
Hidden Markov Models

IP notice: slides from Dan Jurafsky

Università di Pisa

Outline

l Markov Chains
l Hidden Markov Models
l Three Algorithms for HMMs

§ The Forward Algorithm
§ The Viterbi Algorithm
§ The Baum-Welch (EM Algorithm)

l Applications:
§ The Ice Cream Task
§ Part of Speech Tagging

Definitions
l A Markov Chain (or Observable Markov Model)

§ is a stochastic model describing a sequence of possible events in
which the probability of each event depends only on the state
attained in the previous event

l A Markov Chain can be represented by a transition diagram,
where:
§ Each arc is labeled by a transition probability
§ The sum of the probabilities leaving any arc must sum to one

https://en.wikipedia.org/wiki/Stochastic_model

Markov Chain for weather

!"#$"
%

&'(
)

*+,-
.

/01
2

3045
6

#
66

#
%6

#
22

#
26

#
%.

#
%2

#
62

#
2.

#
..

#
6)

#
2)

#
6.

#
.)

#
.6

#
.2

Markov Chain for words

!"#$"
%

&'(
)

*+,"-
.

,/
0

/'1*
2

#
22

#
%2

#
00

#
02

#
%.

#
%0

#
20

#
0.

#
..

#
2)

#
0)

#
.0

#
.)

#
.2#

2.

Markov Chain: definition

A first-order observable Markov Model (aka Markov Chain) consists in:
l A set of states Q
q1, q2…qN sequence of states: state at time t is qt

l Transition probabilities:
a set of probabilities A = a01a02…an1…ann.
Each aij represents the probability of transitioning from state i to state j

𝑎!" = 𝑃 𝑞# = 𝑗 𝑞#$% = 𝑖 1 ≤ 𝑖, 𝑗 ≤ 𝑁

+
"&%

'

𝑎!" = 1 1 ≤ 𝑖 ≤ 𝑁

l Distinguished start and end states

Markov Chain

Markov Assumption:
l Current state only depends on previous state

P(qi | q1 … qi-1) = P(qi | qi-1)

Another representation for start state

l Instead of start state
l Special initial probability vector p

§ An initial distribution over probability of start states

l Constraints:

p i = P(q1 = i) 1£ i £ N

p j =1
j=1

N

å

The weather model using p

The weather model: specific example

Markov chain for weather

l What is the probability of 4 consecutive warm days?
l Sequence is warm-warm-warm-warm
l i.e., state sequence is 3-3-3-3

P(3, 3, 3, 3) =
p3a33a33a33a33 = 0.2 • (0.6)3 = 0.0432

How about?

l Hot hot hot hot
l Cold hot cold hot

l What does the difference in these probabilities tell you about the real
world weather info encoded in the figure?

Fun with Markov Chains

l Markov Chains “Explained Visually”:
http://setosa.io/ev/markov-chains

l Snakes and Ladders:
http://datagenetics.com/blog/november12011/

l Candyland:
http://www.datagenetics.com/blog/december12011/

l Yahtzee:
http://www.datagenetics.com/blog/january42012/

l Chess pieces returning home and K-pop vs. ska:
https://www.youtube.com/watch?v=63HHmjlh794

http://setosa.io/ev/markov-chains
http://datagenetics.com/blog/november12011/index.html
http://www.datagenetics.com/blog/december12011/
http://www.datagenetics.com/blog/january42012/

Hidden Markov Models

Hidden Markov Model

l For Markov chains, the output symbols are the same as the states.
§ See hot weather: we are in state hot

l But in named-entity or part-of-speech tagging (and speech recognition)
§ The output symbols are words
§ But the hidden states are something else

• Part-of-speech tags
• Named entity tags

l So we need an extension!
l A Hidden Markov Model is an extension of a Markov chain in which the

input symbols are not the same as the states.
l This means we don’t know which state we are in.

Hidden Markov Model: Definition
Q = q1q2…qN a set of N hidden states

A = a11a12…an1…ann a transition probability matrix A, each aij
representing the probability of moving fronm state
i to state j, s.t. ∑!"#$ 𝑎%!∀𝑖

O = o1o2…oT a sequenxe of T observations, each one drawn
from a vocavulary V = v1, v2, …, vV

B = bi(ot) a sequence of observation likelihoods, also called
emission probabilities, each expressing the
probabilitu of an observation ot being generated
from a state i

q0., qF a special start state and an end state that are not
associated with observations, together with
transition probabilities a01a02…a0n out of the start
state and a1Fa1F…anF into the end state.

Assumptions

Markov assumption:
P(qi | q1 … qi-1) = P(qi | qi-1)

Output-independence assumption

P(ot |O1
t-1,q1

t) = P(ot |qt)

Example: HMM for speech

l Observed outputs are phones (speech sound)
l Hidden states are phonemes (unit of sound)
l HMM for the word “six”:

l Loopbacks present because
§ a phone is ~100 milliseconds long
§ An observation of speech every 10 ms
§ So each phone repeats ~10 times (simplifying greatly)

HMM for Speech: Recognizing Digits

HMM for Ice Cream

l You are a climatologist in the year 2799
l Studying global warming
l You can’t find any records of the weather in Baltimore, MD for summer

of 2008
l But you find Jason Eisner’s diary
l Which lists how many ice-creams Jason ate every date that summer
l Our job: figure out how hot it was

Eisner task

l Given
§ Ice Cream Observation Sequence: 1,2,3,2,2,2,3…

l Produce:
§ Weather Sequence: H,C,H,H,H,C…

HMM for ice cream

!"#$"%

&'()*+',-

!
"

./-010&'()2000000000034

./*010&'()200005000036

./7010&'()200000000003-

3*

38

393:

36

37

./-010+',200000000003*

./*010+',200005000036

./7010+',2000000000036

!
#

Different types of HMM structure

Bakis = left-to-right Ergodic =
fully-connected

The Three Basic Problems for HMMs

Problem 1 (Evaluation): Given the observation sequence O = (o1o2…oT),
and an HMM model F = (A, B), how do we efficiently compute P(O| F), the
probability of the observation sequence, given the model

Problem 2 (Decoding): Given the observation sequence O = (o1o2…oT), and
an HMM model F = (A, B), how do we choose a corresponding state
sequence Q = (q1q2…qT) that is optimal in some sense (i.e., best explains
the observations)

Problem 3 (Learning): How do we adjust the model parameters F = (A,B)
to maximize P(O| F)?

Problem 1: computing the observation likelihood

Computing Likelihood: Given an HMM l = (A, B) and an observation
sequence O, determine the likelihood P(O, l).

Given the following HMM:

How likely is the sequence 3 1 3?

!"#$"%

&'()*+',-

!
"

./-010&'()2000000000034

./*010&'()200005000036

./7010&'()200000000003-

3*

38

393:

36

37

./-010+',200000000003*

./*010+',200005000036

./7010+',2000000000036

!
#

How to compute likelihood

l For a Markov chain, we just follow the states 3 1 3 and multiply the
probabilities

l But for an HMM, we don’t know what the states are!
l So let’s start with a simpler situation.
l Computing the observation likelihood for a given hidden state sequence

§ Suppose we knew the weather and wanted to predict how much ice cream
Jason would eat.

§ i.e. P(3 1 3 | H H C)

Computing likelihood of 3 1 3 given hidden state sequence

Computing joint probability of observation and state sequence

Computing total likelihood of 3 1 3

l We would need to sum over
§ Hot hot cold
§ Hot hot hot
§ Hot cold hot
§ ….

l How many possible hidden state sequences are there for this sequence?

l How about in general for an HMM with N hidden states and a sequence
of T observations?
NT

l So we can’t just do separate computation for each hidden state
sequence.

Instead: the Forward algorithm

l A kind of dynamic programming algorithm
§ Just like Minimum Edit Distance
§ Uses a table to store intermediate values

l Idea:
§ Compute the likelihood of the observation sequence
§ By summing over all possible hidden state sequences
§ But doing this efficiently

• By folding all the sequences into a single trellis

The forward algorithm

l The goal of the forward algorithm is to compute

P(o1, o2 … oT, qT = qF | l)

l We’ll do this by recursion

The forward algorithm

l Each cell of the forward algorithm trellis at(j)
§ Represents the probability of being in state j
§ After seeing the first t observations
§ Given the automaton

l Each cell thus expresses the following probability

at(j) = P(o1, o2 … ot, qt = j | l)

The Forward Recursion

The Forward Trellis

!"#$"

%

&

%

&

%

&

'()

*+
&,
!"
#$
"-.
/.*
+0
,&
-

12
./.
13

+%,%-./.+3,%-

14./.12

+&,&-./.+3,&-

15./.16

+&,%-./.+3,&-
10./.16

*+%
,&-
./.*

+3,
%-

17./
.12

*
+%
,!
"#
$"
-/
*
+0
,%
-

18
./
.17

!
!
"#$9102

!
!
"!$.9.1:2

!
#
"#$9.102/1:37.;.1:2/1:8.9.1::5:8

!
#
"!$.9.102/136.;.1:2/10:.9.1:67

!"#$" !"#$" !"#$"

"

&

%

'() '() '()<=

<2

<3

<:

>3

0

>2 >0

3 0

We update each cell

!"#$!"

%$&

%'&

%(&

%)&

*&+!",

!!"#$%&"'&!!()"'$&%-&.*&+!",&

/$

/'

/)

/(

/$

/&

/'

/$

/'

!"0$!"#'

/$

/'

/) /)

/(/(

!!()"*$

!!()"+$

!!()",$

!!()")$

!!(,"*$

!!(,"+$

!!(,",$

!!(,")$

The Forward Algorithm

Decoding

l Given an observation sequence
§ 3 1 3

l and an HMM
l The task of the decoder

§ To find the best hidden state sequence

l Given the observation sequence O = (o1o2…oT), and an HMM model F =
(A,B), how do we choose a corresponding state sequence Q=(q1q2…qT)
that is optimal in some sense (i.e., best explains the observations)

Decoding
l One possibility:

§ For each hidden state sequence Q
• HHH, HHC, HCH,

§ Compute P(O|Q)
§ Pick the highest one

l Why not?
NT

l Instead:
§ The Viterbi algorithm
§ Is again a dynamic programming algorithm
§ Uses a similar trellis to the Forward algorithm

Viterbi intuition

l We want to compute the joint probability of the observation sequence
together with the best state sequence

max
q0,q1,...,qT

P(q0,q1,...,qT ,o1,o2,...,oT ,qT = qF |l)

Viterbi Recursion

The Viterbi trellis

!"#$"

%

&

%

&

%

&

'()

*+
&,
!"
#$
"-.
/.*
+0
,&
-

12
./.
13

+%,%-./.+3,%-

14./.12

+&,&-./.+3,&-

15./.16

+&,%-./.+3,&-
10./.16

*+%
,&-
./.*

+3,
%-

17./
.12

*
+%
,!
"#
$"
-/
*
+0
,%
-

18
./
.17

!
"
#$%9102

!
"
#"%.9.1:2

!
$
#$%9.;#<+102/1:37=.1:2/1:8-.9.1:778

!
$
#"%.9.;#<+102/136=.1:2/10:-.9.1:78

!"#$" !"#$" !"#$"

"

&

%

'() '() '()>?

>2

>3

>:

@3 @2 @0

0 3 0

Viterbi intuition
l Process observation sequence left to right
l Filling out the trellis
l Each cell:

)()(max)(1
1

tjijt

N

i
t obaivjv -

=
=

Viterbi Algorithm

Viterbi backtrace

!"#$"

%

&

%

&

%

&

'()

*+
&,
!"
#$
"-.
/.*
+0
,&
-

12
./.
13

+%,%-./.+3,%-

14./.12

+&,&-./.+3,&-

15./.16

+&,%-./.+3,&-
10./.16

*+%
,&-
./.*

+3,
%-

17./
.12

*
+%
,!
"#
$"
-/
*
+0
,%
-

18
./
.1
7

!
"
#$%9102

!
"
#"%.9.1:2

!
$
#$%9.;#<+102/1:37=.1:2/1:8-.9.1:778

!
$
#"%.9.;#<+102/136=.1:2/10:-.9.1:78

!"#$" !"#$" !"#$"

"

&

%

'() '() '()>?

>2

>3

>:

@3 @2 @0

0 3 0

Training a HMM

l Forward-backward or Baum-Welch algorithm (Expectation Maximization)
l Backward probability (prob. of observations from t+1 to T)
bt(i) = P(ot+1, ot+2…oT | qt = i, l)
bT(i) = ai,F 1 £ i £ N

Baum-Welch Algorithm

function FORWARD-BACKWARD(observations of len T, output vocabulary V, hidden
state set Q) returns HMM=(A,B)
initialize A and B
iterate until convergence
E-step

M-step

return A, B

HMM for Part of Speech Tagging

Part of speech tagging

l 8 (ish) traditional English parts of speech
§ Noun, verb, adjective, preposition, adverb, article, interjection, pronoun,

conjunction, etc.
§ This idea has been around for over 2000 years (Dionysius Thrax of

Alexandria, c. 100 B.C.)
§ Called: parts-of-speech, lexical category, word classes, morphological classes,

lexical tags, POS
§ We’ll use POS most frequently
§ Assuming that you know what these are

POS examples

N noun chair, bandwidth, pacing
V verb study, debate, munch
ADJ adj purple, tall, ridiculous
ADV adverb unfortunately, slowly,
P preposition of, by, to
PRO pronoun I, me, mine
DET determiner the, a, that, those

POS Tagging example

Word Tag

the DET
koala NOUN
put VERB
the DET
keys NOUN
on PREP
the DET
table NOUN

POS Tagging

l Words often have more than one POS: back
§ The back door = ADJ
§ On my back = NOUN
§ Win the voters back = ADV
§ Promised to back the bill = VERB

l The POS tagging problem is to determine the POS tag for a particular
instance of a word.

These examples from Dekang Lin

POS tagging as a Sequence Classification task

l We are given a sentence (an “observation” or “sequence of
observations”)
Secretariat is expected to race tomorrow
She promised to back the bill

l What is the best sequence of tags which corresponds to this sequence of
observations?

l Probabilistic view:
§ Consider all possible sequences of tags
§ Out of this universe of sequences, choose the tag sequence which is most

probable given the observation sequence of n words w1…wn.

Problem Formulation

l We want, out of all sequences of n tags t1…tn the single tag sequence
such that P(t1…tn|w1…wn) is highest.

𝑡̂!" = argmax
#!
"

𝑃(𝑡!"|𝑤!")

l Hat ^ means “our estimate of the best one”
l argmaxx f(x) means “the x such that f(x) is maximized”
l How to make it operational? How to compute this value?
l Intuition of Bayesian classification:

Use Bayes rule to transform into a set of other probabilities that are easier to
compute

Using Bayes Rule

𝑃(𝑥|𝑦) =
𝑃 𝑦 𝑥 𝑃(𝑥)

𝑃(𝑦)

𝑡̂!" = argmax
#!
"

𝑃 𝑤!"|𝑡!" 𝑃(𝑡!")

𝑡̂!" = argmax
#!
"

𝑃 𝑤!"|𝑡!" 𝑃(𝑡!")
𝑃(𝑤!")

Likelihood and prior

Naïve Bayes
assumption

Markov
assumption

𝑡̂!" = argmax
#!
"

𝑃 𝑤!"|𝑡!" 𝑃(𝑡!") ≈ argmax
#!
"

1
$%!

"

𝑃(𝑤$|𝑡$)𝑃(𝑡$|𝑡$&!)

𝑃 𝑤!"|𝑡!" ≈&
#$!

"

𝑃(𝑤#|𝑡#)

𝑃 𝑡!" ≈&
#$!

"

𝑃(𝑡#|𝑡#%!)

𝑡̂!" = argmax
&!
"

𝑃 𝑤!"|𝑡!" 𝑃(𝑡!")

likelihood prior

Two kinds of probabilities (1)

l Tag transition probabilities P(ti|ti-1)
§ Determiners likely to precede adjectives and nouns

That/DET flight/NOUN
The/DET yellow/JADJ hat/NOUN
So we expect P(NOUN|DET) and P(ADJ|DET) to be high
But P(DET|ADJ) to be low

§ Compute P(NOUN|DET) by counting in a labeled corpus:

𝑃 𝑁𝑂𝑈𝑁 𝐷𝐸𝑇 =
𝐶(𝐷𝐸𝑇,𝑁𝑂𝑈𝑁)

𝐶(𝐷𝐸𝑇)
=
56,509
116,454

= 0.49

Two kinds of probabilities (2)

l Word likelihood probabilities P(wi|ti)
§ VERB likely to be “is”
§ Compute P(is|VERB) by counting in a labeled corpus:

𝑃 𝑖𝑠 𝑉𝐸𝑅𝐵 =
𝐶(𝑉𝐸𝑅𝐵, 𝑖𝑠)
𝐶(𝑉𝐸𝑅𝐵)

=
10,073
21.627

= 0.47

An Example: the word “race”

Varenne/NNP is/VBZ expected/VBN to/TO race/VB tomorrow/NR
People/NNS continue/VB to/TO inquire/VB the/DT reason/NN for/IN
the/DT race/NN for/IN outer/JJ space/NN

l How do we pick the right tag?

Disambiguating “race”

Varenne

Varenne

ML Estimation

P(VB|TO)P(race|VB)P(NR|VB) = .00000027
P(NN|TO)P(race|NN)P(NR|NN) =.00000000032

So we (correctly) choose the verb reading

P(NN|TO) = .00047
P(VB|TO) = 0.83 Transition prob

P(race|NN) = 0.00057
P(race|VB) = 0.00012 Emission prob

P(NR|VB) = 0.0027
P(NR|NN) = 0.0012 Transition prob

HMM for PoS tagging

Transitions probabilities A between the hidden states: tags

B observation likelihoods for POS HMM

l Emission probabilities B: words

The A matrix for the POS HMM

VB TO NN PPSS
<s> 0.019 0.0043 0.041 0.0076
VB 0.0038 0.035 0.047 0.007
TO 0.83 0 0.00047 0
NN 0.004 0.016 0.087 0.0045
PPSS 0.23 0.0008 0.012 0.0001

The B matrix for the POS HMM

I want to race
VB 0 0.093 0 0.0012
TO 0 0 0.99 0
NN 0 0.0005 0 0.0057
PPSS 0.37 0 0 0

Viterbi example

Viterbi intuition: looking for the best ‘path’

S1 S2 S4S3 S5

 promised to back the bill

VBD

VBN

TO

VB

JJ

NN

RB

DT

NNP

VB

NN

Slide from Dekang Lin

Outline

l Markov Chains
l Hidden Markov Models
l Three Algorithms for HMMs

§ The Forward Algorithm
§ The Viterbi Algorithm
§ The Baum-Welch (EM Algorithm)

l Applications:
§ The Ice Cream Task
§ Part of Speech Tagging

