌 𝐖* < 1 then	the	fixed	point	is	stable

} Otherwise:	0	is	not	stable
if	we	start	from	a	state	near	0 and	we	drive	the	network	with	a	
(infinite-length)	null	sequence	we	do	not	end	up	in	0

} The	null	sequence	is	a	counter-example:	the	ESP	does	not	hold!
} There	are	at	least	two	different	orbits	resulting	from	the	same	input	sequence

66



ESP:	Necessary	Condition
} A	sufficient	condition	(under	our	assumptions)	for	the	absence	
of	the	ESP	is	that	𝜌 𝐖* ≥ 1

} Hence,	a	necessary	condition	for	the	ESP	is	that	
𝜌 𝐖* < 1

} In	general:	𝜌 𝐖* ≤ 𝐖* 2

} Typically,	in	applications:
} The	sufficient	condition	is	often	too	restrictive
} The	necessary	condition	for	the	ESP	is	often	used	to	scale	the	

recurrent	weight	matrix	(e.g.	to	a	value	of	the	spectral	radius	of	0.9)

} However,	note	that	scaling	the	spectral	radius	below	1	in	
presence	of	driving	input	is	neither	sufficient	nor	necessary	for	
ensuring	echo	states
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ESP	Index:	a	concrete	perspective
} Driving	input	is	not	properly	taken	into	account	in	conventional	
reservoir	initialization	strategies

} Idea:	calculate	average	deviations	of	reservoir	state	orbits	from	
different	initial	conditions	and	under	the	influence	of	the	same	
driving	external	input
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ESP	Index:	a	concrete	perspective

• The set of configurations that satisfy the ESP
in real cases are well beyond those
commonly adopted in ESN practice

• A large portion of "good" reservoirs are
usually neglected in common practice
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Advances	on	Echo	State	Networks



Research	on	Echo	State	Networks
} The	research	on	ESNs	follows	two	major	complementary	
objectives:
} Study	the	intrinsic	properties	of	RNNs,	taking	aside	the	aspects	
related	to	training	of	the	recurrent	connections

} Develop	efficiently	trained	RNNs

} Advances…
} Theoretical	analysis
} Quality	of	reservoir	dynamics
} Architectural	studies
} Deep	Echo	State	Networks
} Reservoir	Computing	for	Structures
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Echo	State	Property:	Advances
} Much	of	the	theoretical	advances	in	the	study	of	ESNs	aim	
to	establish	simple	conditions	for	reservoir	initialization

} Focus	of	the	theoretical	investigations	is	shifted	to	the	
study	of	stability	constraint

} Analysis	of	the	system	stability	given	the	input

} Non-autonomous	dynamical	systems

} Mean	Field	Theory

} Local	Lyapunov	exponents
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Applications	to	Real-world	Problems
} Successful	applications	in	several	real-world	problems

} Chaotic	time-series	modeling
} Non-linear	system	identification
} Speech	recognition
} Financial	forecasting
} Bio-medical	applications
} Robot	localization	&	control
} …

} High	dimensional	reservoirs	are	often	needed	to	achieve	
excellent	performance	in	complex	real-world	tasks

} Question:	can	we	combine	training	efficiency	with	
compact (i.e.	small	size)	ESNs?



Quality	of	Reservoir	Dynamics
} How	to	establish	the	quality	of	a	reservoir?
} If	I	can	find	a	suitable	way	to	characterize	how	good	a	
reservoir	is	I	can	try	to	optimize	it	

} Entropy	of	recurrent	units	activations	
} Unsupervised	adaptation	of	reservoirs	using	Intrinsic	Plasticity

} Study	the	short-term	memory	ability	of	the	system
} Memory	Capacity	and	relations	to	linearity

} Edge	of	stability/chaos:	reservoir	dynamics	at	the	border	
of	stability
} Recurrent	systems	close	to	instability	show	optimal	
performances	whenever	the	task	at	hand	requires	long	short-
term	memory
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Short-term	Memory	Capacity
} An	aspect	of	great	importance	in	the	study	of	dynamical	
systems is	the	analysis	of	their	memory	abilities

} Jaeger	introduced	a	learning	task,	called	Memory	Capacity	
(MC)	to	quantify	it

} Train	individual	output	units	to	recall	increasingly	delayed	
versions	of	a	univariate	i.i.d.	input	signal
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Jaeger, Herbert. Short term memory in echo state networks. Vol. 5. GMD-
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MC	is	the	sum	of	squared	
correlation	coefficients	
between	the	delayed	signals	
and	the	outputs



Short-term	Memory	Capacity
} Forgetting	curves	to	study	the	memory	structure
} Plot	the	squared	correlation	(Y-axis,	i.e.	detCoeff)	with	
respect	to	individual	delays	(X-axis)
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Short-term	Memory	Capacity
Some	fundamental	theoretical	results:
} The	MC	of	a	network	with	N	recurrent	units	is	upper-bounded	
by	N
} MC	≤	N
} It	is	impossible	to	train	an	ESN	on	tasks	which	require	unbounded-time	memory

} Linear	reservoirs	can	achieve	the	maximum	bound	
} e.g.	sufficient	condition:	the	matrix	𝐖* O𝐰()𝐖* a𝐰() …𝐖*P𝐰() has	full	rank
} example:	unitary	recurrent	matrices	(i.e.	orthogonal	matrices	in	the	real	case)

} Memory	versus	Non-linearity	dilemma
} Linear	reservoirs	are	featured	by	longer	short-term	memories,		but	non-linear	

reservoirs	are	required	to	solve	complex	real-world	problems....

} Memory	Capacity	vs	Predictive	Capacity
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Architectural	Setup
} How	to	construct	“better”	reservoirs	than	just	random	
reservoirs?

} Critical	Echo	State	Networks:	relevance	of	orthogonal	
recurrence	weight	matrices	(e.g.	permutation	matrices)
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[M.A. Hajnal, A. Lorincz, 2006]

Cyclic	Reservoirs Delay	Line	Reservoirs
[A. Rodan, P. Tino, 2011]
[T. Strauss et al., 2012]
[J. Boedecker et al., 2009]

[M. Cernansky, P. Tino 2008]
[A. Rodan, P. Tino 2012]



Edge	of	Stability
} Reservoir	dynamical	regime	close	to	the	transition	
between	stable	and	unstable	dynamics
} E.g.,	study	of	Lyapunov	exponents
} λ	=	0	identifies	the	transition	between	(locally)	stable	(λ	<	0)	
and	unstable	(λ	>	0)	dynamics
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[J. Boedecker, O. Obst, J.T. 
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Deep	Neural	Networks
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Deep	Learning	is	an	attractive	research	area
} Hierarchy	of	many	non-linear	models
} Ability	to	learn	data	representations	at	different	(higher)	levels	
of	abstraction

Deep	Neural	Networks	(DeepNNs)
} Feed-forward	hierarchy	of	multiple	hidden	layers	of	non-linear	
units

} Impressive	performance in	real-world	problems	(especially	in	the	
cognitive	area)

} Remember:	deep	learning	has	a	strong	biological	plausibility



Deep	Recurrent	Neural	Networks
Extension	of	the	deep	learning	methodology	to	temporal	
processing.
Aim	at naturally	capture	temporal feature representations at	
different	time-scales

} Text,	speech,	language	processing
} Multi-layered	processing	of	temporal	information	with	feedbacks	
has	a	strong	biological	plausibility

The	analysis	of	deep	RNNs	is	still	young
} Deep	Reservoir	Computing:	Investigate	the	actual	role	of	layering	in	
deep	recurrent	architectures

} Stability:	characterize	the	dynamics	of	hierarchically	organized	
recurrent	models
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Deep	Echo	State	Network

} What	is	the	intrinsic	role of	
layering in	recurrent	
architectures?

} Develop	novel	efficient	
approaches		to	exploit
} Multiple	time-scales	
representations

} Extreme	efficiency	of	training
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C. Gallicchio, A. Micheli, L. Pedrelli, "Deep Reservoir Computing: A Critical 
Experimental Analysis", Neurocomputing, 2017
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Deep	RNN	Architecture:	The	role	of	Layering
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Constraints	to	the	architecture	
of	a	fully	connected	RNN,	by:
} Removing	connection	from	
input	to	higher	layers

} Removing	connections	from	
higher	layers	to	lower	ones

} Removing	connections	
to	layers	at	levels	higher	than	
+1

Less	weights	to	store	than	a	fully	
connected	RNN



DeepESN:	Output	Computation
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} The	readout	can	modulate	
the	(qualitatively	different)	
temporal	features	developed	
at	the	different	layers



DeepESN:	Architecture	and	Dynamics

85

first layer

l-th layer (l>1)

Each layer has its own:
- leaky integration 

constant 
- Input scaling
- Spectral radius
- Inter-layer scaling



DeepESN:	Architecture	and	Dynamics
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first layer

l-th layer (l>1)

Each layer has its own:
- leaky integration 

constant 
- Input scaling
- Spectral radius
- Inter-layer scaling

The recurrent part of the system is hierarchically structured.
Interestingly, this naturally entails a structure into the developed system 
dynamics

* seminar topic



Intrinsically	Richer	Dynamics
Layering	in	RNN:	a	convenient	way	of	architectural	setup
} Multiple	time-scales	representations
} Richer	dynamics	closer	to	the	edge	of	stability
} Longer	short-time	memory



DeepESN:	Hierarchical	Temporal	Features
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Structured	representation	of	temporal	data	through	the	deep	
architecture

Empirical	Investigations
} Effects	of	input	perturbations	
lasts	longer	in	higher	layers

} Multiple	time-scales	
representation

} Ordered	along	the	network’s	
hierarchy

C. Gallicchio, A. Micheli, L. Pedrelli, 
"Deep Reservoir Computing: A Critical 
Experimental Analysis", Neurocomputing, 
2017



DeepESN:	Hierarchical	Temporal	Features
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Structured	representation	of	temporal	data	through	the	deep	
architecture

Frequency	Analysis } Diversified	magnitudes	of	FFT	
components

} Multiple	frequency	
representation	

} Ordered	along	the	network’s	
hierarchy

} Higher	layers	tend	to	focus	on	
lower	frequencies
[C. Gallicchio, A. Micheli, L. Pedrelli, 
WIRN 2017]

layer 1 layer 4

layer 7 layer 10



DeepESN:	Mathematical	Background
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Structured	representation	of	temporal	data	through	the	deep	
architecture

Theoretical	Analysis
} Higher layers	intrinsically	implement	less contractive dynamics

} Echo	State	Property	for	Deep	ESNs

} Deeper	networks	naturally	develop		richer dynamics,	closer	to	
the	edge of stability

[C. Gallicchio, A. Micheli. Cognitive Computation (2017).]

[C. Gallicchio, A. Micheli, L. Silvestri. Neurocomputing 2018.]



DeepESN:	Performance	in	Applications
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Formidable	trade-off	between	performance	and	computational	
time

C. Gallicchio, A. Micheli, 
L. Pedrelli, "Comparison 
between DeepESNs and gated
RNNs on multivariate time-
series prediction", ESANN 
2019.



Deep	Tree	Echo	State	Networks
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} Deep	Tree	Echo	State	Networks
} Untrained	multi-layered	
recursive	neural	network

Gallicchio, Micheli, IJCNN, 2018.
Gallicchio, Micheli, Information Sciences, 2019.



Deep	Tree	Echo	State	Networks:	Unfolding
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Deep	Tree	Echo	State	Networks:	Advantages
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} Effective	in	applications

} Extremely	efficient
} Layered	recursive	architecture
} Shallow	case



Conclusions
} Reservoir	Computing:	paradigm	for	efficient	modeling	of	
RNNs	

} Reservoir:	non-linear	dynamic	component,	untrained	after	
contractive	initialization

} Readout:	linear	feed-forward	component,	trained
} Easy to	implement,	fast to	train
} Markovian	flavour	of	reservoir	state	dynamics
} Successful	applications	Recent	extensions	toward:

} Deep	Learning	architecture
} Structured	Domains
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