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e What are graphs?
e Why ML on graphs?
e How?

e Some models

e Open questions (Projects / Theses)




The What
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e Vertex u — Entity
o Continuous / Discrete attributes

e Edge (u,v) — Relationship
o  Continuous / Discrete attributes ( {0,1} still most common)
o Directed / Undirected

e Generalizations: Multigraphs & Hypergraphs




The What (cont.)

[ | ]
R Ve
[ — ]

e Representation Learning on graphs
o Vertex & Graph embeddings

e Supervised
o Vertex/Graph classification/regression

e Unsupervised
o Link Prediction
o  Clustering




A visual example

iteration =1

Leow, Yao Yang, Thomas Laurent, and Xavier Bresson.
GraphTSNE: A Visualization Technique for Graph-Structured Data.
ICLR Workshop (2019).

https://leowyy.github.io/graphtsne
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Have fun with Machine Learning
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The Why (cont.)

e Handle cyclic structures
o No recursion!

e Variable size

e Variable shape

Me = FEATURES The feature
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e No more feature engineering /

o i.e. kernel methods
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The How (in a nutshell)

e Neighborhood Aggregation to the rescue
e Use layering to spread context between vertices

Layer 1 Layer 2 Layer 3

e How can we aggregate neighbors?
o  Permutation-invariant functions over (multi)-sets
e How many layers do we need?



Resemblance to CNNs

e Convolution as neighborhood aggregation
o  Onregular grids

Layer 1 Layer 2 Layer 3

e Layers increases the local receptive field of each vertex



What we do: NN4G (Micheli, 2009)

e Constructive approach
o  Cascade Correlation
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What we do: GraphESN (Gallicchio & Micheli, 2010)

e Does not require training but for the output layer

#
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e Let the Reservoir reach convergence (R") (IR"") (IR"") R R

e Train a linear readout

@ Reservoir
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What we do: CGMM (Bacciu, Errica & Micheli, 2018)

A deep stack of probabilistic layers

e Unsupervised constructive approach

e Switching Parent approximation
o  Borrowed from
Hidden Tree Markov Models
e It works well
o  State-of-the-art accuracy
compared to GNNs
e CGMM exploits layering
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DiffPool (ving et al, 2018)

e Differentiable Pooling technique

Original Pooled network Pooled network Pooled network
network at level 1 at level 2 at level 3




On Aggregation Functions

From “On the Limitations of Representing Functions on Sets”, Wagstaff et al., 2019

Theorem 2.8 (Countable case). Let f : 2* — R where X
is countable. Then f is permutation-invariant if and only if
it is sum-decomposable via R.

Proof. Since X is countable, each x € X can be mapped
to a unique element in N by a function ¢(z) : X — N.
Let ®(X) = > x #(x). If we can choose ¢ so that ® is
injective, then we canset p = f o ®~1, giving

f=po?®
f(X) = P(Exexqs(w))

i.e. fis sum-decomposable via R.

Neighborhood

Theorem 4.3 (Fixed set size). Let f : RM — R be con-
tinuous. Then f is permutation-invariant if and only if it is
continuously sum-decomposable via RM.

Secondly, we can deal with variable set sizes < M:

Theorem 4.4 (Variable set size). Let f : RS — R be
continuous. Then f is permutation-invariant if and only if it
is continuously sum-decomposable via RM.

aggregation!

M neighbors — M neurons!




Other works: GIN (xuetal, 2019)

Graph Isomorphism Network
o  As powerful as 1-dim WL test of graph isomorphism
o  Butit can exploit continuous attributes

e Not able to distinguish k-regular graphs, k > 1
e Astonishing results (under revision by me and Marco..)

e Very nice theorems for aggregation on multi-sets
o  Similar to Wagstaff et al., 2019

e We can build other GNNs from here (Thesis?)
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Open Questions (nice & challenging)

Automatize hyper-parameter selections

e New pooling strategies
e CGMM extensions

e Design a new GNN

e Implement a Graph Neural Network (using Pytorch Geometrics)
o  Choose from a list of possible models




Thank you!

You can reach out to me via:
Email: federico.errica@phd.unipi.it (anytime)

Office: Room 328, Department of Computer Science (late September)

Website: http://pages.di.unipi.it/errica/
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