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Markov Random Fields (MFRs)

Undirected graph G = (V, E) (a.k.a. Markov Networks)
Nodes v ∈ V represent random variables Xv

Shaded⇒ observed
Empty⇒ un-observed

Edges e ∈ E describe bi-directional dependencies between
variables (constraints)

Graph often coherent with data structure
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MRF Applications

Machine vision uses MRF to impose
smoothness constraints on
neighboring pixels

Image denoising
Lattice Markov Network (Ising model)
Yi → observed value of the noisy pixel
Xi → unknown (unobserved) noise-free pixel value

Complexity of (exact) inference and learning can be
impossible/impractical for complex graph structures
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Likelihood Factorization

Define X = X1, . . . ,XN as the RVs associated to the N nodes in
the undirected graph G

P(X) =
1
Z

∏
C

ψC(XC)

XC → RV associated with nodes in the maximal clique C
ψC(XC)→ potential function for clique C
Z → partition function ensuring normalization

Z =
∑

X

∏
C

ψC(XC)
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Potential Functions

Potential functions ψC(XC) are not probabilities!
Express which configurations of the local variables are
preferred
If we restrict to strictly positive potential functions, the
Hammersley-Clifford theorem provides guarantees on the
distribution that can be represented by the clique
factorization

Definition (Boltzmann distribution)
A convenient and widely used strictly positive representation of
the potential functions is

ψC(XC) = exp {−E(XC)}

where E(XC) is called energy function
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Factorizing Potential Functions

In general, we will assume to work with MRF where the
partition functions factorize as

ψC(XC) = exp

(∑
k

θCk fCk (XC)

)

where
fCk (or fk ) are feature functions or sufficient statistics to
compute the potential of clique C
θCk ∈ R are parameters
k indexes over the available feature functions

Undirected graphical models do not express the factorization of
potentials into feature functions⇒ factor graphs
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Factor Graphs

RV are again circular nodes
Factors fCk are denoted as square nodes
Edges connect a factor to the RV

ψ(X1,X2,X3) = f (X1,X2,X3)

ψ(X1,X2,X3) = fa(X1,X2,X3)fb(X2,X3)
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Sum-Product Inference

A powerful class of exact inference algorithms
Use factor graph representation to provide a unique
algorithm for directed/undirected models
Inference is feasible for chain and tree structures

Forward-backward algorithm in HMMs
Computationally more impacting in MRF due to partition
function

Inference in general MRF
Restructure the graph to obtain a tree-like structure to
perform message passing (junction tree algorithm)
Approximated inference (variational, sampling)

Constrain the MRF to obtain tractable classes of undirected
models



Markov Random Fields
Conditional Random Field

Applications

Model
Linear CRF
Inference and Learning

Restricting to Conditional Probabilities

In ML a part of the random variables can be assumed to be
always observable⇒ input data

Xk - observable inputs in the factor k
Yk - hidden (or partly observable) RV
fk (Xk ,Yk ) - factor feature function

Under this assumption we can directly model the conditional
distribution

P(Y|X) = 1
Z (X)

∏
k

exp {θk fk (Xk ,Yk )}

where X is the joint input that is always available

Z (X) =
∑

y

∏
k

exp {θk fk (Xk ,Yk = yk )}
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Conditional Random Field (CRF)

Constrained MRF models representing input-conditional
distributions

P(Y|X, θ) = 1
Z (X)

exp(θ1f1(Xi ,Yi)+θ2f2(Yi ,Yj)+θ3f(Xj ,Yj)+. . . )
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Feature functions

What does a feature function fk (Xk ,Yk ) do?
Represent couplings or constraints between random
variables
Often very simple, such as linear functions

Make noisy binary pixel Xi
and its clean version Yi
have same sign

fi(Xi ,Yi) = XiYi

Constrain nearby
interpretations to be similar

fij(Yi ,Yj) = Y T
i Yj
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Discriminative Learning in Graphical Models

X is always observable input while Y can be unobserved
Let us simplify the problem by considering to have a single
Y and multiple X
Let us assume that we can observe the Y n corresponding
to Xn for some samples n
We can use this information to fit θ in P(Y |X, θ)
What does P(Y |X′, θ) do for a new X′ sample without
observable Y ′? Performs a prediction (e.g. classification if
Y is multinomial)

The model above describes the Logistic Regression/Classifier:
a discriminative version of Naive Bayes
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A CRF for Sequences

The undirected and discriminative equivalent of an HMM

Is this all about substituting emission probability with feature fe
and transition distribution with ft?
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A Generalization of HMM

Modeling relative influence of suffix and prefix symbols

P(Y|X, θ) = 1
Z (X)

∏
t

exp{θpfp(Xt−1,Yt) + θefe(Xt ,Yt)+

θsfs(Xt+1,Yt) + θt ft(Yt−1,Yt)}
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Generic LCRF Formulation

Modeling explicitly input influence on transition

General Linear CRF Likelihood:

P(Y|X, θ) = 1
Z (X)

∏
t

exp

{∑
k

θk fk (Yt ,Yt−1,Xt)

}

Use indicator variables in fk definition to include or disregard
the influence of specific RV, e.g. 1Yt=i1Xt=o
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Posterior Inference in LCRF

Is there an equivalent of the smoothing problem in LCRF? Yes:
P(Yt ,Yt − 1|X)

Solved by (exact) forward-backward inference
Sum-product message passing on the LCRF factor graph

P(Yt ,Yt − 1|X) ∝ αt−1(Yt−1)ψt(Yt ,Yt−1,Xt)βt(Yt)

Clique weighting

ψt(Yt ,Yt−1,Xt) =

exp {θefe(Xt ,Yt) + θt ft(Yt−1,Yt)}

Forward Message

αt(i) =
∑

j

ψt(i , j ,Xt)αt−1(j)

Backward Message

βt(j) =
∑

i

ψt+1(i , j ,Xt+1)βt+1(i)
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Other Inference Problems

Max-product inference can be performed as in the Viterbi
algorithm for HMM
The computationally expensive part is the computation of
exponential summation in Z (X) term

The forward-backward algorithm computes it efficiently as
normalization term of P(Yt ,Yt − 1|X)

Exact inference in CRF other than chain-like is likely to be
computationally impractical

Markov Chain Monte Carlo (sample y rather than estimate
P(y))
Variational Belief Propagation (reduce to message passing
on trees)
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Training LCRF

Maximum (conditional) log-likelihood

max
θ
L(θ) = max

θ

n∑
n=1

log P(yn|xn, θ)

Substituting LCRF conditional formulation

L(θ) =
∑

n

∑
t

∑
k

θk fk (Y n
t ,Y

n
t−1,X

n
t )−

∑
n

log Z (Xn)−
∑

k

θ2
k

2σ2

Penalized with a regularization term, e.g. based on ‖θ‖2
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Optimizing the Likelihood

Typically L(θ) cannot be maximized in closed form
Use partial derivatives

∂L(θ)
∂θk

=
∑
n,t

fk (Y n
t ,Y

n
t−1,X

n
t )−

∑
n,t

∑
y ,y ′

fk (y , y ′,Xn
t )P(y , y ′|Xn)− θk

σ2

First term is E[fk ] under the empirical distribution (i.e. with
y , y ′ clamped)
Second term is the E[fk ] under model distribution
When gradient is zero these are equal (apart for
regularization)
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Stochastic Gradient Descent

In practice we can learn the θ parameters by SGD (or variants)

θm = θm−1 − νm∇Ln(θ
m−1)

where

∇Lnk (θ) =
∑

t

fk (Y n
t ,Y

n
t−1,X

n
t )−

∑
t

∑
y ,y ′

fk (y , y ′,Xn
t )P(y , y ′|Xn)− θk

Nσ2

and P(y , y ′|Xn) is estimated by sum-product inference
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Engineering Features

Linear CRF have found wide applications
Text processing: POS-tagging, semantic role identification
Bioinformatics: sequence alignment, protein structure prediction

Feature functions have often the form fk (Xk ,Yk ) = 1yk=ŷk
q(Xc)

fk is non-zero only for a specific output configuration ŷk

fk then depends only on Xk (i.e. parameters are not shared
by classes)

Observation functions q(Xc): word begins with capital, ends
with -ing, ...
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MRF/CRF in Vision

Define bi-dimensional lattice on the image

Regular grid, patches, superpixels,
segments

Background/Foreground segmentation

Xi Observable label
Yi Region annotation as
background/foreground

Impose constraints

fS(Yi ,Xi)⇒ Cost of disregarding
available annotation
fH(Xi ,Xj) ≈ [xi 6= xj ]wij ⇒ Label affinity
constraint weighted by region similarity
wij
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Background Segmentation



Markov Random Fields
Conditional Random Field

Applications

Sequences
Vision
Code

Image Completion

N. Komodakis. Image Completion Using Global Optimization. CVPR 2006
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Semantic Segmentation

J. Yao, S. Fidler and R. Urtasun, "Describing the scene as a whole: Joint object detection, scene classification and
semantic segmentation," ICCV 2012
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Integrating Prior Information

Roig et al "Conditional Random Fields for multi-camera object detection," ICCV 2011
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MRF Software

CRFsuite - Fast implementation of linear/chain CRFs for
NLP applications (native C++; Scikit-like package
python-crfsuite)
PyStruct - Python CRF package including 2D lattices,
graph structures and several inference algorithms
pgmpy - Python library for graphical models (includes CRF,
MRF and more)
Pyro - Ubers’ own PyTorch provide an implementation of
Deep CRF
UGM - Matlab library for Markov Random Fields
CRF implementations (in particular linear) are present in
major DL libraries (e.g. Tensorflow, PyTorch)
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A Python Example

from pgmpy . models impor t MarkovModel
from pgmpy . f a c t o r s . d i s c r e t e impor t D isc re teFac to r
impor t numpy as np
from pgmpy . in fe rence impor t Be l ie fP ropaga t ion
. . .

MM=MarkovModel ( ) ;
# Add edges ( and nodes i f not e x i s t e n t )
MM. add_edges_from ( [ ( ’ f1 ’ , ’ f2 ’ ) , ( ’ f2 ’ , ’ f3 ’ ) , ( ’ o1 ’ , ’ f1 ’ ) , ( ’ o2 ’ , ’ f2 ’ ) , ( ’ o3 ’ , ’ f3 ’ ) ] )

#Generate t r a n s i t i o n fea tu re
t r a n s i t i o n =np . ar ray ( [ 1 0 , 90 , 90 , 1 0 ] ) ;
#Generate corresponding f a c t o r
fac torH1= Disc re teFac to r ( [ ’ f1 ’ , ’ f2 ’ ] , c a r d i n a l i t y = [2 , 2 ] , values= t r a n s i t i o n )
#Add i t to the model
MM. add_factors ( fac torH1 )

#Solve smoothing by b e l i e f propagat ion ( i . e . es t imate hidden RV)
be l i e f_p ropaga t i on = Be l ie fP ropaga t ion (MM)
ymax= be l i e f_p ropaga t i on . map_query ( v a r i a b l e s =[ ’ f1 ’ , ’ f2 ’ , ’ f3 ’ ] , \
evidence ={ ’ o1 ’ : toVa l ( ’ c lass1 ’ ) , ’ o2 ’ : toVa l ( ’ c lass1 ’ ) , ’ o3 ’ : toVa l ( ’ c lass2 ’ ) } )
. . .



Markov Random Fields
Conditional Random Field

Applications

Take Home Messages

Markov Random Fields
Undirected graphical models
Allow to express constraints between RV without needing to
use probabilities
Topology follows data structure/relations and allow
embedding prior information

Conditional Random Fields
Constrained MRF learning discriminative posteriors
Feature functions to model constraints (often simple
hand-coded feature detectors)
Parameters allow to linearly combine features

CRF/MRF are often used as final refinement
(segmentation, POS tagging, ...)
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Boltzmann Machines
A first bridge between (undirected) generative models and
(recurrent) neural networks
Restricted Boltzmann Machines
Contrastive Divergence training
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