
I N T R O D U C T I O N T O N E U R A L N E T W O R K P R O G R A M M I N G W I T H P Y T H O N A N D P Y T O R C H

ISPR – 14/05/2018

Antonio Carta
antonio.carta@di.unipi.it

Key Features

◦ Tensor manipulation: library to manipulate tensors, with
MATLAB/Numpy-like API.

◦ GPU support: seamless execution on GPU and CPU devices.

◦ Automatic Differentiation: high level code only needs to define
the forward step, because each function is automatically
differentiated using the chain rule.

◦ High-level API: ready-to-use high level API with neural network
layers, regularization techniques and optimizers

2

Installation

◦ python 2.7/3.x or C++

◦ cross-platform

◦ The library can be installed using pip or conda

◦ The last stable version is PyTorch 1.1

◦ for the GPU version
conda install pytorch torchvision cudatoolkit=9.0 -c pytorch

◦ for the CPU only version
conda install pytorch-cpu torchvision -c pytorch

◦ more details on the official website http://pytorch.org/

3

http://pytorch.org/

4

Tensors

◦ Tensors are the main data structure. They represent

multidimensional arrays

◦ Equivalent of numpy.ndarray

◦ Support advanced indexing and broadcasting numpy-style

Attributes:
◦ dtype: determine the type of the contained elements (float{16, 32,

64}, int{8, 16, 32, 64}, uint8). Can be specified during the initialization.

◦ device: memory location (cpu or cuda)

◦ layout: dense tensors (strided) or sparse (sparse_coo)

5

Tensor Initialization

◦ torch.tensor

◦ takes any array-like argument and create a
new tensor

◦ zero initialization

◦ torch.zeros(*dims)

◦ random

◦ torch.randn(*dims)

◦ torch.rand(*dims)

◦ linear range

◦ torch.linspace(start, end, steps=100)

◦ Numpy bridge

◦ torch.from_numpy(x)

◦ you can also convert a tensor into a
ndarray with the .numpy method

◦ note: the numpy array and the resulting
tensor share the memory

In [1]: import torch

In [1]: cuda = torch.device("cuda")

In [2]: a = torch.tensor([[1], [2], [3]],
dtype=torch.half, device=cuda)

In [3]: print(a)

Out[3]:

tensor([[1],

[2],

[3]], device='cuda:0')

Tensor Operations

◦ the most commons algebraic operators are overloaded
◦ +, - for addition and subtraction

◦ * is the elementwise multiplication (not the matrix product)

◦ @ for matrix multiplication (torch.matmul)

◦ all the in-place operators end with an underscore
◦ add_, sub_, matmul_ are the in-place equivalent for the previous operators

◦ check the documentation:
http://pytorch.org/docs/stable/torch.html#tensors

6

http://pytorch.org/docs/stable/torch.html#tensors

Indexing

◦ basic tensor indexing has the
same syntax of list indexing,
but supports multiple
dimensions

◦ boolean indexing: boolean
arrays can be used to filter
elements that satisfy some
condition

◦ if the indices are less than the
number of dimensions the
missing indices are considered
complete slices

7

first k elements

x = a[:k]

all but the first k

x = a[k:]

negative indexing

x = a[-k:]

mixed indexing

a[:t_max, b:b+k, :]

indexing with Boolean condition

def relu(x):
x[x < 0] = 0

return x

Broadcasting

◦ Broadcasting allows to perform an operation when tensors have
different shapes (e.g. elementwise multiplication between matrix
and vector)

◦ Useful to avoid explicit reshape operations

◦ Broadcasting can be used if:
◦ each Tensor has at least one dimension

◦ When iterating over the dimension sizes, starting at the trailing dimension, the
dimension sizes must either be equal, one of them is 1, or one of them does not
exist.

8

9

Broadcasting examples

In [3]: a = torch.rand(3, 3)

In [4]: b = torch.rand(3, 1)

In [5]: s1 = a + b

In [6]: c = torch.rand(3, 1, 1)

In [7]: s2 = a + c

In [8]: d = torch.rand(3, 2)

In [9]: a + d

RuntimeError: inconsistent tensor size, expected r_ [3 x 3], t
[3 x 3] and src [3 x 2] to have the same number of elements,
but got 9, 9 and 6 elements respectively at
d:\projects\pytorch\torch\lib\th\generic/THTensorMath.c:887

ok, b is expanded
this is equivalent to a + b.expand(-1, 3)

ok, a and c are expanded
a.unsqueeze(2).expand(3,3,3) + c.expand(3,3,3)

error, a and d are not broadcastable

CUDA

◦ torch.cuda API for GPU management

◦ during the creation of a tensor you can choose the device (CPU or
GPU)

◦ all the tensor arguments of an operator must reside on the same
device

◦ the result of the operation will be allocated on the same device

◦ Tensors can be moved to the GPU with cuda and to methods

◦ can take the GPU id as an optional argument if you have
multiple GPUs

◦ You can move tensors to the CPU with the cpu method.

◦ Check if CUDA is supported on the machine with
torch.cuda.is_available

10

CUDA – Select a GPU

If you have multiple GPUs you can select a default device:
◦ manually for each allocated tensor using the device argument

◦ using the context manager torch.cuda.device

◦ changing the environment variable CUDA_VISIBLE_DEVICES to
limit the visible GPUs

export CUDA_VISIBLE_DEVICES=0

◦ the library setGPU can be used to automatically select the less
used GPU: https://github.com/bamos/setGPU

11

https://github.com/bamos/setGPU

12

cuda = torch.device('cuda') # Default CUDA device
cuda0 = torch.device('cuda:0')
cuda2 = torch.device('cuda:2') # GPU 2 (these are 0-indexed)

x = torch.tensor([1., 2.], device=cuda0)
x.device is device(type='cuda', index=0)
y = torch.tensor([1., 2.]).cuda()
y.device is device(type='cuda', index=0)

with torch.cuda.device(1):
allocates a tensor on GPU 1
a = torch.tensor([1., 2.], device=cuda)

transfers a tensor from CPU to GPU 1
b = torch.tensor([1., 2.]).cuda()
a.device and b.device are device(type='cuda', index=1)

You can also use ``Tensor.to`` to transfer a tensor:
b2 = torch.tensor([1., 2.]).to(device=cuda)
b.device and b2.device are device(type='cuda', index=1)

c = a + b # c.device is device(type='cuda', index=1)
z = x + y # z.device is device(type='cuda', index=0)

even within a context, you can specify the device
(or give a GPU index to the .cuda call)
d = torch.randn(2, device=cuda2)
e = torch.randn(2).to(cuda2)
f = torch.randn(2).cuda(cuda2)
d.device, e.device, and f.device are all device(type='cuda', index=2)

13

Automatic Differentiation

torch.autograd is the package
responsible for the automatic
differentiation.

Each computation creates a
dynamic computational graph.
Each operation adds a Function
node, connected to its Variable
arguments.

The graph is used to compute the
gradient with the method
backward.

14

Variable and Functions

The main attributes of a Variable
are:

◦ data: Tensor containing the
Variable value

◦ grad: Tensor containing the
gradient (initially set to None).

◦ grad_fn: the function used to
compute the gradient

Each Function implements two
methods:

◦ forward: function application

◦ backward: gradient computation

Variable (2)

◦ The requires_grad attribute is used to specify if the gradient
computation should propagate into the Variable or stop
◦ for parameters requires_grad=True

◦ for data or other constant values requires_grad=False

◦ If you want to truncate the gradient (keep the last hidden state of
the RNN when using TBPTT), you can use detach. This method
removes the Variable from the graph, making it a leaf.

◦ in-place modification of variables is not allowed because it breaks
the automatic differentiation.

◦ at inference time you can speed up the computation by using the
context manager torch.no_grad, which disables the graph
construction required for the backward computation, saving
space and time.

◦ autograd documentation
https://pytorch.org/docs/stable/notes/autograd.html

15

https://pytorch.org/docs/stable/notes/autograd.html

Building the Dynamic Graph

x = torch.randn(1, 10)

prev_h = torch.randn(1, 20)

W_h = torch.randn(20, 20)

W_x = torch.randn(20, 10)

i2h = torch.mm(W_x, x.t())

h2h = torch.mm(W_h, prev_h.t())

next_h = i2h + h2h

next_h = torch.tanh(next_h)

next_h.backward(torch.ones(1, 20))

16

graph leaves. Data and Parameters

functions

torch.nn

torch.nn implements the API used
to define neural network
architectures, loss functions,
regularization techniques and
optimizers.

We will see in the next few slides

◦ What is a Module

◦ how to define a custom Module

◦ how to set up a basic training
loop

17

nn.Module

◦ Module is the base class for all the neural network submodules
◦ Linear, convolutional, recurrent layers are all Module subclasses
◦ automatically keeps track of the parameters and submodules

◦ A Module contain Parameters:
◦ these are typically the trainable parameters of your model
◦ Parameter is a subclass of Variable
◦ you can iterate over all the parameters using the parameters() method

◦ you can compute the output of a network by using it like a function
(e.g. y_pred = net(X))
◦ that is possible because __apply__ is overriden
◦ the computation is performed by the forward method, but if you call only forward

the hooks are not activated

◦ It is possible to define forward and backward hooks
◦ e.g. you can check for NaN gradients after the backward pass
◦ you can register the hook with methods like register_forward_hook()

18

How to Subclass Module

◦ override the forward method to define how the computation is
performed. Backward is automatically implemented with
autograd

◦ Override the __init__ method, defining your parameters
◦ remember to call the constructor of the super class!

◦ When you add a Parameter as an attribute it is automatically
registered for you. It also works for submodules.

◦ If you want to add a list of parameters or modules use the
ParameterList and ModuleList containers, otherwise the
parameter will not be registered and cannot be iterated with the
parameters method

◦ you can print the network to see the registered parameters and
submodules

19

20

Example
from torch import nn
import torch.nn.functional as F

class Net(nn.Module):
def __init__(self):

super(Net, self).__init__()
1 input image channel, 6 output channels,
#5x5 square convolution
kernel
self.conv1 = nn.Conv2d(1, 6, 5)
self.conv2 = nn.Conv2d(6, 16, 5)
an affine operation: y = Wx + b
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)

def forward(self, x):
Max pooling over a (2, 2) window
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
If the size is a square you can only specify a
single number
x = F.max_pool2d(F.relu(self.conv2(x)), 2)
x = x.view(-1, self.num_flat_features(x))
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x

Example

Modules can be printed to show the parameters:

We can see the two convolutional layers and the three fully
connected layers.

21

Net(

(conv1): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1))

(conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))

(fc1): Linear(in_features=400, out_features=120, bias=True)

(fc2): Linear(in_features=120, out_features=84, bias=True)

(fc3): Linear(in_features=84, out_features=10, bias=True)

)

◦ To define a training loop we need a loss and an optimizer

◦ torch.nn defines many different loss functions
◦ nn.MSELoss, nn.CrossEntropyLoss, nn.NLLLoss, nn.BCELoss, …

◦ you can also use the functional version, defined in nn.functional. The only
difference is that you don’t need to create an object.

Loss

22

import nn.functional as F

net = Net()
out = net(X)
loss = F.MSELoss(out, target)

Optimizer

◦ gradient descent can be implemented manually by subtracting
the gradient from each parameter:

◦ note the call to the zero_grad method. It is needed to reset the
gradient buffers

◦ you can also use an optimizer defined in torch.optim
◦ SGD, Adam, RMSProp

◦ they take as arguments the learning rate, momentum, l2 weight decay

◦ the step method performs the parameters update

23

learning_rate = 0.01
net.zero_grad()
loss.backward()
for f in net.parameters():

f.data.sub_(f.grad.data * learning_rate)

Training Loop

24

criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

for epoch in range(100): # loop over the dataset multiple
times

running_loss = 0.0
for i, data in enumerate(dataset):

inputs, labels = data # get the inputs
optimizer.zero_grad() # zero the parameter gradients

forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()

print statistics
running_loss += loss.data[0]
if i % 2000 == 1999: # print every 2000 mini-batches

print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 2000))

running_loss = 0.0

print('Finished Training')

torch.nn Modules

Modules:
◦ Convolutional layers: Conv2D, MaxPool2D

◦ Recurrent layers: RNN, LSTM, GRU, {RNN, LSTM, GRU}Cell

◦ FeedForward: Linear

◦ you can use the activation functions defined in torch.nn.functional

For feedforward architectures nn.Sequential can be used to define a
network as a sequence of Modules. The forward method is already
implemented and applies the modules one after the other in order.

◦ Some modules have a train flag. This is used by some classes (e.g.
Dropout, BatchNormalization) to define different behaviour during
train and test. Always set it during training with net.train() and disable
it during the test phase with net.eval().

25

Feedforward
Network

import torch.nn as nn

model = nn.Sequential(

nn.Linear(100, 50),

nn.ReLU(),

nn.Linear(50, 50),

nn.ReLU(),

nn.Linear(50, 10),

nn.Softmax()

)

y_out = model(X)

Simple architectures can be
defined as a sequential
application of modules.

A feedforward network is a
sequence of linear
transformations and
nonlinear activations.

26

Recurrent
Neural
Networks

model = torch.nn.LSTMCell(input_size, hidden_size)

out = []

h_prev = Variable(torch.zeros((batch_size,

hidden_size)))

c_prev = Variable(torch.zeros((batch_size,

hidden_size)))

for t in range(n_steps):

X_t = X[t]

h_prev, c_prev = model(X_t,(h_prev,c_prev))

out.append(o_t)

torch.stack(out)

{LSTM, RNN, GRU}Cell
implement a recurrent layer.
Combining them we can
build a recurrent network.

The default input shape is

(time, batch, features)

Different from Keras.

You also need to keep track
of the hidden and cell
states.

27

Dataset

◦ The easiest way is to load the dataset as a
Numpy array and convert it to a torch tensor
(remember to check the dimensions in case
you need to transpose some dimension)

◦ the alternative is to use the utilities provided
in torch.data.utils

◦ DataLoader can be used to load the dataset
in parallel. It is useful only when you are using
heavy preprocessing (e.g. image data with
lots of data augmentation)

◦ Sampler classes for sequential or random
sampling from a dataset.

◦ check the documentation:
http://pytorch.org/docs/stable/data.html

28

http://pytorch.org/docs/stable/data.html

Serialization and Logging

◦ PyTorch provides some guidelines regarding serialization
http://pytorch.org/docs/stable/notes/serialization.html

◦ save a network

torch.save(the_model.state_dict(), PATH)

◦ load back the model

the_model = TheModelClass(*args, **kwargs)

the_model.load_state_dict(torch.load(PATH))

◦ It is possible to use a Tensorflow wrapper tensorboardX

29

http://pytorch.org/docs/stable/notes/serialization.html
https://github.com/lanpa/tensorboard-pytorch/tree/master/tensorboardX

Static and Dynamic Computational Graphs

The computational graph represent the entire computation.

It is necessary for the backpropagation and for optimization
purposes.

Dynamic graphs are created at runtime.

Static graphs are created before the execution.

PyTorch support both approaches:

Dynamic graphs are the default choice

Static graphs can be used with torch.jit (currently experimental)

30

Static and Dynamic Computational Graphs (2)

◦ Debugging: dynamic graphs are (a lot) easier to debug due to the
ability to track the variables at runtime. The execution of a static
graph is harder to inspect.

◦ Structured Data: variable structures are easy to process with
dynamic graphs. Static graphs require explicit control flow and
dynamic batching to process structured data efficiently.

◦ Deployment: static graphs are easier to deploy and can be easily
serialized and loaded into different environments.

◦ Optimization: static graphs are easier to optimize. You can gain
about 30% with basic CNN in memory and time consumption with
a fully optimized graph at inference time.

31

32

Static vs Dynamic

Dynamic Graph the computational
graph and the sample
have the same structure.

Static Graph the computational graph
contains explicit control flow because
it remains the same for different samples.

Example Code

◦ Regression
https://github.com/pytorch/examples/blob/master/regression/main.py

◦ CNN – MNIST https://github.com/pytorch/examples/tree/master/mnist

◦ RNN - Wikipedia
https://github.com/pytorch/examples/blob/master/mnist/main.py

33

https://github.com/pytorch/examples/blob/master/regression/main.py
https://github.com/pytorch/examples/tree/master/mnist
https://github.com/pytorch/examples/blob/master/mnist/main.py

References

official documentation: http://pytorch.org/docs

official tutorials: http://pytorch.org/tutorials/

official examples: https://github.com/pytorch/examples

tensor manipulation: https://github.com/rougier/numpy-100

tensorboard wrapper: https://github.com/lanpa/tensorboardX

34

http://pytorch.org/docs
http://pytorch.org/tutorials/
https://github.com/pytorch/examples
https://github.com/rougier/numpy-100
https://github.com/lanpa/tensorboardX

