

Hidden Markov Models

IP notice: slides from Dan Jurafsky

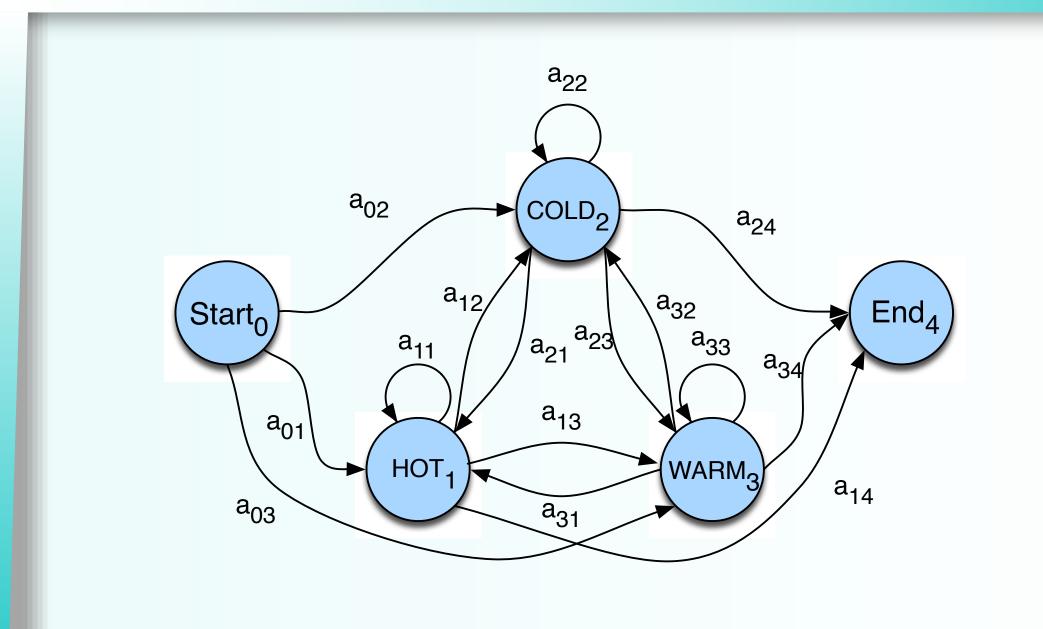
Outline

- Markov Chains
- Hidden Markov Models
- Three Algorithms for HMMs
 - The Forward Algorithm
 - The Viterbi Algorithm
 - The Baum-Welch (EM Algorithm)
- Applications:
 - The Ice Cream Task
 - Part of Speech Tagging

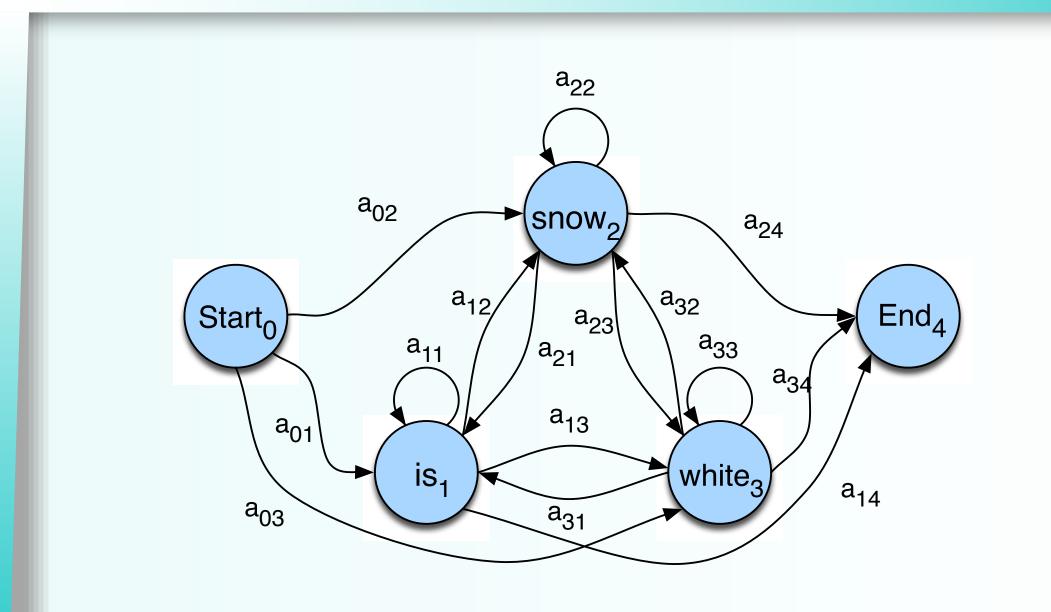
Definitions

- A Markov Chain (or Observable Markov Model)
 - is a stochastic model describing a sequence of possible events in which the probability of each event depends only on the state attained in the previous event
- A Markov Chain can be represented by a transition diagram, where:
 - Each arc is labeled by a transition probability
 - The sum of the probabilities leaving any arc must sum to one

Markov Chain for weather



Markov Chain for words



Markov Chain: definition

A first-order observable Markov Model (aka Markov Chain) consists in:

• A set of states Q

 $q_1, q_2...q_N$ sequence of states: state at time t is q_t

• Transition probabilities:

a set of probabilities $A = a_{01}a_{02}...a_{n1}...a_{nn}$.

Each a_{ij} represents the probability of transitioning from state i to state j

$$a_{ij} = P(q_t = j | q_{t-1} = i) \ 1 \le i, j \le N$$
$$\sum_{i=1}^{N} a_{ij} = 1 \ 1 \le i \le N$$

Distinguished start and end states

Markov Chain

Markov Assumption:

• Current state only depends on previous state

$$P(q_i | q_1 \dots q_{i-1}) = P(q_i | q_{i-1})$$

Another representation for start state

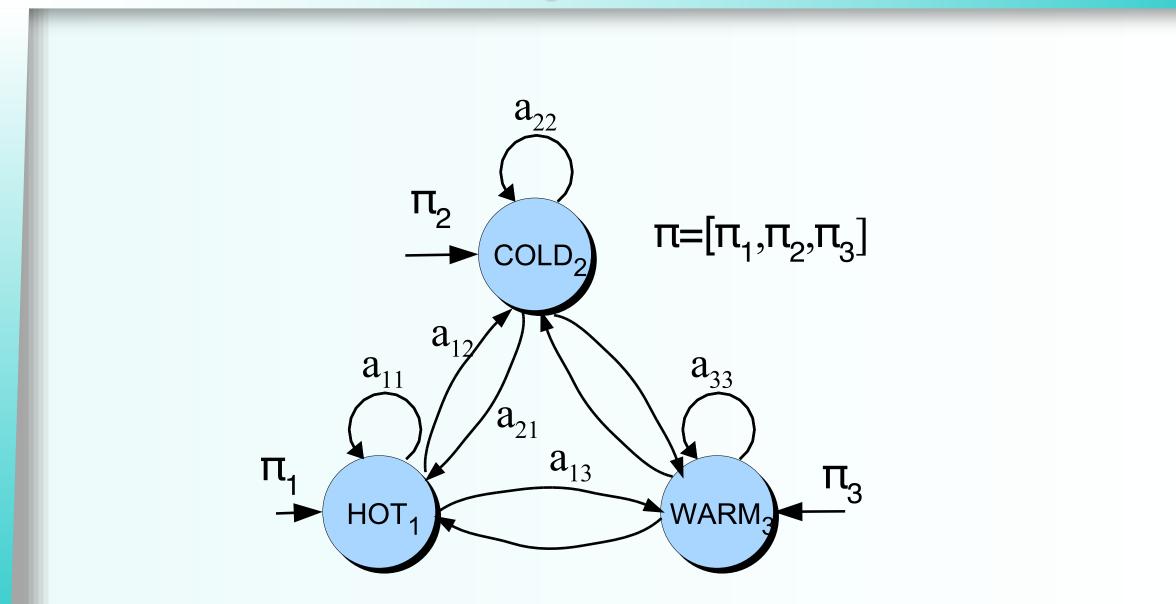
- Instead of start state
- Special initial probability vector π
 - An initial distribution over probability of start states

$$\pi_i = P(q_1 = i) \quad 1 \le i \le N$$

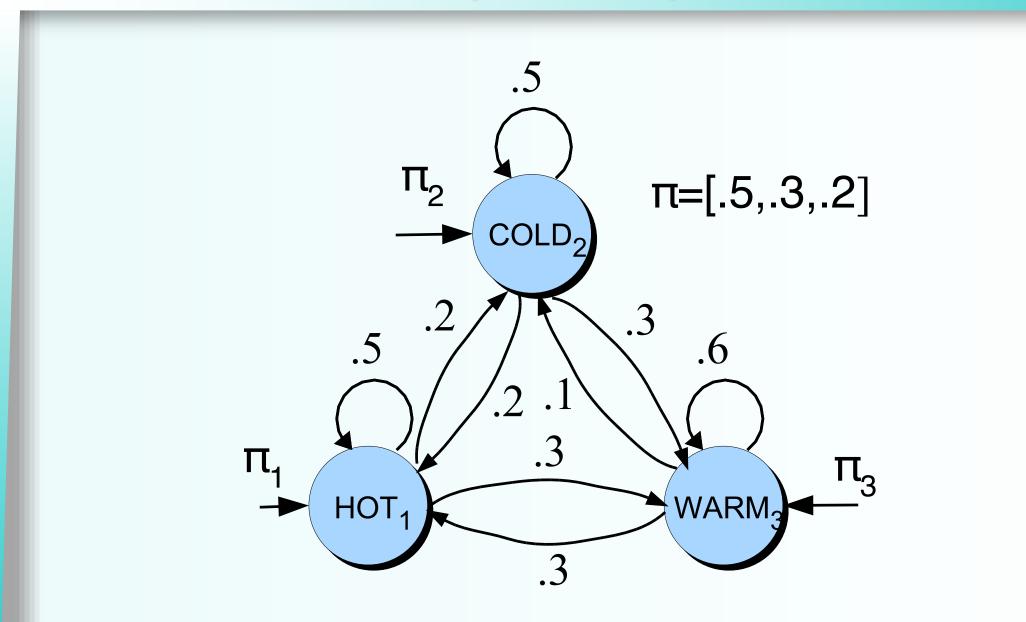
• Constraints:

$$\sum_{j=1}^{N} \pi_{j} = 1$$

The weather model using π



The weather model: specific example



Markov chain for weather

- What is the probability of 4 consecutive warm days?
- Sequence is warm-warm-warm-
- i.e., state sequence is 3-3-3-3

 $P(3, 3, 3, 3) = \\\pi_3 a_{33} a_{33} a_{33} a_{33} = 0.2 \cdot (0.6)^3 = 0.0432$

How about?

- Hot hot hot hot
- Cold hot cold hot
- What does the difference in these probabilities tell you about the real world weather info encoded in the figure?

Fun with Markov Chains

- Markov Chains "Explained Visually": <u>http://setosa.io/ev/markov-chains</u>
- Snakes and Ladders:

http://datagenetics.com/blog/november12011/

• Candyland:

http://www.datagenetics.com/blog/december12011/

• Yahtzee:

http://www.datagenetics.com/blog/january42012/

 Chess pieces returning home and K-pop vs. ska: https://www.youtube.com/watch?v=63HHmjlh794

Hidden Markov Models

Hidden Markov Model

- For Markov chains, the output symbols are the same as the states.
 - See hot weather: we are in state hot
- But in named-entity or part-of-speech tagging (and speech recognition)
 - The output symbols are words
 - But the hidden states are something else
 - Part-of-speech tags
 - Named entity tags
- So we need an extension!
- A Hidden Markov Model is an extension of a Markov chain in which the input symbols are not the same as the states.
- This means we don't know which state we are in.

Hidden Markov Model: Definition

$Q = q_1 q_2 \dots q_N$	a set of N hidden states
$A = a_{11}a_{12}\dots a_{n1}\dots a_{nn}$	a transition probability matrix <i>A</i> , each a_{ij} representing the probability of moving fronm state <i>i</i> to state <i>j</i> , s.t. $\sum_{j=1}^{n} a_{ij} \forall i$
$O = o_1 o_2 \dots o_T$	a sequence of <i>T</i> observations , each one drawn from a vocavulary $V = v_1, v_2,, v_V$
$B = b_i(o_t)$	a sequence of observation likelihoods , also called emission probabilities , each expressing the probabilitu of an observation o_t being generated from a state <i>i</i>
<i>q</i> ₀ ., <i>q</i> _{<i>F</i>}	a special start state and an end state that are not associated with observations, together with transition probabilities $a_{01}a_{02}a_{0n}$ out of the start state and $a_{1F}a_{1F}a_{nF}$ into the end state.

Assumptions

Markov assumption:

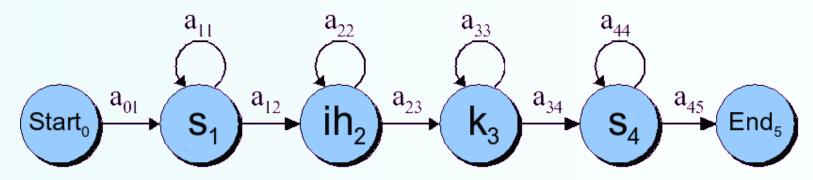
$$P(q_i | q_1 \dots q_{i-1}) = P(q_i | q_{i-1})$$

Output-independence assumption

$$P(o_t | O_1^{t-1}, q_1^t) = P(o_t | q_t)$$

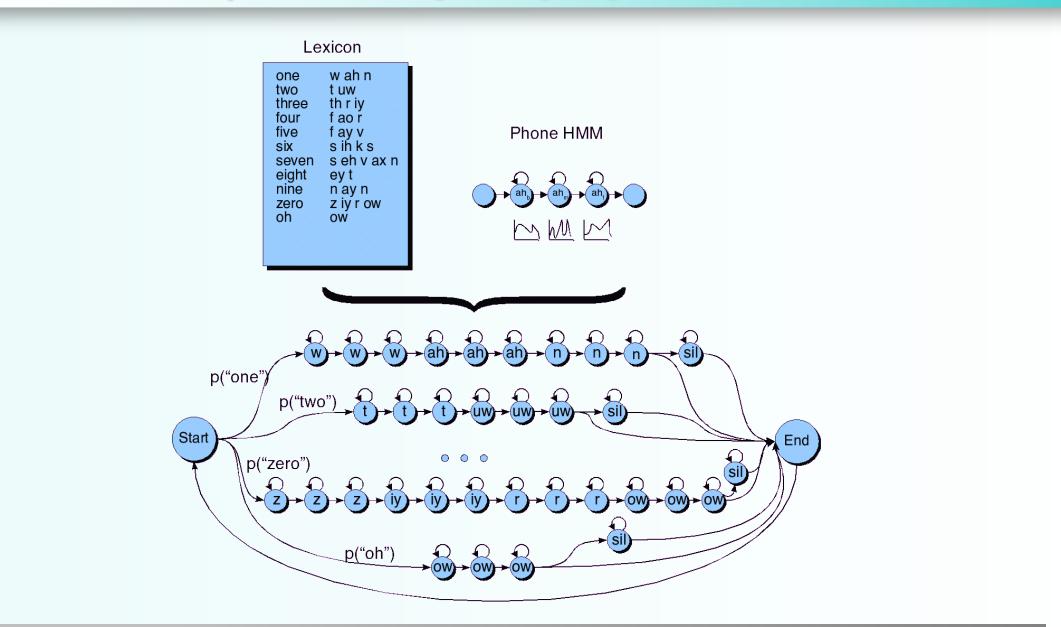
Example: HMM for speech

- Observed outputs are phones (speech sound)
- Hidden states are **phonemes** (unit of sound)
- HMM for the word "six":



- Loopbacks present because
 - a phone is ~100 milliseconds long
 - An observation of speech every 10 ms
 - So each phone repeats ~10 times (simplifying greatly)

HMM for Speech: Recognizing Digits



HMM for Ice Cream

- You are a climatologist in the year 2799
- Studying global warming
- You can't find any records of the weather in Baltimore, MD for summer of 2008
- But you find Jason Eisner's diary
- Which lists how many ice-creams Jason ate every date that summer
- Our job: figure out how hot it was

Eisner task

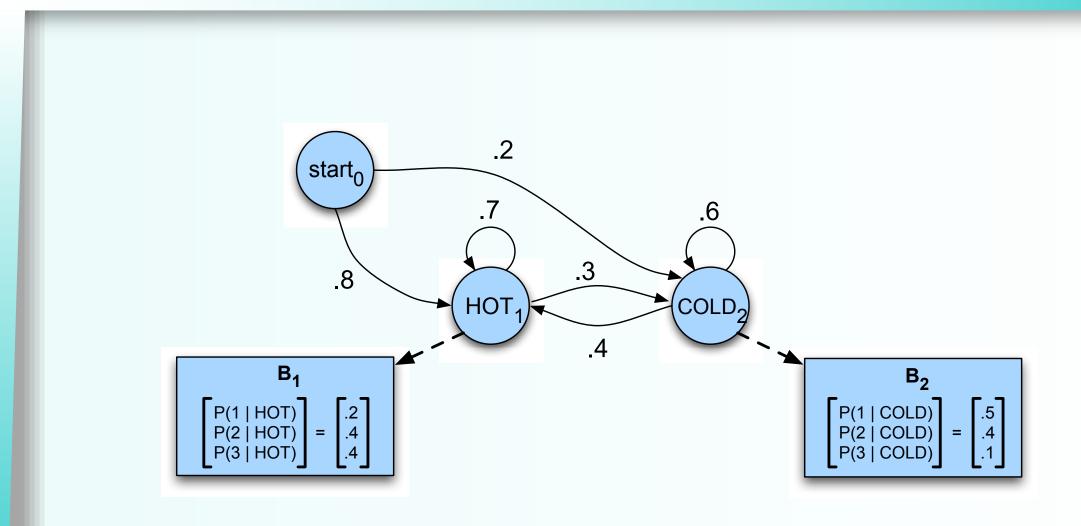
• Given

Ice Cream Observation Sequence: 1,2,3,2,2,2,3...

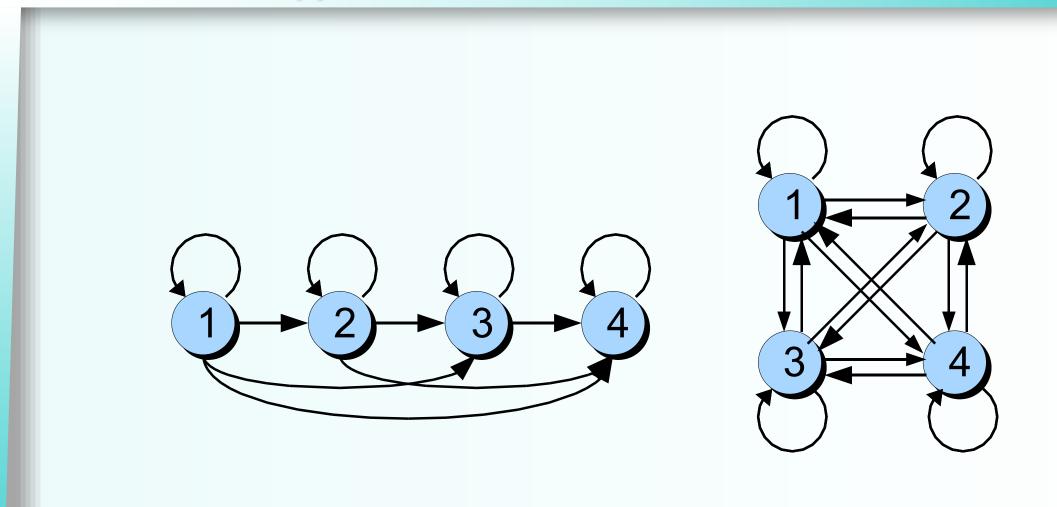
• Produce:

• Weather Sequence: H,C,H,H,H,C...

HMM for ice cream



Different types of HMM structure



Ergodic = fully-connected

The Three Basic Problems for HMMs

Problem 1 (Evaluation): Given the observation sequence $O = (o_1 o_2 \dots o_T)$, and an HMM model $\Phi = (A, B)$, how do we efficiently compute $P(O | \Phi)$, the probability of the observation sequence, given the model

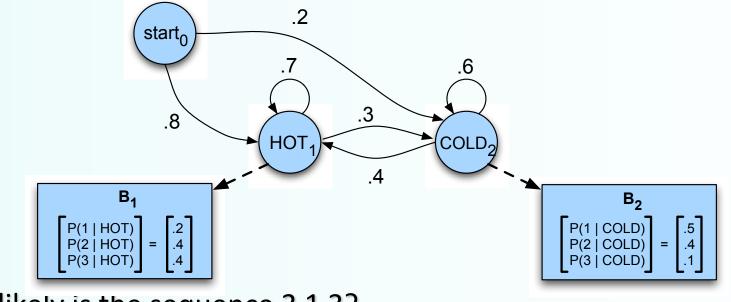
Problem 2 (**Decoding**): Given the observation sequence $O = (o_1 o_2 \dots o_T)$, and an HMM model $\Phi = (A, B)$, how do we choose a corresponding state sequence $Q = (q_1 q_2 \dots q_T)$ that is optimal in some sense (i.e., best explains the observations)

Problem 3 (Learning): How do we adjust the model parameters $\Phi = (A,B)$ to maximize $P(O | \Phi)$?

Problem 1: computing the observation likelihood

Computing Likelihood: Given an HMM $\lambda = (A, B)$ and an observation sequence *O*, determine the likelihood P(*O*, λ).

Given the following HMM:



How likely is the sequence 3 1 3?

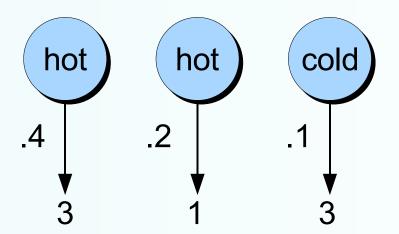
How to compute likelihood

- For a Markov chain, we just follow the states 3 1 3 and multiply the probabilities
- But for an HMM, we don't know what the states are!
- So let's start with a simpler situation.
- Computing the observation likelihood for a **given** hidden state sequence
 - Suppose we knew the weather and wanted to predict how much ice cream Jason would eat.
 - i.e. *P*(313|HHC)

Computing likelihood of 3 1 3 given hidden state sequence

$$P(O|Q) = \prod_{i=1}^{T} P(o_i|q_i)$$

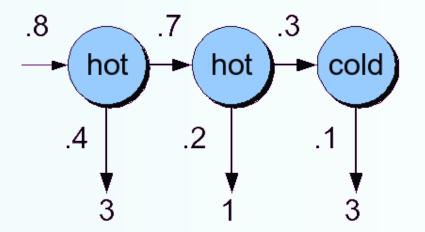
 $P(3 \ 1 \ 3|\text{hot hot cold}) = P(3|\text{hot}) \times P(1|\text{hot}) \times P(3|\text{cold})$



Computing joint probability of observation and state sequence

$$P(O,Q) = P(O|Q) \times P(Q) = \prod_{i=1}^{n} P(o_i|q_i) \times \prod_{i=1}^{n} P(q_i|q_{i-1})$$

 $P(3 \ 1 \ 3, \text{hot hot cold}) = P(\text{hot}|\text{start}) \times P(\text{hot}|\text{hot}) \times P(\text{cold}|\text{hot}) \\ \times P(3|\text{hot}) \times P(1|\text{hot}) \times P(3|\text{cold})$



Computing total likelihood of 3 1 3

- We would need to sum over
 - Hot hot cold
 - Hot hot hot
 - Hot cold hot
 -

$$P(O) = \sum_{Q} P(O,Q) = \sum_{Q} P(O|Q)P(Q)$$

• How many possible hidden state sequences are there for this sequence?

 $P(3 1 3) = P(3 1 3, \text{cold cold cold}) + P(3 1 3, \text{cold cold hot}) + P(3 1 3, \text{hot hot cold}) + \dots$

 How about in general for an HMM with N hidden states and a sequence of T observations?

 N^T

 So we can't just do separate computation for each hidden state sequence.

Instead: the Forward algorithm

- A kind of **dynamic programming** algorithm
 - Just like Minimum Edit Distance
 - Uses a table to store intermediate values
- Idea:
 - Compute the likelihood of the observation sequence
 - By summing over all possible hidden state sequences
 - But doing this efficiently
 - By folding all the sequences into a single **trellis**

The forward algorithm

• The goal of the forward algorithm is to compute

$$P(o_1, o_2 \dots o_T, q_T = q_F \mid \lambda)$$

• We'll do this by recursion

The forward algorithm

- Each cell of the forward algorithm trellis $\alpha_t(j)$
 - Represents the probability of being in state j
 - After seeing the first t observations
 - Given the automaton
- Each cell thus expresses the following probability

$$\alpha_t(j) = P(o_1, o_2 \dots o_t, q_t = j \mid \lambda)$$

The Forward Recursion

1. Initialization:

$$\alpha_1(j) = a_{0j}b_j(o_1) \ 1 \le j \le N$$

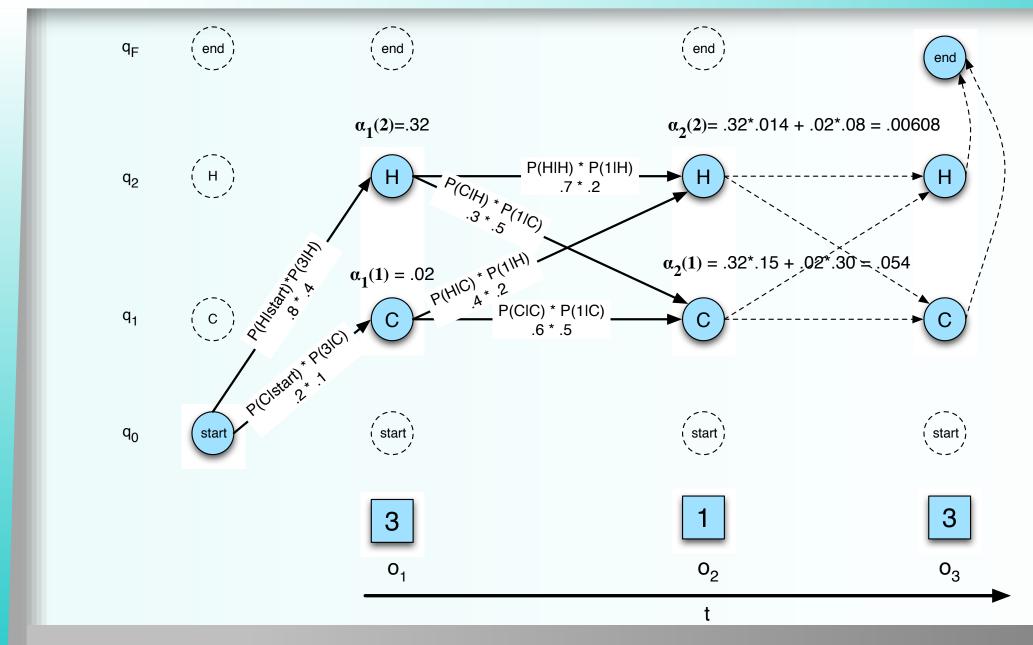
2. Recursion (since states 0 and F are non-emitting):

$$\alpha_t(j) = \sum_{i=1}^N \alpha_{t-1}(i) a_{ij} b_j(o_t); \quad 1 \le j \le N, 1 < t \le T$$

3. Termination:

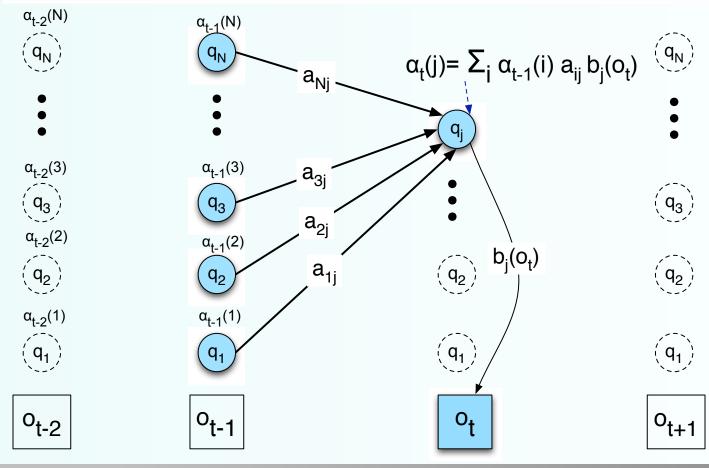
$$P(O|\lambda) = \alpha_T(q_F) = \sum_{i=1}^N \alpha_T(i) a_{iF}$$

The Forward Trellis

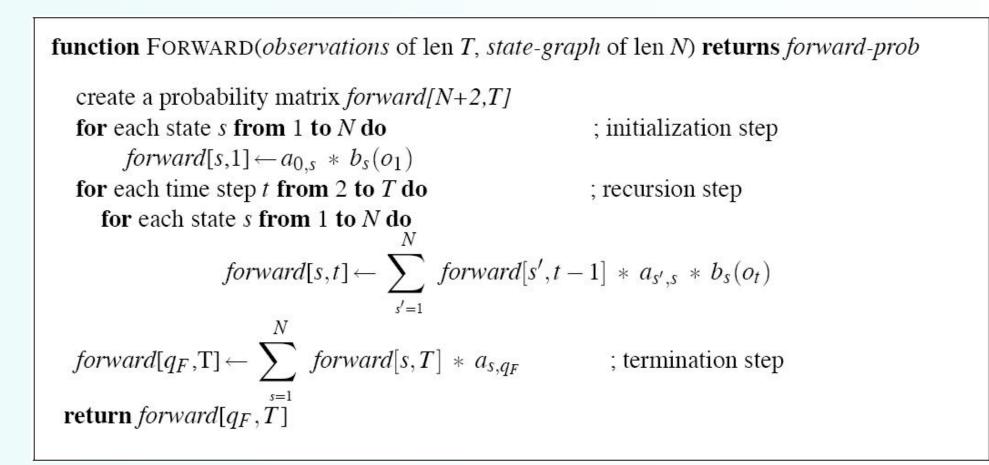


We update each cell

 $\begin{array}{ll} \alpha_{t-1}(i) & \text{the previous forward path probability from the previous time step} \\ a_{ij} & \text{the transition probability from previous state } q_i \text{ to current state } q_j \\ b_j(o_t) & \text{the state observation likelihood of the observation symbol } o_t \text{ given} \\ & \text{the current state } j \end{array}$



The Forward Algorithm



Decoding

- Given an observation sequence
 - 313
- and an HMM
- The task of the decoder
 - To find the best hidden state sequence
- Given the observation sequence $O = (o_1 o_2 \dots o_T)$, and an HMM model $\Phi = (A,B)$, how do we choose a corresponding state sequence $Q=(q_1q_2\dots q_T)$ that is optimal in some sense (i.e., best explains the observations)

Decoding

- One possibility:
 - For each hidden state sequence Q
 - HHH, HHC, HCH,
 - Compute P(O|Q)
 - Pick the highest one
- Why not? N^T
- Instead:
 - The Viterbi algorithm
 - Is again a dynamic programming algorithm
 - Uses a similar trellis to the Forward algorithm

Viterbi intuition

 We want to compute the joint probability of the observation sequence together with the best state sequence

$$\max_{q_{0},q_{1},\ldots,q_{T}} P(q_{0},q_{1},\ldots,q_{T},o_{1},o_{2},\ldots,o_{T},q_{T} = q_{F} \mid \lambda)$$

 $v_t(j) = \max_{q_0, q_1, \dots, q_{t-1}} P(q_0, q_1 \dots q_{t-1}, o_1, o_2 \dots o_t, q_t = j | \lambda)$

$$v_t(j) = \max_{i=1}^N v_{t-1}(i) a_{ij} b_j(o_t)$$

Viterbi Recursion

1. Initialization:

$$v_1(j) = a_{0j}b_j(o_1) \ 1 \le j \le N$$

 $bt_1(j) = 0$

2. **Recursion** (recall that states 0 and q_F are non-emitting):

$$v_t(j) = \max_{i=1}^N v_{t-1}(i) a_{ij} b_j(o_t); \quad 1 \le j \le N, 1 < t \le T$$

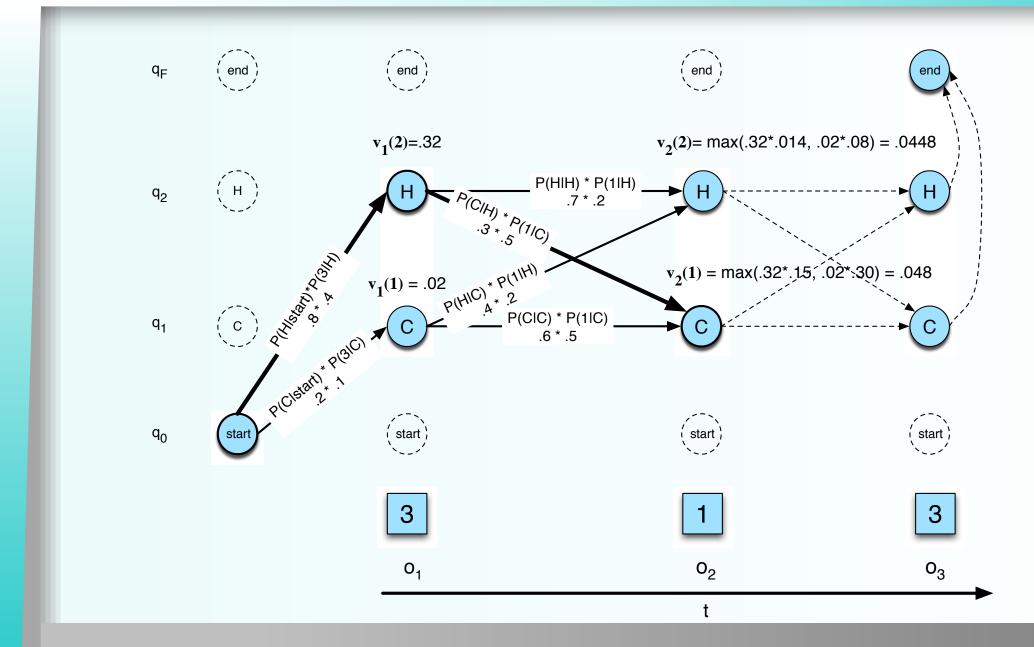
$$bt_t(j) = \arg_{i=1}^N v_{t-1}(i) a_{ij} b_j(o_t); \quad 1 \le j \le N, 1 < t \le T$$

3. Termination:

The best score:
$$P = v_t(q_F) = \max_{i=1}^N v_T(i) * a_{i,F}$$

The start of backtrace: $q_T * = bt_T(q_F) = \arg_{i=1}^N v_T(i) * a_{i,F}$

The Viterbi trellis



Viterbi intuition

- Process observation sequence left to right
- Filling out the trellis
- Each cell:

$$v_t(j) = \max_{q_0, q_1, \dots, q_{t-1}} P(q_0, q_1 \dots q_{t-1}, o_1, o_2 \dots o_t, q_t = j | \lambda)$$

$$v_t(j) = \max_{i=1}^N v_{t-1}(i)a_{ij}b_j(o_t)$$

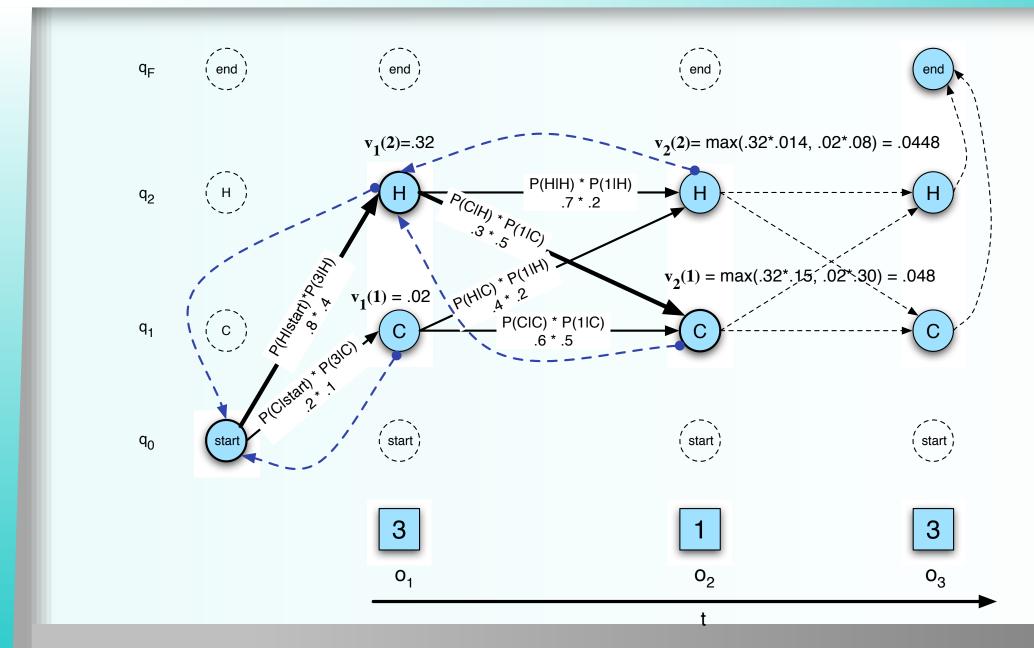
 $v_{t-1}(i)$ the **previous Viterbi path probability** from the previous time step a_{ij} the **transition probability** from previous state q_i to current state q_j $b_j(o_t)$ the **state observation likelihood** of the observation symbol o_t given the current state j

Viterbi Algorithm

function VITERBI(*observations* of len *T*, *state-graph* of len *N*) **returns** *best-path*

```
create a path probability matrix viterbi[N+2,T]
for each state s from 1 to N do
                                                         ; initialization step
     viterbi[s,1] \leftarrow a_{0,s} * b_s(o_1)
     backpointer[s,1] \leftarrow 0
for each time step t from 2 to T do
                                                         ; recursion step
   for each state s from 1 to N do
     viterbi[s,t] \leftarrow \max_{s',s} viterbi[s',t-1] * a_{s',s} * b_s(o_t)
     backpointer[s,t] \leftarrow argmax \quad viterbi[s',t-1] * a_{s',s}
                              s' = 1
viterbi[q_F,T] \leftarrow \max^N viterbi[s,T] * a_{s,q_F}; termination step
backpointer[q_F,T] \leftarrow argmax \ viterbi[s,T] * a_{s,q_F}; termination step
return the backtrace path by following backpointers to states back in
         time from backpointer[q_F, T]
```

Viterbi backtrace



Training a HMM

- Forward-backward or Baum-Welch algorithm (Expectation Maximization)
- Backward probability (prob. of observations from t+1 to T)

 $\beta t(i) = P(o_{t+1}, o_{t+2} \dots o_T | q_t = i, \lambda)$ $\beta_T(i) = a_{i,F} \quad 1 \le i \le N$

$$\beta_t(i) = \sum_{i=1}^N a_{ij} \beta_j(o_{t+1}) \beta_{t+1}(j), \qquad 1 \le i \le N, 1 \le t \le T$$

$$P(O|\lambda) = \alpha_T(q_F) = \beta_1(0) = \sum_{j=1}^N a_{0j} b_j(o_1) \beta_1$$

Baum-Welch Algorithm

function FORWARD-BACKWARD(*observations* of len *T*, *output vocabulary V*, *hidden state set Q*) **returns** *HMM*=(*A*,*B*) **initialize** *A* and *B*

iterate until convergence

E-step

$$\gamma_t(j) = \frac{\alpha_t(j)\beta_t(j)}{P(0|\lambda)} \ \forall t, j \qquad \quad \xi_t(i,j) = \frac{\alpha_t(j)a_{ij}b_j(o_{t+1})\beta_{t+1}(j)}{\alpha_T(N)} \ \forall t, i, j$$

M-step

$$\hat{a}_{ij} = \frac{\sum_{t=1}^{T-1} \xi_t(i,j)}{\sum_{t=1}^{T-1} \sum_{j=1}^{N} \xi_t(i,j)}$$

$$\hat{b}_j(v_k) = \frac{\sum_{t=1 \text{ s.t. } o_t = v_k}^T \gamma_t(j)}{\sum_{t=1}^T \gamma_t(j)}$$

return A, B

HMM for Part of Speech Tagging

Part of speech tagging

- 8 (ish) traditional English parts of speech
 - Noun, verb, adjective, preposition, adverb, article, interjection, pronoun, conjunction, etc.
 - This idea has been around for over 2000 years (Dionysius Thrax of Alexandria, c. 100 B.C.)
 - Called: parts-of-speech, lexical category, word classes, morphological classes, lexical tags, POS
 - We'll use POS most frequently
 - Assuming that you know what these are

POS examples

Ν	noun	chair, bandwidth, pacing
V	verb	study, debate, munch
ADJ	adj	purple, tall, ridiculous
ADV	adverb	unfortunately, slowly,
Р	preposition	of, by, to
PRO	pronoun	I, me, mine
DET	determiner	the, a, that, those

POS Tagging example

Word	Tag
the koala	DET NOUN
put	VERB
the keys	DET NOUN
on	PREP
the	DET
table	NOUN

POS Tagging

- Words often have more than one POS: *back*
 - The back door = ADJ
 - On my back = NOUN
 - Win the voters back = ADV
 - Promised to *back* the bill = VERB
- The POS tagging problem is to determine the POS tag for a particular instance of a word.

POS tagging as a Sequence Classification task

- We are given a sentence (an "observation" or "sequence of observations")
 - Secretariat is expected to race tomorrow
 - She promised to back the bill
- What is the best sequence of tags which corresponds to this sequence of observations?
- Probabilistic view:
 - Consider all possible sequences of tags
 - Out of this universe of sequences, choose the tag sequence which is most probable given the observation sequence of n words w₁...w_n.

Problem Formulation

We want, out of all sequences of n tags t₁...t_n the single tag sequence such that P(t₁...t_n|w₁...w_n) is highest.

$$\hat{t}_1^n = \operatorname*{argmax}_{t_1^n} P(t_1^n | w_1^n)$$

- Hat ^ means "our estimate of the best one"
- argmax_x f(x) means "the x such that f(x) is maximized"
- How to make it operational? How to compute this value?
- Intuition of Bayesian classification:
 - Use Bayes rule to transform into a set of other probabilities that are easier to compute

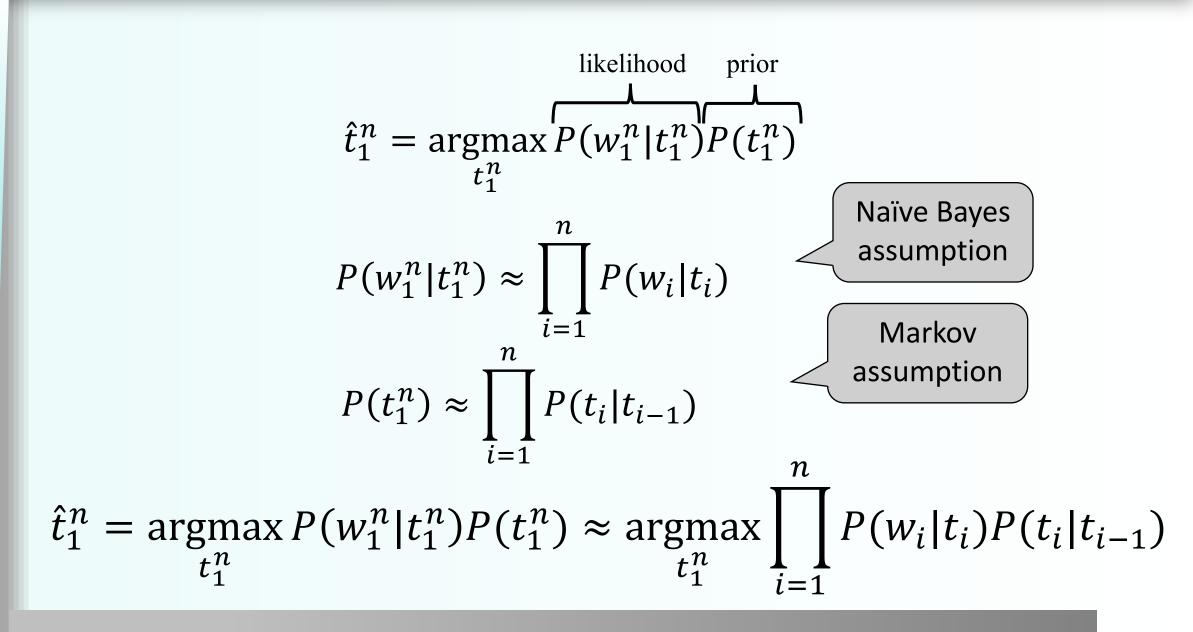
Using Bayes Rule

$$P(x|y) = \frac{P(y|x)P(x)}{P(y)}$$

$$\hat{t}_{1}^{n} = \operatorname*{argmax}_{t_{1}^{n}} \frac{P(w_{1}^{n}|t_{1}^{n})P(t_{1}^{n})}{P(w_{1}^{n})}$$

$$\hat{t}_1^n = \operatorname*{argmax}_{t_1^n} P(w_1^n | t_1^n) P(t_1^n)$$

Likelihood and prior



Two kinds of probabilities (1)

- Tag transition probabilities $P(t_i|t_{i-1})$
 - Determiners likely to precede adjectives and nouns That/DET flight/NOUN The/DET yellow/JADJ hat/NOUN
 So we expect P(NOUN|DET) and P(ADJ|DET) to be high But P(DET|ADJ) to be low
 - Compute P(NOUN|DET) by counting in a labeled corpus:

$$P(t_i|t_{i-1}) = \frac{C(t_{i-1}, t_i)}{C(t_{i-1})}$$

$$P(NOUN|DET) = \frac{C(DET, NOUN)}{C(DET)} = \frac{56,509}{116,454} = 0.49$$

Two kinds of probabilities (2)

- Word likelihood probabilities $P(w_i|t_i)$
 - VERB likely to be "is"
 - Compute P(is|VERB) by counting in a labeled corpus:

$$P(w_i|t_i) = \frac{C(t_i, w_i)}{C(t_i)}$$

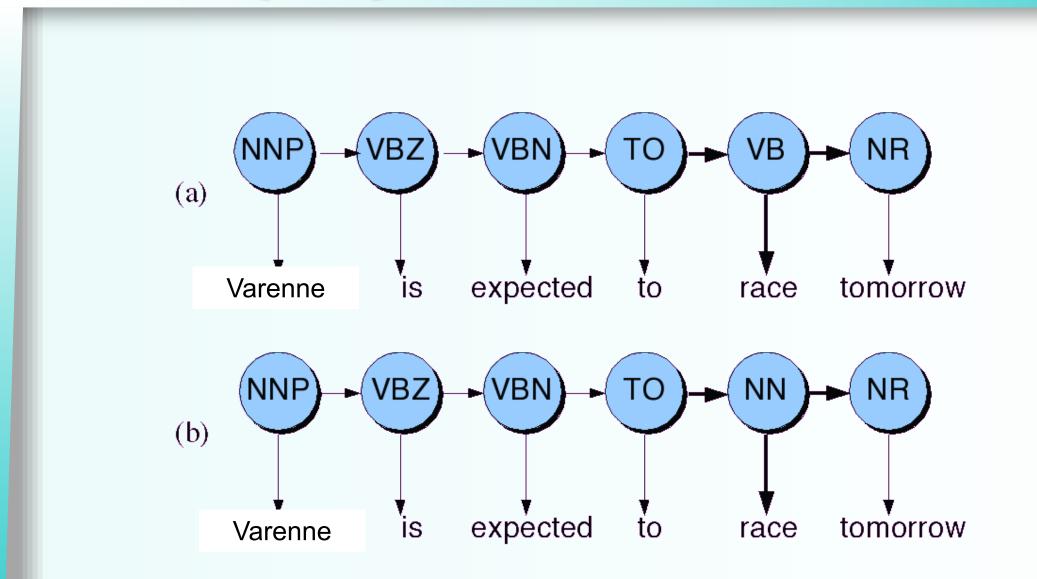
$$P(is|VERB) = \frac{C(VERB, is)}{C(VERB)} = \frac{10,073}{21.627} = 0.47$$

An Example: the word "race"

Varenne/NNP is/VBZ expected/VBN to/TO race/VB tomorrow/NR People/NNS continue/VB to/TO inquire/VB the/DT reason/NN for/IN the/DT race/NN for/IN outer/JJ space/NN

• How do we pick the right tag?

Disambiguating "race"



ML Estimation

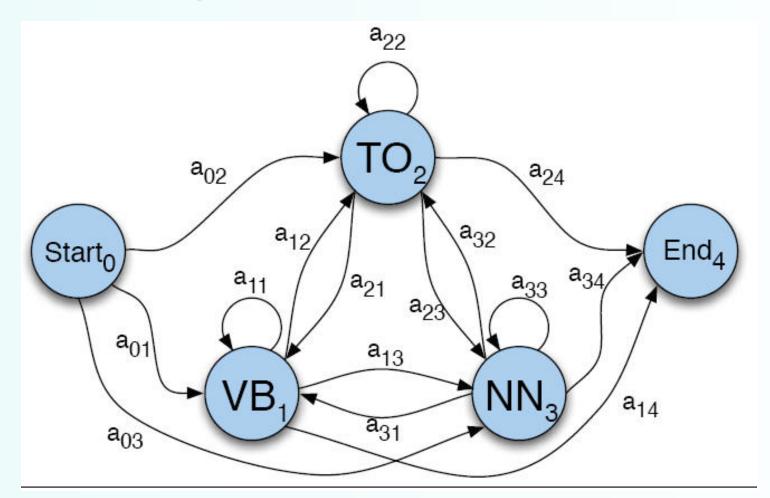
P(NN TO) = .00047 P(VB TO) = 0.83	Transition prob
P(race NN) = 0.00057 P(race VB) = 0.00012	Emission prob
P(NR VB) = 0.0027 P(NR NN) = 0.0012	Transition prob

P(VB|TO)P(race|VB)P(NR|VB) = .00000027P(NN|TO)P(race|NN)P(NR|NN) = .0000000032

So we (correctly) choose the **verb** reading

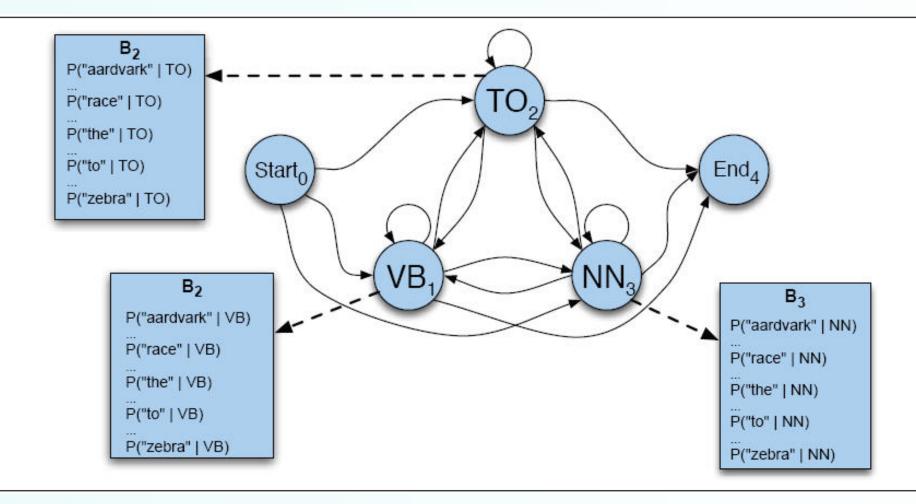
HMM for PoS tagging

Transitions probabilities *A* between the hidden states: tags



B observation likelihoods for POS HMM

• **Emission probabilities** *B*: words



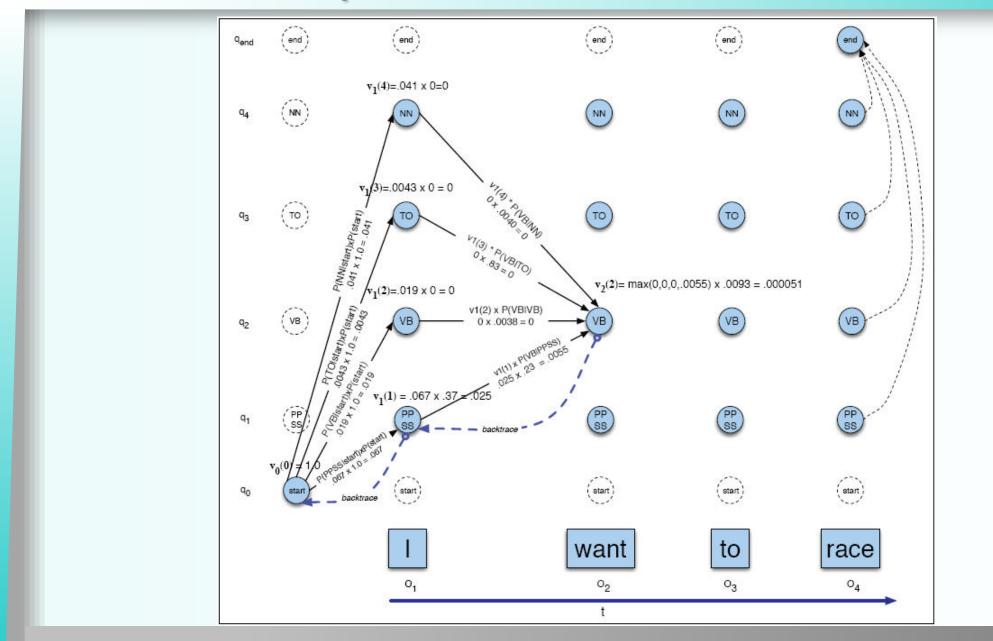
The A matrix for the POS HMM

	VB	ТО	NN	PPSS
<s></s>	0.019	0.0043	0.041	0.0076
VB	0.0038	0.035	0.047	0.007
ТО	0.83	0	0.00047	0
NN	0.004	0.016	0.087	0.0045
PPSS	0.23	0.0008	0.012	0.0001

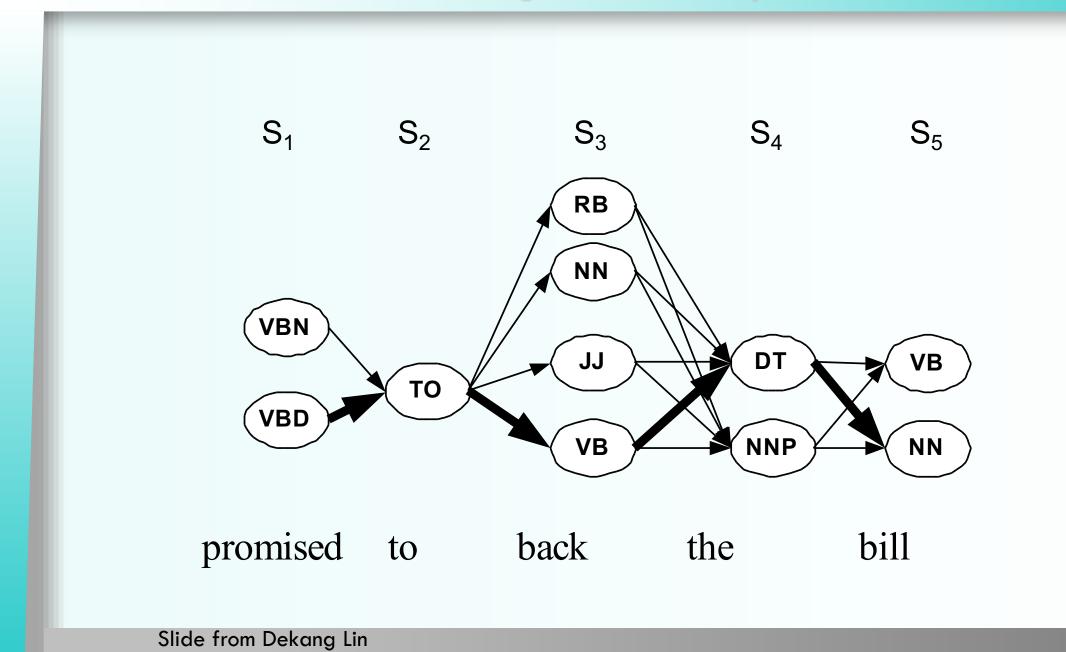
The B matrix for the POS HMM

	I.	want	to	race
VB	0	0.093	0	0.0012
ТО	0	0	0.99	0
NN	0	0.0005	0	0.0057
PPSS	0.37	0	0	0

Viterbi example



Viterbi intuition: looking for the best 'path'



Outline

- Markov Chains
- Hidden Markov Models
- Three Algorithms for HMMs
 - The Forward Algorithm
 - The Viterbi Algorithm
 - The Baum-Welch (EM Algorithm)
- Applications:
 - The Ice Cream Task
 - Part of Speech Tagging