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Chapter 1

Introduction

Bitcoin is a decentralized cryptocurrency. But what is a cryptocurrency?
While any currency is a system for storing and transferring value, a cryp-
tocurrency has the additional property that the notion of ownership of its
units is established using cryptography. In the Bitcoin system, the transfer
of bitcoins1 between entities requires the sender to provide a digital signa-
ture proving ownership of the bitcoins being transferred. So what about the
decentralized part? Bitcoin is a decentralized system because the creation
of new bitcoins and the recording of all bitcoin transfers (which are called
transactions) is performed by a peer-to-peer (P2P) network. Anyone can join
the Bitcoin network by running open-source software freely available on the
Internet.

The Bitcoin system provides the infrastructure necessary for enabling
transactions between entities. This infrastructure consists of the following:

• A system for generating addresses where bitcoins can be received and
stored.

• A method for ensuring that only the rightful owner of bitcoins stored in
an address can move them to a new address.

• A database of all past transactions which is used to prevent double
spending of the bitcoins stored in an address. This database is called
the blockchain.

The traditional banking system also provides such an infrastructure. We have
bank accounts where we can receive and store money. We can transfer money
from one bank account to another using a cheque or an online account pass-
word. As each withdrawal from an account is stored in the bank’s database,
there is no possibility of double spending the money in an account. The sur-
prising thing about Bitcoin is that this infrastructure is provided by a P2P

1It is convention to use Bitcoin (the word beginning with an uppercase B) to denote the
cryptocurrency system and bitcoin to denote the unit of the cryptocurrency.
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network where the participants are anonymous and not accountable for their
behaviour.

The main innovation in Bitcoin is that the maintenance of the blockchain
database is linked to the creation of new bitcoins. The blockchain consists of
a linked list or chain of blocks where each block contains a set of transactions.
Blocks are appended to the blockchain one at a time where each addition
requires finding a solution to a computationally hard search problem. Nodes
in the Bitcoin network which successfully add a block to the blockchain are
rewarded with new bitcoins. Such nodes are called miners and their search
for solutions of the computationally hard problems is called mining.

In the forthcoming chapters, we will describe the different aspects of the
Bitcoin system in detail.



Chapter 2

Elliptic Curve Cryptography

In public key cryptography, each entity owns a pair of related keys: a public
key and a private key. Given the private key, it is easy to calculate the
corresponding public key. Finding the private key from the public key is
computationally hard. As the names suggest, the private key needs to be kept
a secret while the public key can be advertised. When public key cryptography
is used for encrypted message transmission, the sender uses the receiver’s
public key to encrypt the message. The receiver can decrypt the encrypted
message using its private key. It is computationally infeasible to decrypt the
encrypted message without knowledge of the private key. When public key
cryptography is used for implementing digital signatures, the signer uses its
private key to create the signature on a given message. Verifying the validity
of a signature on a message only requires the public key of the signer. It is
computationally infeasible to create a valid signature without knowledge of
the private key. These concepts are illustrated in Figure 2.1.

Elliptic curve cryptography (ECC) is a method for implementing public
key cryptography. Bitcoin uses public keys derived from the secp256k1 elliptic
curve1 to derive Bitcoin addresses. Ownership of a Bitcoin address is proved
by generating a digital signature using the corresponding private keys and the
elliptic curve digital signature algorithm (ECDSA). Such a proof of ownership
is required in order to spend the bitcoins which have been received by a Bitcoin
address.

Understanding the specifics of the ECC used in Bitcoin requires knowledge
of some abstract algebra. In order to motivate the required prerequisites, let
us look at the structure of the private and public keys as specified by the
secp256k1 domain parameters. All undefined terms will be discussed in the
following sections.

1The secp256k1 elliptic curve domain parameters are specified in http://www.secg.

org/sec2-v2.pdf.
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Figure 2.1: Public Key Cryptography Concepts

Let p be a 256-bit prime number given in hexadecimal format as

p = FFFFFFFF FFFFFFFF · · · FFFFFFFF︸ ︷︷ ︸
48 hexadecimal digits

FFFFFFFE FFFFFC2F. (2.1)

Let Fp denote the corresponding finite field. Consider the solutions (x, y) ∈ F2
p

to the equation
y2 = x3 + 7. (2.2)

The solutions are nothing but points on the curve with coordinates from Fp.
Let E be the set of such points. If we add a special element O called the
“point at infinity” to E, then a binary operation can be defined on E ∪ {O}
which makes E∪{O} into a group. This binary operation is called “addition”
for convenience and denoted by +. The set E∪{O} is called the elliptic curve
corresponding to y2 = x3 + 7 over Fp.
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The cardinality or order of the group E ∪ {O} is a 256-bit prime number
given by

n = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE BAAEDCE6 AF48A03B

BFD25E8C D0364141.
(2.3)

A private key is simply a 256-bit integer k in the range {1, 2, . . . , n− 1}. The
secp256k1 domain parameter specification includes a base point P ∈ E whose
coordinates are given by

x = 79BE667E F9DCBBAC 55A06295 CE870B07 029BFCDB 2DCE28D9

59F2815B 16F81798,

y = 483ADA77 26A3C465 5DA4FBFC 0E1108A8 FD17B448 A6855419

9C47D08F FB10D4B8.

(2.4)

The public key corresponding to the private key k is given by

P + P + · · ·+ P + P︸ ︷︷ ︸
k times

(2.5)

where + is the binary operation defined on E∪{O}. It is convenient to denote
the public key as kP . The security of elliptic curve cryptography is based on
the fact that the best known algorithms for finding the private key k given
the public key kP have running time O (

√
n). For the secp256k1 domain

parameters, the running time is O
(
2128

)
.

The above discussion has hopefully motivated the need for studying groups,
finite fields, and elliptic curves over finite fields. We will define these algebraic
objects and describe some of their properties that are relevant to Bitcoin. We
will then describe the ECDSA. While it is possible to consider the ECDSA
as a black box which can create digital signatures, such a high-level treat-
ment prevents one from understanding subtle issues like the non-uniqueness
of digital signatures.

2.1 Groups

Let G be a set. A binary operation on G is a rule for combining pairs of
elements from G. Familiar examples of binary operations are addition and
multiplication over the integers.

Definition 1 (Group). Let G be a set with a binary operation ∗ defined on
it. G is called a group if it satisfies the following properties:

(i) ∗ is closed: For all x, y ∈ G, x ∗ y belongs to G.

(ii) ∗ is associative: For all x, y, z ∈ G,

(x ∗ y) ∗ z = x ∗ (y ∗ z).
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(iii) Identity exists: There exists an element e ∈ G such that

x ∗ e = e ∗ x = x

for all x ∈ G. This element is called the identity of the group.

(iv) Inverses exist: For every x ∈ G, there exists an element y ∈ G such that

x ∗ y = y ∗ x = e

where e is the identity element. The element y is called the inverse of x
and is denoted by x−1 or −x.

Some comments are in order before we look at examples of groups.

• A set G can have more than one binary operation defined on it. While
the above definition refers to the set G as a group, the binary operation
which endows G with the group structure needs to be specified explicitly
in case of ambiguity.

• The parentheses in the associativity condition on ∗ indicate the order
in which the operations are carried out. The expression (x ∗ y) ∗ z
indicates that x ∗ y is calculated first and the result is combined with
z. The associativity property implies that the order of operations is
irrelevant and the parentheses can be disregarded. We can use x ∗ y ∗ z
to represent both (x ∗ y) ∗ z and x ∗ (y ∗ z). Not all binary operations
are associative. For example, consider subtraction over the integers Z =
{. . . ,−2,−1, 0, 1, 2, . . .}. Let x = 1, y = 2, z = 3. Then (x − y) − z =
−4 6= 2 = x− (y − z).

• The element e is called “the” identity element of the group because it
is unique. To see this, suppose there were two elements e, e′ ∈ G which
satisfy the requirements of being an identity. Then x = x ∗ e for all
x ∈ G and e′ ∗ y = y for all y ∈ G. Setting x = e′ and y = e gives us
e′ = e′ ∗ e = e.

Here are some examples of groups.

• The set of integers Z with addition as the binary operation is a group.
Addition of integers is closed and associative. Zero is the identity ele-
ment of this group and the inverse of x ∈ Z is −x.

• The set of non-zero real numbers R \ {0} with multiplication as the
binary operation is a group. We need to exclude 0 to get a group since
the multiplicative inverse of 0 does not exist in R. Multiplication of real
numbers is closed and associative. The number 1 is the identity and the
inverse of x ∈ R \ {0} is 1

x .
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• Consider the subset of the integers Zn = {0, 1, 2, . . . , n− 1} where n is a
positive integer. Let +n denote integer addition modulo n, i.e. a+n b =
a+ b mod n for a, b ∈ Zn. It is closed and associative. The inverse of 0
is 0 itself and the inverse of x ∈ Zn \ {0} is n− x. Thus Zn with +n as
the binary operation is a group with 0 as the identity element.

Definition 2 (Group Order). The cardinality of a group G is called the order
of G. Groups with finite order are called finite groups.

In the examples we considered Z and R \ {0} are infinite groups, while Zn

is a finite group. In Bitcoin, we will encounter only finite groups. We will
discuss some properties of finite groups which will help us better understand
the structure of ECDSA with secp256k1 domain parameters.

Subsets of a group can themselves have a group structure under the same
operation. Such subsets are called subgroups.

Definition 3 (Subgroup). Let G be a group with ∗ as the binary operation.
A subset H of G is called a subgroup of G if H is a group under the same
operation ∗.

Here are some examples of subgroups.

• G is a subgroup of itself.

• Let e be the identity of a group G. Then the singleton set {e} is a
subgroup of G.

• Let Ze = {2x | x ∈ Z} be the set of even integers. Then Ze is a subgroup
of Z with addition as the binary operation.

• The set of non-zero rational numbers Q \ {0} is a subgroup of R \ {0}
under multiplication.

• Let Z6 = {0, 1, 2, 3, 4, 5} be a group with integer addition modulo 6 as
the operation. Then H = {0, 3} is a subgroup of Z6.

In the last example, the order of H is 2 which divides the order 6 of Z6. This
is not a coincidence. It is an example of Lagrange’s theorem for finite groups
which we state without proof.

Theorem 1 (Lagrange’s theorem). Let H be a subgroup of a finite group G.
Then the order of H divides the order of G.

Let us return to Z6 to motivate the next result. Note that the subgroup
H = {0, 3} can be written as {3 + 3, 3}. Now consider an arbitrary element
in Z6, say 4. By repeatedly adding 4 to itself modulo 6 we get {4, 4 + 4 =
2, 4 + 4 + 4 = 0} = {0, 2, 4}, which is also a subgroup of Z6. Again, this is not
a coincidence but an example of the following theorem about finite groups.
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Theorem 2. Let G be a finite group with operation ∗. Let x ∈ G and xn

denote
x ∗ x ∗ · · · ∗ x ∗ x︸ ︷︷ ︸

n times

.

Then 〈x〉 = {xn | n = 1, 2, 3, . . .} is a subgroup of G for any x ∈ G. It is called
the subgroup generated by x.

Proof. Since ∗ is closed on G, 〈x〉 is a subset of G. To prove that 〈x〉 is a
subgroup of G, we have to prove four properties.

(i) Closure: For all u, v ∈ 〈x〉, u ∗ v ∈ 〈x〉.
Let Z+ = {1, 2, 3, . . .} be the set of positive integers. To prove closure,
let u = xm and v = xn where m,n ∈ Z+. Then

u ∗ v = xm ∗ xn = (x ∗ · · · ∗ x︸ ︷︷ ︸
m times

) ∗ (x ∗ · · · ∗ x︸ ︷︷ ︸
n times

) = x ∗ · · · ∗ x︸ ︷︷ ︸
m+n times

,

where the last equality follows from the fact that xm and xn are also
elements of the groupG where the associativity of ∗ allows us to disregard
the parentheses.

(ii) Associativity: For all u, v, w ∈ 〈x〉, (u ∗ v) ∗ w = u ∗ (v ∗ w).

Since (u ∗ v) ∗ w = u ∗ (v ∗ w) for all u, v, w ∈ G and 〈x〉 ⊆ G, the
associativity of ∗ holds in 〈x〉.

(iii) Identity: There exists e ∈ 〈x〉 such that e ∗ u = u ∗ e for all u ∈ 〈x〉.
〈x〉 is a subset of a finite group G. But the definition of 〈x〉 involves
an infinite sequence of powers of x, all of which belong to 〈x〉 since ∗
is closed. This is possible only if the powers of x start repeating. Let
m,n ∈ Z+ be such that m 6= n and xm = xn. There is no loss in
generality in assuming that m > n. Let x−1 ∈ G be the inverse of x. It
exists because G is a group. We have not yet proved that x−1 belongs
to 〈x〉. Multiplying both sides of the identity xm = xn by n copies of
x−1, we get

xm ∗ x−1 ∗ · · · ∗ x−1︸ ︷︷ ︸
n times

= xn ∗ x−1 ∗ · · · ∗ x−1︸ ︷︷ ︸
n times

=⇒ x ∗ · · · ∗ x︸ ︷︷ ︸
m times

∗x−1 ∗ · · · ∗ x−1︸ ︷︷ ︸
n times

= x ∗ · · · ∗ x︸ ︷︷ ︸
n times

∗x−1 ∗ · · · ∗ x−1︸ ︷︷ ︸
n times

=⇒ x ∗ · · · ∗ x︸ ︷︷ ︸
m−n times

= xm−n = e.

Since m− n ∈ Z+, xm−n belongs to 〈x〉. This proves that the identity e
of G also belongs to 〈x〉.
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(iv) Inverse: For any u ∈ 〈x〉, there exists a v ∈ 〈x〉 such that u∗v = v∗u = e.

Let p = m − n defined in the previous part. Then xp = e. For u ∈ 〈x〉,
let u = xk for some k ∈ Z+. Consider the remainder r when k is divided
by p, i.e. r = k mod p. Then 0 ≤ r ≤ p− 1.

If r = 0, then k = pq for some q ∈ Z+. This implies that

u = xk = xpq = xp ∗ · · · ∗ xp︸ ︷︷ ︸
q times

= e ∗ · · · ∗ e︸ ︷︷ ︸
p times

= e.

In this case, the inverse of u is u itself.

If r > 0, then k = pq + r for some non-negative integer q. Let v = xp−r.
Since r ≤ p− 1, p− r ∈ Z+ and v ∈ 〈x〉. Then

u ∗ v = xk ∗ xp−r = xpq+r ∗ xp−r = x(q+1)p = xp ∗ · · · ∗ xp︸ ︷︷ ︸
q+1 times

= e.

Similarly, we can show that v ∗ u = e. So v is the inverse of u.

So why are we interested in subgroups generated by elements of a finite
group? If you recall our discussion of the ECDSA public key structure, the
public key kP belongs to the subgroup of E∪{O} generated by the base point
P . While we have not even defined the binary operation on E ∪{O}, we have
enough machinery to argue that the subgroup generated by P is in fact equal
to the entire group E ∪ {O}. We will need the following theorem.

Theorem 3. Let G be a group whose order is a prime number. Let x ∈ G
and x 6= e. Then the subgroup generated by x is equal to G.

Proof. By Lagrange’s theorem, the order of the subgroup 〈x〉 generated by
x divides the order of G. Let p be the order of G. Since p is a prime, the
order of 〈x〉 can be either 1 or p. Since x 6= e, 〈x〉 has at least two elements.
This implies that the order of 〈x〉 is equal to p, which in turn implies that
〈x〉 = G.

The order of the group E ∪ {O} is a 256-bit prime number n. If the base
point P is not the identity of E∪{O}, then by the above theorem the subgroup
generated by P is equal to E ∪ {O}. To prove the P is not the identity of
E ∪ {O} will require us to define the binary operation on E ∪ {O}. For now,
we can give an argument based on common sense. If the base point P were
the identity element of E∪{O}, then all the public keys kP would be equal to
P . The digital signature scheme would break down since the same public key
would validate signatures created by any private key. Also, since the public
keys are used to derive Bitcoin addresses, there would be only one Bitcoin
address in the whole system!
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So what if the subgroup generated by the base point P is equal to E ∪{O}?
The fact that 〈P 〉 is equal to E ∪ {O} ensures that distinct private keys
give rise to distinct public keys. Suppose this was false and k1P = k2P for
k1, k2 ∈ {1, 2, . . . , n− 1} such that k1 6= k2. Let −P be the inverse of the base
point P . We will later see that the point at infinity O is the identity of the
group E ∪ {O}.

Assume that k1 > k2. Adding −P to both sides of the equation k2 times
gives us

k1P +−P + · · ·+−P︸ ︷︷ ︸
k2 times

= k2P +−P + · · ·+−P︸ ︷︷ ︸
k2 times

=⇒ P + · · ·+ P︸ ︷︷ ︸
k1 times

+−P + · · ·+−P︸ ︷︷ ︸
k2 times

= P + · · ·+ P︸ ︷︷ ︸
k2 times

+−P + · · ·+−P︸ ︷︷ ︸
k2 times

=⇒ P + · · ·+ P︸ ︷︷ ︸
k1−k2 times

= O =⇒ (k1 − k2)P = O.

But this is a contradiction because it implies that 〈P 〉 has order at most
k1 − k2 ≤ n− 2 .

2.2 Fields

The next algebraic object we need in order to understand ECDSA is called a
field. A field can be described succintly in terms of abelian groups.

Definition 4 (Abelian Group). A group G with binary operation ∗ is called
an abelian group if x ∗ y = y ∗ x for all x, y ∈ G.

In abelian groups, the result of the binary operation between a pair of ele-
ments is independent of the order of the elements. All the examples of groups
we encountered in the previous section were abelian groups. An example of
a non-abelian group is the set of n× n nonsingular matrices with real entries
where n ≥ 2 and matrix multiplication is the binary operation. For instance,
let n = 2 and consider the following calculation where A and B are 2 × 2
nonsingular matrices.[

1 1
0 1

]
︸ ︷︷ ︸

A

[
0 1
1 1

]
︸ ︷︷ ︸

B

=

[
1 2
1 1

]
6=
[
0 1
1 2

]
=

[
0 1
1 1

]
︸ ︷︷ ︸

B

[
1 1
0 1

]
︸ ︷︷ ︸

A

Definition 5 (Field). Let F be a set with two binary operations + and ∗
defined on it. F is called a field if it satisfies the following properties.

(i) F is an abelian group with respect to +. Let 0 denote the identity of F .

(ii) Let F ∗ = F \ {0}. F ∗ is an abelian group with respect to ∗.
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(iii) For any x, y, z ∈ F ,

x ∗ (y + z) = x ∗ y + x ∗ z.

While + and ∗ can be arbitrary binary operations which satisfy the re-
quired properties, they are usually referred to as “addition” and “multiplica-
tion” respectively. The third requirement in the field definition is called the
distributivity of multiplication over addition.

Here are two familiar examples of fields.

• The real numbers R form a field with + and ∗ defined as the usual
addition and multiplication of real numbers.

• The rational numbers Q form a field with + and ∗ defined as the usual
addition and multiplication of rational numbers.

Both R and Q are fields with an infinite number of elements. Fields with finite
cardinality are called finite fields. To describe the ECDSA with the secp256k1
domain parameters, we need to define a finite field whose cardinality is a prime
number. Such fields are called prime fields.

Prime Fields

Let p be a prime number. Let Fp = {0, 1, 2, . . . , p − 1} be the integers from
0 to p − 1. Define + and ∗ on Fp as integer addition modulo p and integer
multiplication modulo p respectively, i.e. for all x, y ∈ Fp

x+ y = x+ y mod p,

x ∗ y = xy mod p.

We prove that Fp is a field.

Proof. We need to check the three properties stated in the field definition.

• Since Fp is the same as Zp with + as the binary operation, it is a group
with 0 as the identity element. It is an abelian group as x+ y mod p =
y + x mod p.

• F∗p = Fp \ {0} = {1, 2, . . . , p − 1}. To prove that F∗p is a group with ∗
as the binary operation, we need to check closure of ∗, associativity of
∗, existence of identity and inverses. Once we have shown that F∗p is a
group, it will follow that it is an abelian group as xy mod p = yx mod p.

– Closure: The result of x ∗ y is an integer from Fp. The only way ∗
can fail to be closed on F∗p is when x ∗ y = 0 when x, y ∈ F∗p. But
x ∗ y = 0 implies that the integer product xy is a multiple of p,
i.e. xy = kp for some integer k. As elements of F∗p, x and y only
have factors less than p. The product of such factors cannot be
equal to p since it is a prime number.
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– Associativity : Integer multiple modulo p is associative which makes
∗ associative.

– Identity : As p ≥ 2, the integer 1 belongs to F∗p. It is the identity
of F∗p as x ∗ 1 = 1 ∗ x = x for all x ∈ F∗p.

– Inverses: To prove that existence of the inverse of x ∈ F∗p, we have
to find a y ∈ F∗p such that x ∗ y = y ∗ x = 1. We will need a result
from number theory which we state without proof.

Bézout’s identity: Let x and y be integers which are not both
zero. Let gcd(x, y) be the greatest common divisor of x and y.
Then there exist integers u and v such that

gcd(x, y) = xu+ yv.

The identity states that the gcd of two integers x, y can be written
as an integer linear combination of x and y. For example, the
integers 15 and 35 have gcd 5 which can be written as 5 = 35(1) +
15(−2). The integers u and v can be calculated from the Euclidean
algorithm for finding gcds.

To find the multiplicative inverse of x ∈ F∗p, consider the gcd of x
and p. Since x is a positive integer less than p and p is a prime,
gcd(x, p) = 1. By Bézout’s identity, there exist integers u, v such
that xu+ pv = 1. Considering both sides of this equation modulo
p, we get xu mod p = 1.

If the integer u belongs to F∗p, then it is the inverse of x as x ∗ u =
u ∗ x = 1. If u /∈ F∗p, then divide it by p to get the remainder r,
i.e. u = qp+ r where 0 ≤ r ≤ p−1. Note that r cannot be 0 as this
would mean u is a multiple of p and xu mod p = 0. So r belongs
to F∗p and is the inverse of x as

x ∗ r = r ∗ x = xr mod p = x(u− qp) mod p = xu mod p = 1.

• Distributivity of ∗ over + follows as

x ∗ (y + z) = x(y + z mod p) mod p = x(y + z) mod p

= xy mod p+ xz mod p = x ∗ y + x ∗ z.

To illustrate the structure of a prime field, consider p = 5. Table 2.1 shows
the results of addition and multiplication of elements in F5.

The theory of finite fields states that any finite field has cardinality equal
to a prime power pm. When m = 1, we get prime fields. We do not describe
the structure of finite fields with m > 1 since the ECDSA used in Bitcoin only
involves a prime field.
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+ 0 1 2 3 4

0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

∗ 0 1 2 3 4

0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

Table 2.1: Addition and multiplication operations in F5

2.3 Elliptic Curves over Real Numbers

The ECDSA is defined using elliptic curves over finite fields. However, elliptic
curves over the real numbers are easier to visualize. In this section, we discuss
elliptic curves over the reals which will help us understand these curves over
finite fields.

Let a, b ∈ R such that 4a3 + 27b2 6= 0. Let E be the set of real solutions
(x, y) of the equation

y2 = x3 + ax+ b. (2.6)

Figure 2.2 illustrates two examples of the set E. An elliptic curve over the
real numbers is the set E ∪ {O} where O is called the point at infinity. A
precise definition of O requires concepts from projective geometry which we
will not discuss. The utility of O will become clear when we define a binary
operation on E ∪ {O} and endow it with a group structure.

The condition 4a3 + 27b2 6= 0 ensures that the cubic x3 + ax + b does
not have multiple roots. It is analogous to the condition b2 − 4ac 6= 0 which
ensures that the quadratic ax2 + bx+ c does not have multiple roots. Curves
defined by equation (2.6) for which 4a3 + 27b2 = 0 are called singular curves
and are excluded from the class of elliptic curves by definition. One reason is
that singular curves contain points in E which prevent E ∪ {O} from being a
group.

Group Structure of E ∪ {O}

The first step in showing E ∪ {O} is a group is to define a binary operation
on it. We will refer to the operation as “point addition” and denote it by +.

Let us disregard O for the moment and consider points P,Q ∈ E. Then
P = (x1, y1) ∈ R2 and Q = (x2, y2) ∈ R2 such that (x1, y1) and (x2, y2) are
solutions to equation (2.6). We want to find the coordinates (x3, y3) of the
point R = P +Q.

Suppose the line through P and Q intersects the curve again at a point
R′ as illustrated in Figure 2.3(a). Let R be the reflection of R′ about the
x-axis. Set P +Q = Q+P = R. But what if the line through P and Q never
intersects the curve again as illustrated in Figure 2.3(b)? And what about the
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Figure 2.2: Examples of elliptic curves over R

case when P = Q? Which line through P should we consider? We will define
point addition differently in these cases. For now, let us assume that P and
Q are distinct points not on the same vertical line, i.e. x1 6= x2. For x1 6= x2,
the line through the points (x1, y1) and (x2, y2) is given by

y = mx+ y1 −mx1

where m = y2−y1
x2−x1

. To find the points of intersection between this line and the
curve given in equation (2.6), let us eliminate y from the curve equation by
substituting the expression for y from the line. We get

(mx+ y1 −mx1)2 = x3 + ax+ b

=⇒ x3 −m2x2 + [a− 2m(y1 −mx1)]x+ b− (y1 −mx1)2 = 0. (2.7)

The solutions to the above cubic equation will be the x coordinates of the
points of intersection between the line and the elliptic curve. We already
know two such coordinates, namely x1 and x2. If we denote the x coordinate
of the third intersection point R′ by x′3, another representation for the cubic
in equation (2.7) is

(x− x1)(x− x2)(x− x′3) = 0.

Equating the coefficients of x2 in the two representations of the cubic, we get

m2 = x1 + x2 + x′3 =⇒ x′3 = m2 − x1 − x2.
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(c) x1 = x2, y1 = y2 6= 0

Figure 2.3: Point addition in elliptic curves over R

Substituting x′3 into the line equation, we get the y coordinate of the third
intersection point R′ as

y′3 = mx′3 + y1 −mx1.
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Since R is the reflection of R′ about the x-axis, its coordinates are (x3, y3) =
(x′3,−y′3).

Now consider the case when P and Q are distinct points on the curve which
lie on a vertical line as shown in Figure 2.3(b). The coordinates of P and Q
are related as x1 = x2 and y1 = −y2. In this case, we define P +Q to be equal
to the point at infinity O. It is convenient to think of O as a point which lies
at infinite height along the line joining P and Q. With this interpretation of
O, the line joining any P ∈ E and O will be a vertical line which intersects
the curve again at Q, the reflection of P about the x-axis. The reflection of Q
will be P itself. So by the intersection-reflection procedure for point addition
we described earlier, we get P +O = O + P = P . This almost makes O the
identity element of E ∪{O} under point addition. We say almost because the
case of P = O is not handled as P was assumed to be a point in E. To make
O into the identity element, we will define O +O = O.

If O is the identity element of E ∪ {O}, then the inverse of a point P ∈ E
is its reflection Q about the x-axis since we defined P +Q = Q+ P = O. We
will denote the inverse of P by −P . For P = (x, y), we have −P = (x,−y).
The inverse of O is O itself.

Finally, let us consider the case when P and Q are not distinct points,
i.e. P = Q. The point addition in this case is called point doubling as P + P
is denoted as 2P . We will apply the intersection-reflection procedure using
the tangent line at P as illustrated in 2.3(c). The resulting point R will be
defined to be equal to 2P . For P = (x1, y1), the slope of the tangent to the
curve at P is given by

m1 =
dy

dx
= −

∂f
∂x
∂f
∂y

∣∣∣∣∣
x=x1,y=y1

=
3x21 + a

2y1

where f(x, y) = y2 − x3 − ax − b. If y1 = 0, the tangent is a vertical line
which does not intersect the curve again. In this case, we define 2P = O. If
y1 6= 0, to find the second point of intersection of the tangent and the curve,
we eliminate y from equation (2.6) using the tangent equation

y = m1x+ y1 −m1x1.

The resulting cubic equation is given by

g(x) = (m1x+ y1 −m1x1)
2 − x3 − ax− b = 0.

The polynomial g(x) has x1 as a root since P = (x1, y1) lies on both the
tangent and the curve. It turns out that x1 is a double root as the derivative
of g(x) evaluated at x1 is zero.

dg

dx

∣∣∣∣
x=x1

= 2m1 (m1x1 + y1 −m1x1)− 3x21 − a

= 2m1y1 − 3x21 − a = 0.
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If we denote the x coordinate of the second intersection point R′ by x′2, another
representation for g(x) is

(x− x1)2(x− x′2) = 0.

Equating the coefficients of x2 in the two representations of g(x), we get

m2
1 = 2x1 + x′2 =⇒ x′2 = m2

1 − 2x1.

Substituting x′2 into the line equation, we get the y coordinate of R′ as

y′2 = m1x
′
2 + y1 −m1x1.

The reflection R of R′ about the x-axis has coordinates (x2, y2) = (x′2,−y′2).
We now summarize the point addition operation on E ∪ {O}.

Definition 6 (Point Addition). Let E be the set of real solutions (x, y) of
the equation y2 = x3 + ax + b where 4a3 + 27b2 6= 0. Let O /∈ E be a special
element called the point at infinity. Then the binary operation + on E ∪ {O}
is defined as follows.

(i) If P = (x1, y1) and Q = (x2, y2) with x1 6= x2, then P + Q = (x3, y3)
where

x3 =

(
y2 − y1
x2 − x1

)2

− x1 − x2, y3 =

(
y2 − y1
x2 − x1

)
(x1 − x3)− y1. (2.8)

(ii) If P = (x1, y1) and Q = (x1,−y1), then P +Q = O.

(iii) If P = (x1, y1) ∈ E with y1 6= 0, then P + P = (x2, y2) where

x2 =

(
3x21 + a

2y1

)2

− 2x1, y2 =

(
3x21 + a

2y1

)
(x1 − x2)− y1. (2.9)

(iv) For any P ∈ E ∪ {O}, P +O = O + P = P .

Note that the case of point doubling when y1 = 0 is subsumed by the second
case above as (x1, y1) = (x1,−y1) for y1 = 0.

So have we proved that E ∪{O} is a group under the point addition oper-
ation? The operation is closed by construction, O is the identity element and
every element in E ∪ {O} has an inverse. The only group property remaining
to be checked is the associativity of point addition. While + is indeed asso-
ciative, we will skip the proof as it is a tedious exercise to prove associativity
using the above rules.
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Figure 2.4: Examples of elliptic curves over F11

2.4 Elliptic Curves over Finite Fields

Let F be a finite field whose cardinality is not divisible by 2 or 3. In this case,
the definition of an elliptic curve over F is similar to its definition over real
numbers. Let a, b ∈ F such that 4a3 + 27b2 6= 0. Let E be the set of points
(x, y) in F × F which satisfy the equation y2 = x3 + ax+ b. An elliptic curve
over F is the set E ∪ {O} where O is the point at infinity.

When the cardinality of F is divisible by either 2 or 3, the curve equation of
an elliptic curve over F is different and so is the condition on the coefficients.
We will not discuss this case as the ECDSA used in Bitcoin uses an elliptic
curve defined over the prime field Fp where p is the 256-bit prime given in
equation (2.1). The cardinality p of Fp is obviously not divisible by 2 or 3.

Figure 2.4 shows the solutions to the equations y2 = x3 + 10x + 2 and
y2 = x3 + 9x over F11 = {0, 1, 2, . . . , 10}. Since the additive inverses of 1 and
2 in F11 are 10 and 9 respectively, these curves are the same as those considered
in Figure 2.2 with the coefficients interpreted as elements in F11. While these
curves do not resemble their counterparts over the real numbers, there is
horizontal symmetry in the solution sets of both curves. For every solution
(x, y), there is a solution at (x, 11 − y). This is because (11 − y)2 mod 11 =
y2 mod 11. The pair of solutions (x, y) and (x, 11 − y) coincide for y = 0 as
11 = 0 mod 11. Consequently, the points (8, 0) in Figure 2.4(a) and (0, 0) in
Figure 2.4(b) violate the horizontal symmetry.

The point addition operation for elliptic curves over F can be defined as
in Definition 6 with the expressions in equations (2.8) and (2.9) interpreted
as operations on elements from F . Subtraction of a field element x is inter-
preted as addition of its additive inverse −x and division by a non-zero field
element x is interpreted as multiplication by its multiplicative inverse x−1.
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+ O (3, 2) (3, 9) (5, 1) (5, 10) (6, 5) (6, 6) (8, 0)

O O (3, 2) (3, 9) (5, 1) (5, 10) (6, 5) (6, 6) (8, 0)
(3, 2) (3, 2) (6, 6) O (6, 5) (8, 0) (3, 9) (5, 10) (5, 1)
(3, 9) (3, 9) O (6, 5) (8, 0) (6, 6) (5, 1) (3, 2) (5, 10)
(5, 1) (5, 1) (6, 5) (8, 0) (6, 6) O (5, 10) (3, 9) (3, 2)
(5, 10) (5, 10) (8, 0) (6, 6) O (6, 5) (3, 2) (5, 1) (3, 9)
(6, 5) (6, 5) (3, 9) (5, 1) (5, 10) (3, 2) (8, 0) O (6, 6)
(6, 6) (6, 6) (5, 10) (3, 2) (3, 9) (5, 1) O (8, 0) (6, 5)
(8, 0) (8, 0) (5, 1) (5, 10) (3, 2) (3, 9) (6, 6) (6, 5) O

Table 2.2: Point addition for the elliptic curve y2 = x3 + 10x+ 2 over F11

For x1, y1, x2, y2 ∈ F with x1 6= x2, equation (2.8) can be written in terms of
the field operations + and ∗ as

x3 = [y2 + (−y1)]2 ∗ [x2 + (−x1)]−2 + (−x1) + (−x2)
y3 = [y2 + (−y1)] ∗ [x2 + (−x1)]−1 ∗ [x1 + (−x3)] + (−y1).

(2.10)

where x2 = x ∗ x and x−2 = x−1 ∗ x−1. For x1, y1 ∈ F with y1 6= 0, equation
(2.9) can be written as

x2 =
(
3 ∗ x21 + a

)2 ∗ (2 ∗ y1)−2 + (−2 ∗ x1)
y2 =

(
3 ∗ x21 + a

)
∗ (2 ∗ y1)−1 ∗ [x1 + (−x2)] + (−y1).

(2.11)

The point addition operation for the curve in Figure 2.4(a) is illustrated in
Table 2.2. For example, to find the result of adding (3, 2) to (3, 9), we find
the entry in the table which lies both in the row starting with (3, 2) and the
column starting with (3, 9). The entry in this case is O as −2 = 9 in F11.

The secp256k1 Elliptic Curve

At the expense of some repetition, let us revisit the elliptic curve described by
the secp256k1 domain parameters. Let p be the 256-bit prime number given
in equation (2.1). Let Fp be the corresponding prime field with operations +
and ∗. The curve y2 = x3+7 corresponds to coefficients a = 0 and b = 7 in the
general equation y2 = x3+ax+b. For these coefficients, 4a3+27b2 = 27∗49 =
1323 which is not equal to 0 modulo p. The curve has n−1 solutions (x, y) ∈ F2

p

where n is the 256-bit prime given in equation (2.3). Adjoining the point at
infinity O to this set E of solutions, we get the set E ∪ {O} of cardinality
n. E ∪ {O} is a group with respect to the point addition operation defined
in Definition 6 where equations (2.8) and (2.9) are interpreted as equations
(2.10) and (2.11) respectively. The additive inverse −x of x ∈ Fp is 0 if x = 0
and p− x if x 6= 0. The multiplicative inverse x−1 of x ∈ F∗p is obtained using
the Euclidean algorithm.
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A private key k is an integer in the range {1, 2, . . . , n − 1}. It can be
specified using 256 bits (32 bytes) as n is a 256-bit number. The corresponding
public key kP is obtained by adding k copies of the base point P ∈ E given in
equation (2.4). As P is a point in F2

p, it is not equal to the identity O. Since
the order of the group E ∪ {O} is prime, the subgroup 〈P 〉 generated by P is
equal to E ∪ {O}. This implies that kP 6= O for 1 ≤ k ≤ n− 1 and nP = O.
So a public key is always a point (x, y) in F2

p and can be specified using 512
bits (64 bytes) as p is a 256-bit number.

If we fix x = x1 ∈ Fp, the equation y2 = x21 + 7 is a quadratic equation
in y and can have at most two solutions. If y1 ∈ Fp is one solution, the other
solution is given by p − y1 as y21 = (p − y1)2 mod p. As p is an odd integer,
one of these solutions is an odd integer and the other is an even integer.
This fact is exploited to reduce the size of a public key to 33 bytes. In the
compressed public key format, the public key (x, y) is represented by a single
byte followed by the 32-byte x coordinate. The single byte at the beginning
is set to 0x02 or 0x03 depending on whether the y coordinate is even or odd.
In the uncompressed public key format, the public key consists of a single
byte containing 0x04 followed by the 32 byte x coordinate and the 32 byte y
coordinate, resulting in a key size of 65 bytes.

2.5 ECDSA

Signing a message using a digital signature algorithm involves the creation of a
bit string which is easy to create if a private key is known and computationally
infeasible otherwise. The created bit string is called a digital signature. It is
attached to the message as proof that an entity with knowledge of a private
key has signed the message (see Figure 2.1). Unlike the usual handwritten
signatures, digital signatures are message dependent. If a digital signature did
not depend on the message being signed, it could be attached to a different
message which the signer did not sign and still serve as a valid signature.
But plain dependence on the messages being signed is not enough. A digital
signature algorithm needs to be resistant to forgery. Informally, unforgeability
requires that an adversary with access to signatures on a set of messages
created using a private key should not be able to create a valid signature on
a new message in a computationally feasible manner.

The unforgeability of the digital signatures created using the ECDSA is
due to the difficulty of solving the elliptic curve discrete logarithm problem
(ECDLP). The ECDLP refers to the problem of finding a private key k given
the public key kP for elliptic curves defined over finite fields. The original
discrete logarithm problem (DLP) was defined using a prime field Fp. It
involves finding the positive integer x given a, b ∈ Fp such that ax = b mod p.
Here x can be intepreted as the discrete logarithm of b to the base a. Since
ax is the result of combining x copies of a with the multiplication operation,
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it is analogous to kP which is the result of combining k copies of P using the
point addition operation. Finding k given P and kP is thus interpreted as the
elliptic curve analogue of the DLP.

For brevity, we will avoid a general description of ECDSA and describe
it as it is used in Bitcoin. Let m be a bit string representing the message
to be signed. The length of this message can be at most 264 − 1 bits. Let
e be the result of applying the SHA-256 hash function on m twice, i.e. e =
SHA-256(SHA-256(m)). The SHA-256 hash function and its properties will
be considered in Chapter 3. For now, consider it as a function which takes as
input any bit string of length at most 264−1 bits and returns a 256-bit output.
Thus the bit string e, which is called the message digest, will be 256 bits long.
Let P be the base point specified by the secp256k1 domain parameters. For a
private key k, the corresponding digital signature on m is generated as follows:

1. Choose a random integer j from {1, 2, . . . , n−1} where n is the prime from
equation (2.3).

2. Add the base point P to itself j times to get jP = (x, y).

3. Calculate r = x mod n. If r = 0, go to step 1.

4. Calculate the multiplicative inverse j−1 of j in the prime field Fn.

5. Calculate s = j−1(e+ kr) mod n where the message digest e is interpreted
as an integer. If s = 0, go to step 1.

6. Output (r, s) as the signature for the message m.

Some discussion is in order before we present the signature verification
procedure.

• As n is a 256-bit integer, the signature (r, s) is 512 bits long.

• Due to the random choice of j, two different runs of the signature gener-
ation algorithm for the same message m will yield different signatures.

• The motivation behind using a message digest e instead of the message
m is that we want the signature to depend on the entire message and still
have a small length. If we were to replace e with m in the calculation of s,
i.e. s = j−1(m+kr) mod n, then s would depend only on m mod n. Any
message m′ which differs from m in a multiple of n will have the same
signature, which violates the unforgeability requirement. An alternative
to signing the message digest is to consider the base n representation of
the message m, i.e. m = a0 +a1n+a2n

2 + · · · where 0 ≤ ai ≤ n−1. We
could then generate a signature for each digit ai but this would result
in long signatures.
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• Since e is an arbitrary 256-bit string and n < 2256 − 1, it is possible
that e is strictly greater than n. In that case, e mod n 6= e. Then the
signatures on messages with digests e and e mod n will be the same. Is
this not a violation of the unforgeability requirement? To be able to
forge a signature using this property, an adversary would have to find a
message m′ whose message digest is equal to e mod n. This is computa-
tionally infeasible under the assumption that the SHA-256 hash function
is resistant to preimage attacks (see Chapter 3). So the unforgeability
requirement is not violated.

• In step 3, if r is allowed to be zero then in step 5 the signature would
become independent of the private key k.

• In step 4, the multiplicative inverse j−1 exists as j 6= 0.

• In step 5, s is not allowed to be zero because its multiplicative inverse
s−1 is essential for signature verification.

• Suppose an adversary who has the access to the message m and the
corresponding signature (r, s) wants to recover the private key k. Since
m is known, the adversary can calculate the message digest e. If the
adversary can find j, then the private key k can be calculated as k =
r−1(js−e) mod n. Finding j from r involves finding j given jP , i.e. solv-
ing the ECDLP which is computationally infeasible.

Given a message m, a public key kP , and a digital signature (r, s), the
signature is verified as follows:

1. Calculate the message digest e = SHA-256(SHA-256(m)).

2. Calculate the multiplicative inverse s−1 of s in the prime field Fn.

3. Calculate j1 = es−1 mod n and j2 = rs−1 mod n.

4. Calculate the point Q = j1P + j2(kP ). Here j2(kP ) represents the result
of adding j2 copies of the public key kP .

5. If Q = O, then the signature is invalid.

6. If Q 6= O, then let Q = (x, y) ∈ F2
p. Calculate t = x mod n. If t = r, the

signature is valid.

To see why the above verification procedure works, consider a valid sig-
nature (r, s) on a message m with digest e. Then there exists an integer j ∈
{1, 2, . . . , n− 1} such that jP = (x1, y1), r = x1 mod n, and s = j−1(e+ kr).
The integer j satisfies j = s−1(e+ kr) which give us

Q = j1P + j2(kP ) = (j1 + j2k)P = (es−1 + rs−1k)P = s−1(e+ kr)P = jP.
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In the above equation, we could suppress the modn expressions while sub-
stituting for j1 and j2 because nP = O and O is the identity for point
addition. Since Q = jP , their x coordinates are equal modulo n. Since
j ∈ {1, 2, . . . , n − 1}, jP is never equal to O. This is the reason behind
rejecting the signature in step 5.



Chapter 3

Cryptographic Hash
Functions

Hash functions are defined as functions which map bit strings of arbitrary
length to bit strings of fixed length. As the number of possible inputs is
larger than the number of possible outputs, a hash function is a many-to-one
function. A cryptographic hash function H is defined as a hash function which
has the following properties:

• Preimage resistance: Let y be the output of H for some unknown
input. An input x which satisfies H(x) = y is called a preimage of y
under H. By the many-to-one nature of H, preimages are not neces-
sarily unique. The function H is said to be preimage resistant if it is
computationally infeasible to calculate any preimage x of a given y.

• Second preimage resistance: Given an input string x, it is compu-
tationally infeasible to find a different input string x′ such that H(x) =
H(x′).

• Collision resistance: It is computationally infeasible to find a pair of
distinct input strings x, x′ such that H(x) = H(x′).

Preimage resistance captures the requirement that a cryptographic hash func-
tion needs to be difficult to invert. While the second preimage resistance and
collision resistance properties look similar, the difference lies in the choice of
the input x. In the second preimage resistance property, the input x is fixed
and an adversary is required to find another input x′ such that H(x′) = H(x).
On the other hand, in the collision resistance property the adversary has the
freedom to choose both x and x′.

The parity function, which maps bit strings having an even number of ones
to 0 and bit strings having an odd number of ones to 1, is technically a hash
function. But it is not a cryptographic hash function as all three required
properties are easily violated. Any other hash function whose output length

24
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n is small will also fail to be a cryptographic hash function as collisions can
be found by calculating the outputs corresponding to 2n + 1 different inputs.
This follows from the pigeonhole principle. How large does n need to be?
Typically n is of the order of hundreds of bits. For instance, Bitcoin uses the
SHA-256 and RIPEMD-160 hash functions which have output lengths of 256
and 160 bits respectively. But having a large output length is not sufficient
for a hash function to be considered cryptographic. The relation between
the input bit string x and the output bit string y should be complicated to
prevent easy recovery of x from y. When can an input-output relationship
be considered complicated? While this is a difficult question to answer in
general, we present the design of SHA-256 in this chapter as an example of a
complicated input-output relationship.

The SHA-256 hash function plays a crucial role in the design of the Bitcoin
system. In addition to its use in creating message digests in the ECDSA, it
is used to control the creation of new bitcoins by the nodes in the Bitcoin
P2P network. Both SHA-256 and RIPEMD-160 are used to create Bitcoin
addresses from ECDSA public keys. While there is no formal proof that
these two hash functions are in fact cryptographic hash functions, they have
no known weaknesses which make finding preimages, second preimages, and
collisions computationally feasible.

3.1 SHA-256

The SHA-256 hash function was announced in 2001 by the National Institute
of Standards and Technology (NIST), an agency which is part of the U.S. De-
partment of Commerce. It was specified as part of the Secure Hash Standard1

detailed in the Federal Information Processing Standards Publication 180-2
(FIPS PUB 180-2). The SHA in SHA-256 is an abbreviation of “secure hash
algorithm” and the 256 indicates the output length in bits.

While the definition of a hash function allowed its input to be a bit string of
arbitrary length, the SHA-256 function specification restricts the input to be
at most 264−1 bits long. This restriction is imposed because the specification
requires the length of the input to be stored in a 64-bit unsigned integer. The
SHA-256 operation can be divided into preprocessing and hash computation.
For convenience, let us refer to the input bit string as the message and denote
it by M .

Preprocessing

The preprocessing step consists of message padding and state initialization.
Message padding involves appending some bits to the message resulting in a

1See http://dx.doi.org/10.6028/NIST.FIPS.180-4 for the latest version of this stan-
dard

http://dx.doi.org/10.6028/NIST.FIPS.180-4
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padded message whose length is a multiple of 512. It proceeds as follows:

1. If the message M is l bits long, then find the smallest non-negative solution
k to the equation

k + l + 65 = 0 mod 512. (3.1)

2. Append the (k + 1)-bit string containing a single 1 followed by k zeros to
M .

3. Append the 64-bit unsigned integer representation of the message length l
to the output of step 2.

Since the message M is l bits long, the padded message after step 2 is l+k+1
bits long. After step 3, the padded message is l + k + 65 bits long. The
requirement that the final padded message length be a multiple of 512 is
satisfied by choosing k according to equation (3.1). Note that padding is
done even if the original message length l was already a multiple of 512. We
will discuss the reasoning behind the choice of this particular padding scheme
after we discuss the hash computation step. As an example, consider the 6-
bit message M = 101010. For l = 6, the smallest non-negative solution to
equation (3.1) is k = 441. The 64-bit representation of 6 is 00 · · · 00110. The
512-bit padded message is given by

101010︸ ︷︷ ︸
M

1 00000 · · · 00000︸ ︷︷ ︸
441 zeros

00 · · · 00110︸ ︷︷ ︸
l

.

State initialization involves setting the value of a 256-bit initial hash value

H(0) to a fixed constant. Let H
(0)
0 , H

(0)
1 , . . . ,H

(0)
7 be eight 32-bit words which

constitute H(0). They are initialized as follows.

H
(0)
0 = 0x6a09e667, H

(0)
1 = 0xbb67ae85,

H
(0)
2 = 0x3c6ef372, H

(0)
3 = 0xa54ff53a,

H
(0)
4 = 0x510e527f, H

(0)
5 = 0x9b05688c,

H
(0)
6 = 0x1f83d9ab, H

(0)
7 = 0x5be0cd19.

(3.2)

These initial values were arbitrarily chosen by the SHA-256 designers to be
the first 32 bits in the fractional parts of the square roots of the first eight
prime numbers 2, 3, 5, 7, 11, 13, 17, 19. For instance, the fractional part of

√
2

is 0.4142135623 · · · . The first 32 bits in the binary representation of this
fractional part are equal to 0x6a09e667 in hexadecimal representation.

Hash Computation

Let the padded message consist of N 512-bit blocks M (1),M (2), . . . ,M (N).
The hash computation is an iterative process where the ith message block
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M (i) is combined with the previous hash value H(i−1) using a function f to
generate the next hash value H(i).

H(i) = f(M (i), H(i−1)), 1 ≤ i ≤ N. (3.3)

The function f is called a compression function as it converts a 768-bit input
to a 512-bit output. The initial hash value H(0) is given in equation (3.2). The
final hash value H(N) is the output of the SHA-256 function or the message
digest for input message M . The variable H(i−1) is called the chaining variable
as it preserves the state of the hash computation across successive invocations
of the compression function.

In order to specify the compression function f , we need to define some
operators on 32-bit words. In what follows, U , V , and W are 32-bit words.

• Let U ∧ V,U ∨ V , and U ⊕ V denote the bitwise logical AND, OR, and
XOR of U and V respectively.

• Let U + V denote the integer sum modulo 232 of U and V .

• Let ¬U denote the bitwise complement of U .

• For U = u0u1 · · ·u30u31 and 1 ≤ n ≤ 32, the shift right and rotate right
operations on U are defined as

SHRn(U) = 000 · · · 000︸ ︷︷ ︸
n zeros

u0u1 · · ·u30−nu31−n,

ROTRn(U) = u31−n+1u31−n+2 · · ·u30u31u0u1 · · ·u30−nu31−n,

respectively.

• Let

Ch(U, V,W ) = (U ∧ V )⊕ (¬U ∧W ),

Maj(U, V,W ) = (U ∧ V )⊕ (U ∧W )⊕ (V ∧W ),

where Ch and Maj are short for Choice and Majority. The Ch function
performs a bitwise choice between the bits of V and W depending on
whether the corresponding bit in V is 1 or 0. The Maj function finds
the bitwise majority among the bits of U , V , and W .

• Let

Σ0(U) = ROTR2(U)⊕ ROTR13(U)⊕ ROTR22(U)

Σ1(U) = ROTR6(U)⊕ ROTR11(U)⊕ ROTR25(U)

σ0(U) = ROTR7(U)⊕ ROTR18(U)⊕ SHR3(U)

σ1(U) = ROTR17(U)⊕ ROTR19(U)⊕ SHR10(U)
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The compression function f maintains an internal state consisting of sixty
four 32-bit words {Wj | j = 0, 1, . . . , 63} which are together called the message
schedule. It also uses 64 constant 32-bit words K0,K1, . . . ,K63 which are
equal to the first 32 bits in the fractional parts of the cube roots of the first 64
prime numbers 2, 3, 5, . . . , 307, 311. The calculation f(M (i), H(i−1)) proceeds
as follows:

1. Let M
(i)
0 ,M

(i)
1 , . . . ,M

(i)
15 denote the sixteen 32-bit blocks which constitute

the ith 512-bit message block M (i). The message schedule is initialized as
follows:

Wj =

{
M

(i)
j 0 ≤ j ≤ 15,

σ1(Wj−2) +Wj−7 + σ0(Wj−15) +Wj−16 16 ≤ j ≤ 63.

2. Let A, B, C, D, E, F , G, H be eight 32-bit words which are initialized

to the eight 32-bit words H
(i−1)
0 , H

(i−1)
1 , . . . ,H

(i−1)
7 which constitute the

(i− 1)th hash value H(i−1).

(A,B,C,D,E, F,G,H) =
(
H

(i−1)
0 , H

(i−1)
1 , . . . ,H

(i−1)
6 , H

(i−1)
7

)
.

3. For j = 0, 1, . . . , 63, the variables A,B, . . . ,H are iteratively updated as
follows:

T1 = H + Σ1(E) + Ch(E,F,G) +Kj +Wj

T2 = Σ0(A) + Maj(A,B,C)

(A,B,C,D,E, F,G,H) = (T1 + T2, A,B,C,D + T1, E, F,G)

(3.4)

Each run of the above equation is called a round. In each of the 64 rounds,
the calculation of the variable T1 involves the constant Kj and the message
schedule block Wj .

4. The eight 32-bit words H
(i)
0 , H

(i)
1 , . . . ,H

(i)
7 which constitute the ith hash

value H(i) are calculated as

(H
(i)
0 , H

(i)
1 , . . . ,H

(i)
7 ) =

(
A+H

(i−1)
0 , B +H

(i−1)
1 , . . . ,H +H

(i−1)
7

)
.

For a message M which after padding consists of N 512-bit blocks M (1),
M (2),. . ., M (N), the SHA-256 hash of M is the final hash value H(N) =
f(M (N), H(N−1)).

Properties

While the SHA-256 hash computation looks complicated, it can be efficiently
implemented as it consists of simple operations of 32-bit words. However. this
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y3 y1 · · · y2

Bin 1 Bin 2 Bin 3 Bin 2256 − 1 Bin 2256

SHA-256
Messages

M1,M2,M3, . . .

Figure 3.1: The SHA-256 hash function as bin assignment.

complicated structure makes finding preimages and collisions difficult. To see
this, let us think about the hypothetical steps involved in finding a preimage
of a 256-bit message digest y. Let us assume a message length of 100 bits
and represent the message M by the variables m0m1 · · ·m99. Finding a 100-
bit preimage of y is equivalent to solving for the variables mi such that the
SHA-256 hash of M is y. Note that there may be no 100-bit message whose
SHA-256 hash is y, as 2100 < 2256. To avoid this case, let us assume that y was
obtained by hashing a 100-bit message. So there exists at least one 100-bit
preimage. Padding the message M will result in one 512-bit message block
M (1) given by

M (1) = m0m1m2 · · ·m98m99︸ ︷︷ ︸
M

1 00000 · · · 00000︸ ︷︷ ︸
347 zeros

00 · · · 01100100︸ ︷︷ ︸
M ’s length in binary

.

To solve for the variables mi, we have to solve the equation f(M (1), H(0)) =
y. We would have to express each bit in the 256-bit message digest y as a
function of the variables mi and find a simultaneous solution to the resulting
256 equations. While it is easy to calculate the compression function output
for a given input, it is difficult to express the output bits as a function of
the input. Even if we somehow managed to find the 256 equations, they will
involve complicated functions of the variables and solving them simultaneously
is still difficult.

To see why finding second preimages or collisions for SHA-256 is hard, let
us interpret each of the 2256 message digests as corresponding to a bin. Each
input message is assigned to one of these bins in a deterministic manner (see
Figure 3.1). But one cannot predict which bin a particular message will go
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to without performing the hash calculation. Even if messages differ in only
one bit, their corresponding bin assignments are very different. For instance,
the SHA-256 message digests y1 and y2 of the 4-bit messages M1 = 1000 and
M2 = 1001 are given in hexadecimal format by

y1 = 40510175 845988F1 3F6162ED 8526F0B09F733844 67FA855E

1E79B44A 56562A58,

y2 = FE675FE7 AAEE830B 6FED09B6 4E034F84DCBDAEB4 29D9CCCD

4EBB90E1 5AF8DD71.

Finding a second preimage is equivalent to fixing one of the bins and finding
a message which maps to that bin. Finding a collision is equivalent to finding
two distinct messages which are assigned to the same bin. But the number
of bins is 2256 which is very large. Finding a second message which maps to
a fixed bin or a pair of messages which map to the same bin is extremely
unlikely.

To get an idea of how unlikely such events are, let us asssume that messages
are equally likely to be assigned to any of the 2256 bins. Then the probability
of finding a second preimage of a given message using n distinct messages is
approximately n

2256
. The number of messages n would have to be close to 2256

to make this probability non-negligible. The probability of finding a collision
using n distinct messages is approximately n2

2257
. In this case, n would have to

be close to 2128 to make this probability non-negligible.
Let us now discuss the motivation behind the specific message padding

scheme used in SHA-256. The main requirement for a padding scheme used
in a hash function is that distinct messages should not result in the same
padded message. Let pad(M) be the result of padding a message M . If
M 6= M ′ but pad(M) = pad(M ′), then M and M ′ will have the same mes-
sage digest resulting in a collision. For example, consider the simple padding
scheme which consists of only appending zeros to a message M until the length
becomes a multiple of 512. Then the messages 111 and 1110 will result in the
same padded message which consists of 3 ones followed by 519 zeros.

The padding scheme used in SHA-256 appends a 1 followed by zeros and
the length of the message as a 64-bit field. Suppose that the length field was
not appended and the number of zeros appended after the 1 was chosen to
make the padded message length a multiple of 512. This padding scheme
satisfies pad(M) 6= pad(M ′) for all M 6= M ′. To see this, first consider the
case when messages M and M ′ have the same length. Then the same bit
string S = 100 · · · 00 will be appended to both of them during the padding
operation resulting in pad(M) = M‖S and pad(M ′) = M ′‖S where ‖ denotes
the concatenation operation between bit strings. Clearly, pad(M) 6= pad(M ′)
if M 6= M ′. Now consider the case when M and M ′ have different lengths.
Let pad(M) = M‖S and pad(M ′) = M ′‖S′ where both S and S′ have the
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form 100 · · · 00 with a different number of zeros after the 1. Then pad(M) 6=
pad(M ′) since they both end in a different number of zeros.

If the length field is not required to guarantee that distinct messages re-
sult in distinct padded messages, then why is it appended to the message?
Appending the length field prevents some types of attacks for finding colli-
sions or second preimages. We will not discuss these attacks here and refer
the reader to Chapter 9 of the Handbook of Applied Cryptography for more
details2.

Note that if the length field is finally appended to the message, we could
technically avoid appending the single 1 and only append zeros. This padding
scheme would also result in distinct padded messages for distinct messages.
The number of 512-bit blocks generated by appending only zeros is sometimes
smaller than the number of 512-bit blocks generated by appending a 1 fol-
lowed by zeros. For example, suppose the message M is 448 bits long. The
padding scheme which appends only zeros will append the 64-bit length field
L resulting in the single 512-bit block M‖L. The padding scheme which ap-
pends a 1 followed by zeros cannot accommodate the length field in the 63
bits which remain in the first block after the 1 is appended to M . So it adds
511 zeros after the 1 increasing the intermediate padded message length to
960 bits. Appending the 64-bit length field L gives a 1024-bit final padded
message M‖1‖000 · · · 000‖L which splits into two 512-bit blocks. In spite of
this disadvantage, the padding scheme which appends a 1 followed by zeros
and a length field has been used in SHA-256. This was probably a result of a
conservative design approach taken by the SHA-256 designers.

3.2 RIPEMD-160

The RIPEMD-160 hash function was announced in 1996 by researchers from
the German Information Security Agency and the Katholieke Universiteit Leu-
ven, Belgium. It is an enhanced version of an earlier hash function called
RIPEMD which was developed in 1992 as part of the European Union project
RACE Integrity Primitives Evaluation (RIPE). The MD in RIPEMD stands
for “message digest”. The number 160 indicates the output length in bits.

As in SHA-256, the input to RIPEMD-160 can be at most 264 − 1 bits
long. The padding scheme is similar to the one used in SHA-256 with a single
1 being appended to the message followed by some zeros and a 64-bit field
which contains the message length. The number of zeros appended is chosen
to make the padded message length a multiple of 512. The difference is that
the 64-bit length field appears in little-endian format, i.e. the least significant
32-bit word appears first. For example, message length of 6 bits would be
appended as 0x0000 0000 0000 0006 in the SHA-256 padding scheme and
as 0x0000 0006 0000 0000 in the RIPEMD-160 padding scheme.

2Available for free download at http://cacr.uwaterloo.ca/hac/

http://cacr.uwaterloo.ca/hac/
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The hash computation is an iterative process like in SHA-256 but the chain-
ing variable used is 160 bits long and the compression function is different. Let
the padded message consist of N 512-bit blocks M (1),M (2), . . . ,M (N). The
state of the computation is initialized by setting the 160-bit initial hash value
H(0) to a fixed constant. The ith message block M (i) is combined with the
previous hash value or chaining variable H(i−1) using a compression function
g to generate the next hash value H(i).

H(i) = g(M (i), H(i−1)), 1 ≤ i ≤ N. (3.5)

Here the function g accepts 672 bits as input and returns 160 bits as output.
The final hash value H(N) corresponds to the 160-bit output of the RIPEMD-
160 hash function.

All that remains to completely specify the RIPEMD-160 hash function is to
define the compression function g as we had defined the compression function
f used in SHA-256. We will not define g here and refer the reader to Algorithm
9.55 of the Handbook of Applied Cryptography for an exact description. The
description of the SHA-256 compression function f in the previous section
served as a concrete example of a complicated input-output relationship which
is easy to compute in the forward direction but resistant to finding preimages,
second preimages, and collisions. It would be redundant to give yet another
example of the same phenomenon by describing g.

3.3 P2PKH Addresses

We now describe an instance of how cryptographic hash functions are used in
the Bitcoin system design. The most common operation in the Bitcoin system
is the transfer of bitcoins between entities. In order to transfer bitcoins to a
receiver, the sender needs to know the receiver’s Bitcoin address. In this
section, we will describe one type of Bitcoin address called the Pay To Public
Key Hash (P2PKH) address.

P2PKH addresses are derived from a ECDSA public key using the SHA-
256 and RIPEMD-160 hash functions. Before considering this derivation, let
us discuss the Base58 encoding which is a method to represent byte strings
using alphanumeric characters. P2PKH addresses are finally represented as
Base58-encoded strings. From the 62 alphanumeric characters (10 numeric
digits, 26 uppercase letters, 26 lowercase letters), the number 0, the uppercase
letter O, the uppercase letter I, and the lowercase letter l are excluded to
avoid confusion and errors while reading P2PKH addresses. The remaining
58 alphanumeric characters represent the integers from 0 to 57 as shown in
Table 3.1. Given a byte string bnbn−1 · · · b0, the Base58 encoding represents
it using the 58 alphanumeric characters as follows:
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Ch Int Ch Int Ch Int Ch Int Ch Int Ch Int Ch Int

1 0 A 9 K 18 U 27 d 36 m 44 v 53
2 1 B 10 L 19 V 28 e 37 n 45 w 54
3 2 C 11 M 20 W 29 f 38 o 46 x 55
4 3 D 12 N 21 X 30 g 39 p 47 y 56
5 4 E 13 P 22 Y 31 h 40 q 48 z 57
6 5 F 14 Q 23 Z 32 i 41 r 49
7 6 G 15 R 24 a 33 j 42 s 50
8 7 H 16 S 25 b 34 k 43 t 51
9 8 J 17 T 26 c 35 l 44 u 52

Table 3.1: Base58 character (Ch) to integer (Int) mapping

1. Encode each leading zero byte (if any) as a 1. For example, if the first
m leading bytes bn, bn−1, . . . , bn−m+1 are all zero bytes then they will be
encoded as m ones.

2. Let bn−m be the first byte which is not a zero. Let N be the integer whose
big-endian representation is given by bn−mbn−m−1 · · · b0. Then representing
each byte bi as an integer from 0 to 255, we have

N =

n−m∑
i=0

bi256i

3. Convert N to a base 58 representation akak−1 · · · a0 where each ai is an
integer from 0 to 57 and

N =
k∑

i=0

ai58i.

4. Map each integer in the sequence akak−1 · · · a0 to the corresponding Base58
character in Table 3.1 and append the resulting string to the m ones from
step 1.

For example, consider the byte string 0x00001234 given in hexadecimal for-
mat. In base 256, it is given by 0 0 18 52. It has two leading zero bytes and
the remaining portion corresponds to the integer N = 4660 = 18× 256 + 52.
In base 58, N is given by 1 22 20 as 4660 = 582 + 22× 58 + 20. The Base58
encoding of the byte string 0x00001234 is then given by 112PM where the two
leading ones encode the two leading zero bytes, the 2 encodes the integer 1, P
encodes 22 and M encodes 20.

Recall that a ECDSA public key in Bitcoin is a point kP on the secp256k1
elliptic curve where k is a 256-bit integer representing the private key and P
is the base point. In uncompressed format, the public key can be represented
using 65 bytes consisting of the single byte 0x04 followed by the 32-byte x
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Figure 3.2: Generating a P2PKH address from a public key

and y coordinates of kP (see Section 2.4). Let X and Y denote the 32-byte
big-endian representations of the x and y coordinates of kP respectively. Let ‖
denote the bit string concatenation operator. The P2PKH address generation
procedure is illustrated in Figure 3.2 and proceeds as follows:

1. Calculate the SHA-256 hash of the uncompressed public key 0x04‖X‖Y :

S = SHA-256 (0x04‖X‖Y ) .

S is 32 bytes long.



CHAPTER 3. CRYPTOGRAPHIC HASH FUNCTIONS 35

2. Calculate the RIPEMD-160 hash of S:

R = RIPEMD-160(S).

R is 20 bytes long.

3. Prefix R with a single byte B which contains the address version number to
get B‖R which is 21 bytes long. The address version number for P2PKH
addresses is 0x00 on the main Bitcoin P2P network and 0x6f on testnet
which is a network used for testing Bitcoin features.

4. Calculate the result of applying the SHA-256 hash function twice on B‖R:

C = SHA-256 (SHA-256 (B‖R)) .

C is 32 bytes long.

5. Let C4 denote the first four bytes of C. Append C4 to B‖R to get a 25-byte
string B‖R‖C4.

6. Encode B‖R‖C4 using Base58 encoding to the get the P2PKH address A:

A = Base58(B‖R‖C4).

When the address version byteB is 0x00, the P2PKH address begins with a
1 as the Base58 encoding represents leading zero bytes with ones. For example,
the P2PKH address corresponding to the public key equal to the base point P
given in equation (2.4) is given by 1EHNa6Q4Jz2uvNExL497mE43ikXhwF6kZm.
When B is 0x00, the P2PKH address consists of at most 34 Base58 characters
including the leading 1. This is because the largest base 256 integer which can
fit in the 24-byte R‖C4 field is 25624−1. This number is smaller than 5833−1,
the largest base 58 number which has 33 digits. The P2PKH address can have
less than 34 Base58 characters because the integer in R‖C4 can sometimes be
represented using 32 digits in base 58. While typing a Base58-encoded P2PKH
address is cumbersome, it is more convenient than typing the 25-byte B‖R‖C4

as 50 hexadecimal digits or 200 bits.
The C4 field serves the role of a checksum which can be used to detect

errors introduced while typing a P2PKH address. Before an address A is
used, Base58 decoding is performed to get B‖R‖C4. The double SHA-256
hash of B‖R is calculated and checked to be equal to C4. This is called
checksum validation. The field C4, being the partial output of the double
SHA-256 function, can be assumed to behave like a random 32-bit value.
If someone were to make an error in typing or writing down the P2PKH
address A, then the checksum validation will succeed only with a probability
1
232

. But why invoke the SHA-256 function twice when one invocation would
also yield a checksum with the same property? The double SHA-256 function
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Figure 3.3: Steps involved in recovering a private key from a P2PK address
and a P2PKH address

is resistant to length-extension attacks which affect the SHA-256 function.
In a length-extension attack, knowing only hash SHA-256(M) but not the
message M still allows an attacker to calculate the hash SHA-256(M‖M ′) of
some extended message M‖M ′. In order to be resistant to length-extension
attacks, the double SHA-256 function is used to calculate the message digest
in the ECDSA (see Section 2.5). While there is no known way of using this
attack to compromise the Bitcoin system if a single SHA-256 invocation was
used to generate the checksum, the use of the double SHA-256 function is
probably just a conservative design choice.

But why is the public key hashed in the first place? Why not use the
public key itself or a Base58 encoding of it as the Bitcoin address? The
Bitcoin system does allow the use of a public key to identify the receiver of
some bitcoins. In this case, the public key of the receiver is called a Pay-to-
Public-Key (P2PK) address. But P2PKH addresses are preferred over P2PK
addresses for security reasons. To understand the security risk in using P2PK
addresses, suppose some bitcoins are transferred to a receiver’s Bitcoin P2PK
address which is equal to her public key kP . To spend these bitcoins later,
the receiver has to create a digital signature using the private key k. This is
equivalent to proving knowledge of k without actually revealing it. Anyone
with knowledge of k effectively owns the bitcoins deposited in the Bitcoin
address derived from kP . So if P2PK addresses are used, then an adversary
can attempt to calculate k from kP . While there are no efficient methods
currently known for solving this elliptic curve discrete log problem (ECDLP),
it is possible that such methods may be discovered in the future. By hashing
the public key to derive the P2PKH address from kP , an adversary looking to
derive the private key k from the P2PKH address has to solve the additional
difficult problem of finding the preimage of a hash function output before
attempting a solution to the ECDLP. So hashing the public key effectively
amounts to hiding it from adversaries who may in the future be capable of
solving the ECDLP. If only one hash function, say RIPEMD-160, had been
used to hash the public key, then the adversary would have to find preimages
for RIPEMD-160 outputs. By hashing the public key with both SHA-256
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and RIPEMD-160, an adversary is required to find preimages for both these
functions, which is a harder problem. Figure 3.3 shows the steps involved in
recovering a private key from a P2PK and a P2PKH address. We have not
shown the Base58 decoding step which needs to be performed on the P2PKH
address before attempting to find the RIPEMD-160 preimage because it is
trivial to perform. From the perspective of an adversary who is trying to
recover the private key from a P2PKH address, the order in which the two
hash functions are applied to the public key does not matter. But if RIPEMD-
160 had been applied on the public key first followed by SHA-256, then the
resulting hash value would be 32 bytes instead of 20 bytes and the P2PKH
address would be longer.



Chapter 4

The Blockchain

The blockchain is the database containing a record of all Bitcoin transactions
since Bitcoin came into existence in 2009. The blockchain consists of a linear
list of blocks where each block is composed of a block header followed by a list
of Bitcoin transactions. This is illustrated in Figure 4.1. A Bitcoin transaction
involves the transfer of bitcoins between entities. We will specify the format
of a transaction in the next chapter. For now, a transaction can be thought
of as an encoding of the details of a transfer of bitcoins from source Bitcoin
addresses to destination Bitcoin addresses.

The first block in the blockchain (the genesis block) was created in January
2009. As of July 2017, the blockchain had more than 478,000 blocks and
occupied approximately 125 gigabytes of disk space. Until August 2017, the
maximum size of a block was 1 megabyte (1,000,000 bytes). In August 2017,
a new feature called Segregated Witness (SegWit) was activated in the Bitcoin
network which effectively increased the maximum block size to 4 megabytes.

Block Header

List of
Transactions

Block Header

List of
Transactions

Block Header

List of
Transactions

Block 0
(Genesis Block)

Block 1 Block N
(Present day)

· · ·

Figure 4.1: The blockchain
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The motivation for and design of SegWit will be discussed in the next chapter
as it requires us to first understand some shortcomings in the pre-SegWit
Bitcoin system.

In this chapter, we will describe the blockchain and explain the motivation
behind different aspects of its design.

4.1 Rewarding Blockchain Updation

The task of storing and updating the blockchain is performed collectively by
the nodes in the Bitcoin P2P network. Nodes called full nodes store a copy of
the blockchain on their hard disks. When a full node connects to the Bitcoin
network for the first time, it downloads a copy of the blockchain from the
existing full nodes. The task of adding blocks to the blockchain is called
mining and is done by full nodes called miners. The naming convention for
mining/miners was chosen because the mining task involves the solution to a
difficult computational problem and a miner which successfully solves such a
problem is rewarded with newly created bitcoins. This reward is called the
block subsidy and is currently equal to 12.5 bitcoins per block. In addition to
the block subsidy, miners also receive transaction fees in bitcoins which are
provided by the transactions in the block being added. The sum of the block
subsidy and the transaction fees is called the block reward.

Mining is the only way new bitcoins are created in the Bitcoin system. The
computational difficulty of mining a single block is adjusted by the network to
ensure that a new block is added approximately every 10 minutes. This sched-
ule along with the size of the block subsidy controls the rate of new bitcoin
creation. The block subsidy was 50 bitcoins per block in 2009 when Bitcoin
came into existence. It is halved every 210,000 blocks which is about four years
assuming it takes 10 minutes to mine a new block. The block subsidy became
25 bitcoins in November 2012 when block 210,000 mined and 12.5 bitcoins
in July 2016 when block 420,000 was mined. The smallest indivisible unit of
the Bitcoin currency is called a satoshi with each bitcoin being equal to 100
million satoshi. As the block subsidy is progressively halved, it will eventually
become less than 1 satoshi. At this point, it will be considered zero. The block
subsidy will become zero when block 6,930,000 is mined which is expected to
be around the year 2140. Once the block subsidy becomes zero, transaction
fees will be the only incentive for miners to continue mining new blocks. As
the rate of new bitcoin creation decreases geometrically, the total number of
bitcoins which will ever come into existence is about 21 million. While there
is nothing special about the specific constants chosen to represent the initial
block subsidy and the halving schedule, the motivation behind having a fixed
limit on the total number of bitcoins is to prevent inflation of the currency.

We will discuss the details of the computational problem used in Bitcoin
mining in Section 4.3 after we describe the block header structure.
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Figure 4.2: The block header fields and their sizes

4.2 The Block Header

Every block in the blockchain begins with a 80-byte block header. The fields in
the block header and their respective sizes are shown in Figure 4.2. The field
names are taken from the source code of the Bitcoin Core reference client. The
prefix n of the 4-byte fields is a convention to indicate that they are integer
variables. The prefix hash of the 32-byte fields indicates that they store hash
function outputs.

The block header begins with a 4-byte nVersion field which specifies the
version of the block. As the Bitcoin system evolved, changes were proposed
to fix bugs or enable new features. The version number of a block indicates
which features are supported by the transactions present in it.

Each block is identified by the double SHA-256 hash of its block header.
This is called the block hash of the block. The hashPrevBlock field in the
block header contains the block hash of the previous block in the blockchain.
This is illustrated in Figure 4.3. Since the genesis block has no previous block,
its hashPrevBlock field was set to all zeros. The block headers of two distinct
blocks will differ in at least in the hashPrevBlock field. Since the SHA-256
output behaves like a random 256-bit string, the probability that the block
hashes of two distinct blocks will be the same is extremely negligible. So the
block hash can be safely considered to be a unique identifier of a block.

Previous Block Header

nVersion

hashPrevBlock

hashMerkleRoot

nTime

nBits

nNonce

Block Header

nVersion

hashPrevBlock

hashMerkleRoot

nTime

nBits

nNonce

Double
SHA-256

Figure 4.3: The hashPrevBlock field contains the double SHA-256 hash of
the previous block header
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Figure 4.4: Merkle tree of four transactions

The hashMerkleRoot field stores the root hash of a Merkle tree formed
using the transactions in the block. The transactions are arranged as a list and
the double SHA-256 hash of each of them is computed. Using these hashes as
leaves, a binary tree is created where each node is associated with a double
SHA-256 hash of the concatenation of its child hashes. This is illustrated in
Figure 4.4 for the case when four transactions are used to construct a Merkle
tree. In the figure, t0, t1, t2, t3 represent transactions, ‖ denotes the concate-
nation operator, and H(·) is used to denote the double SHA-256 function,
i.e. H(x) = SHA-256(SHA-256(x)). The hash value h associated with the
root of the tree is called the root hash or Merkle root of the tree. When the

h = H(h0‖h1)

h0 = H(h00‖h01)

h00 = H(t0)

t0

h01 = H(t1)

t1

h1 = H(h10‖h10)

h10 = H(t2)

t2

Figure 4.5: Merkle tree of three transactions
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Figure 4.6: Proof of membership of transaction t1 in a block with
hashMerkleRoot equal to h

number of transactions is not a power of two, some nodes in the Merkle tree
will have only one child. In that case, the hash of the single child is concate-
nated with itself and then hashed to derive the hash value associated with the
parent node. Figure 4.5 illustrates the calculation of the Merkle root corre-
sponding to three transactions. In this case, the node corresponding to h1 has
only one child h10. The value h10 is concatenated with itself and hashed to
get h1.

The root hash stored in hashMerkleRoot is a compact representation of all
the transactions in a block. Any change to a transaction in a block will result
in a change in the hashMerkleRoot field as the SHA-256 function is collision
resistant. A change in the hashMerkleRoot will in turn result in a change in
the block hash of the block. The block hash of a block also depends on the
hashMerkleRoot of the previous block through the hashPrevBlock. As this
dependence is recursive, the block hash of a particular block depends on all
the transactions in all the previous blocks all the way upto the genesis block.
Changing any past transaction will involve a recalculation of all the block
hashes of blocks which are subsequent to and including the block containing
that transaction. This property will turn out to be important for guaranteeing
tamper resistance of the transaction data.

But why use a Merkle tree of the transactions? Why not hash the concate-
nation of all the transactions and put the resulting hash in the block header?
To guarantee tamper resistance of the transaction data, including the hash
H(t0‖t1‖ · · · ‖tn−1) of the transactions t0, t1, . . . , tn−1 in the block header in-
stead of the Merkle root would have been sufficient. The reason for using
the Merkle root is that it enables efficient membership proofs of transactions
within a block. For example, suppose we want to prove that the transaction t1
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was involved in the calculation of the root hash h in Figure 4.4. We only need
to provide the Merkle branch consisting of the hashes h00 and h1 as shown in
Figure 4.6. The hashes h01, h0, and h can be calculated from t1 and the Merkle
branch. If the root hash h appears in the hashMerkleRoot field of a block,
then by the second preimage resistance of the SHA-256 hash function we can
be certain that this block contains the transaction t1. In general, the Merkle
branch required to prove the existence of a transaction in a block containing
n transactions has size O(log2 n). On the other hand, if H(t0‖t1‖ · · · ‖tn−1)
had been used instead of the Merkle root then the membership proof of a
transaction would require us to specify all the transactions in the block whose
size is O(n). There are nodes in the Bitcoin network called simple payment
verification (SPV) nodes which store only the block headers and not the whole
blocks like full nodes. When they require information about transactions in
the blockchain which contain their Bitcoin addresses, they contact full nodes
which respond with Merkle branches to prove the existence of the relevant
transactions.

The last three fields in the block header nTime, nBits, and nNonce are
related to mining. They are explained in the next section.

4.3 Mining

Mining is the process by which new blocks are added to the blockchain. Each
block consists of a block header followed by a list of transactions. The list
begins with a special transaction called the coinbase transaction which encodes
the transfer of the block reward (block subsidy plus the transaction fees from
the other transactions) to the miner which added the block to the blockchain.
Each coinbase transaction involves the creation of new bitcoins. The amount of
bitcoins created is equal to the block subsidy which is currently 12.5 bitcoins.
The other transactions in the list are called regular transactions. They encode
the transfer of bitcoins which were created in some previous block. A block
must contain exactly one coinbase transaction but it may contain zero or more
regular transactions. The maximum number of regular transactions in a block
is limited by the block size which was 1 MB until August 2017 and 4 MB after
that.

Nodes which want to record new regular transactions in the blockchain
broadcast them on the Bitcoin network. When other nodes hear these new
transactions, they add them to a transaction memory pool (mempool) which
is stored in local memory (RAM). A miner node forms a candidate block by
collecting some transactions from its mempool. The miner includes a coinbase
transaction in the candidate block which transfers the block reward to its own
Bitcoin address. There will be several miner nodes competing to add the next
block in the blockchain and claim the resulting block reward. The candidate
blocks created by these different miner nodes will differ in the coinbase trans-
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actions as each node will insert its own Bitcoin address as the recipient of
the block reward. The candidate blocks may also differ in the regular trans-
actions included in them as different miner nodes may have different sets of
transactions in their respective mempools. This may be due to the miner
nodes receiving transactions broadcasted on the Bitcoin network at different
times due to network latencies.

The height of a block in the blockchain is the number of blocks preceding
it. The genesis block has height 0, the immediate successor of the genesis
block has height 1 and so on. Suppose a miner node is attempting to add
a candidate block at height N . The newest block in the node’s copy of the
blockchain has height N −1. The hashPrevBlock field of the candidate block
header is populated with the block hash of the block at height N − 1. The
hashMerkleRoot field is populated with the Merkle root of the transactions
in the candidate block. The nVersion field contains the current block version
number.

The nTime field is populated with a timestamp in Unix time format to
record the time of candidate block creation. The Unix time is the number of
seconds which have elapsed since 12:00 AM Coordinated Universal Time on
January 1st, 1970 with deductions to account for leap seconds.1 Each node in
the network has a local clock which is not necessarily synchronized with the
local clocks of the other nodes. So there is no globally unique notion of time
in the network. The Bitcoin system does not specify an explicit algorithm
for calculating the nTime field in a candidate block. However, it imposes two
constraints to ensure that the timestamp in the nTime field is approximately
correct:

• In a candidate block at height N , the nTime field is required to be
strictly greater than the median of the nTime values in the 11 blocks in
the blockchain at heights N −1, N −2, . . . , N −11. This median value is
called the median-time-past of the block at height N −1. Note that this
constraint causes the median-time-past values to increase monotonically
with block height, even if the nTime fields do not.

• When a network node receives a candidate block created by a miner,
it rejects it if the nTime field specifies a time which exceeds the node’s
network-adjusted time by more than two hours. The network-adjusted
time at a node is the median of the local clocks of the other nodes it is
connected to.

A miner node is free set to the nTime field to any value which satisfies these
constraints. The first constraint specifies a lower bound on nTime which can
be calculated from the current blocks in the blockchain. The upper bound
specified by the second constraint cannot be explicitly calculated by the miner

1See https://en.wikipedia.org/wiki/Unix_time

https://en.wikipedia.org/wiki/Unix_time
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nBits Target Threshold b1 − 3

0x03123456 0x123456 0
0x02123456 0x1234 -1
0x05123456 0x1234560000 2
0x08123456 0x1234560000000000 5

Table 4.1: Examples of nBits field values and corresponding target thresholds

as it does not know the network-adjusted times of the other nodes in the
network. But it can hope to satisfy the upper bound by using nTime values
which are equal or close to its own network-adjusted time.

The nBits field in the block header encodes a 256-bit unsigned integer
called the target threshold using a base 256 version of the scientific notation.
Let b1b2b3b4 be the four bytes in nBits. The first byte b1 plays the role of
the exponent and the remaining three bytes encode the mantissa. The target
threshold T is derived as

T = b2b3b4 × 256b1−3,

where b1 and b2b3b4 are interpreted as unsigned integers. Some examples of
nBits field values and the corresponding target thresholds are given in Table
4.1. As illustrated by the examples, the mantissa is shifted to the left by b1−3
bytes. The value of b1 is never allowed to be larger than 34 to ensure that the
target threshold can be represented by a 32-byte (256-bit) string. The target
threshold is a network-wide setting which is adjusted by all the network nodes
every 2,016 blocks.

Recall that the block hash of a block is the double SHA-256 hash of its
block header. The goal of the miner is to find a candidate block whose block
hash is less than or equal to the target threshold. The miner is free to set
the value of the nNonce field to any value in order to find such a block hash.
The word nonce is used in cryptography to denote a number which is used
only once. Since the SHA-256 function is preimage resistant, the only thing
a miner can do is to try different values for the nNonce field and check each
time if the block hash falls below the threshold. Assuming that the output of
the SHA-256 function behaves like a random 256-bit string where each bit is
equally likely to be 0 or 1 independently of the other bits, the probability that
the block hash falls below the target threshold T for a trial nNonce value is

p =
T + 1

2256
.

Modelling each try by the miner as a Bernoulli random process with success
probability p, the average number of trials required to find a block hash be-
low the threshold is 1/p. For example, the nBits field on January 1, 2017
was 0x180375ff which corresponds to an exponent of 24 and a mantissa of
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226815 ≈ 262144 = 218. In this case, the average number of trials required
was approximately

2256

T + 1
=

2256

226815× 25624−3 + 1
≈ 2256

218 × 2168
= 270.

Such a large number of trials required to find a valid block hash is the reason
why mining is a computationally difficult problem. A miner which successfully
finds a block hash for a candidate block below the target threshold is said to
have found or mined a valid block. Since the only way to mine a valid block
is to search through a large number of candidate block hashes, the valid block
is called a proof-of-work (PoW) solution. It proves that a certain amount of
work was performed on the average in order to find it.

What happens after a miner finds a valid block at height N? Such a miner
immediately broadcasts the block on the Bitcoin network. It also appends
the block to its local copy of the blockchain and begins mining for the next
block at height N +1. When other nodes receive this broadcasted block, their
reaction depends on the state of their local copy of the blockchain. For now,
assume that all the other nodes in the network have the same copy of the
blockchain consisting of blocks from the genesis block to a block at height
N − 1. We will relax this assumption later. When the new block at height N
arrives, miner nodes which are still mining their candidate blocks at height N
stop mining, append the new block to their local copy of the blockchain, and
start mining for the next block at height N + 1. If the receiving node is a full
node which does not perform mining, then it will just add the new block to
its local copy of the blockchain.

How is the target threshold value chosen? The rate at which a comput-
ing device can calculate block hashes is measured in megahashes per second
(MH/s), gigahashes per second (GH/s), or terahashes per second (TH/s).
These units correspond to 106, 109, and 1012 hashes per second respectively.
A typical personal computer (PC) can calculate block hashes at a rate less
than 100 MH/s. To calculate 270 block hashes, a PC operating at 100 MH/s
will require more than 300,000 years. Nowadays, mining is done using ap-
plication specific integrated circuits (ASICs) designed specifically to compute
several instances of the double SHA-256 function in parallel. One can purchase
mining rigs which combines several such ASIC chips to deliver hash rates of
the order of a few TH/s. A single mining rig operating at 1 TH/s will still
require more than 30 years to calculate 270 hashes. The mining landscape is
dominated by companies which have consolidated thousands of such mining
rigs into datacenters in locations with low electricity and cooling costs. There
are also mining pools where geographically distributed nodes combine their re-
spective mining hash rates to reduce the time required to mine a valid block.
The total hash rate available across the whole Bitcoin network on January 1,
2017 was estimated2 to be 2,463,610 TH/s. Using this hash rate, 270 block

2Source: https://blockchain.info/charts/hash-rate

https://blockchain.info/charts/hash-rate
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hashes can be calculated in 8 minutes.
The Bitcoin protocol specifies that the average time required to mine a

valid block should be 10 minutes. If the total hash rate Rtotal of all the
miners in the Bitcoin network were known, then we know that the network
can calculate 600Rtotal hashes in 10 minutes. The target threshold T could
then be chosen such that the average number of trials required to mine a valid
block is equal to 600Rtotal, i.e. by solving for T in

2256

T + 1
= 600Rtotal.

But the protocol does not have any means to directly measure Rtotal. Instead,
the time which was spent in finding the previous 2,016 blocks is measured
by taking the difference of the nTime fields of blocks whose heights differ by
2,016. Ideally, this time should be 20,160 minutes. If the actual time spent
is less than this value, then the target threshold is decreased to decrease the
probability of finding a valid block in a single trial. If the actual time spent
is more than this value, then the target threshold is increased. The update
formula for transforming the old target threshold Told to a new value Tnew is
given by

Tnew = Told ×
Measured duration for finding 2,016 blocks in seconds

2016× 600
.

The target threshold is updated once every 2,016 blocks by all the nodes in
the Bitcoin network. The number of 2,016 was chosen because it represents
the number of blocks which would be found in two weeks if a block was found
every 10 minutes, i.e. 2016 = 14× 24× 6.

The Bitcoin protocol has a bug in the calculation used to measure the
duration for finding 2,016 blocks. It was present in the original implementation
of the Bitcoin client and is difficult to fix as it requires a hard fork change to
the protocol3. Suppose a miner node is in the process of creating a candidate
block whose height is a multiple of 2,016, say 2016n. It measures the duration
required to find the previous 2,016 blocks as the difference in the timestamp
(nTime) fields of the blocks at height 2016n − 1 and 2016(n − 1). So for
n = 1, the difference in the timestamp values of the blocks at height 2,015
and 0 were used. Note that this duration actually measures the time required
to find 2,015 blocks because the timestamps are inserted before the mining
begins and the difference between the timestamps of blocks at height i and
i+ 1 gives an estimate of the time required to find block i. The time required
to find the block with height 2016n−1 will require the timestamp of the block
with height 2016n. The effect of this bug is that the measured duration is
reduced by about 10 minutes which causes the Tnew value to be reduced by
Told/2016. This represents a change in the probability of finding a valid block
of 0.05% which is negligible.

3Hard and soft fork protocol changes are discussed in Chapter 7
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Figure 4.7: Illustration of network state in the event of a blockchain fork with
two branches each having one block.

What if the miner runs out of nNonce values to try? Since the nNonce

field is only 4 bytes long, a miner can generate only 232 trials by modifying
it. In case a miner cannot a find a block hash below the threshold in these
trials, it can modify a field called the coinbase which is present in the coinbase
transaction. This field is of variable length and can have a maximum length
of 100 bytes. Except for the first four bytes which are reserved for a specific
purpose, the coinbase can hold arbitrary data. Once a miner has exhausted
the 232 trials by modifying the nNonce, it can change some bits in the coinbase
which will in turn modify the hashMerkleRoot value in the block header. The
miner can now retry the 232 nNonce values as they will result in new block
hash values.

What if two miners find valid blocks at around the same time and broadcast
the blocks? Once again let us assume that all the network nodes have the same
copy of the blockchain which ends in a block at height N − 1. Suppose two
valid blocks A and B both at height N are found by two different miners and
are broadcasted before each miner received the other miner’s block. This is
posssible due to the delays inherent in propagating blocks over the network.
The other nodes either receive block A first or block B first. Each node
will accept the first block at height N that it receives and reject the second
block. So if a miner receives block A first it will append it to its local copy
of the blockchain and start mining for a block at height N + 1 with block A
as the previous block. If the miner later receives block B, it will reject it.
Eventually every node in the network would have received either block A or
block B and extended its local copy of blockchain with the received block.
This is illustrated in Figure 4.7 where MA and MB denote the miner nodes
which created blocks A and B respectively. Edges have been drawn between
nodes which are peers in the Bitcoin P2P network. Nodes labelled A have



CHAPTER 4. THE BLOCKCHAIN 49

Block
N − 2

Block
N − 1

Block
A

Block
B

· · ·

(a) Block chain state in the event of a fork at height N

Block
N − 2

Block
N − 1

Block
A

Block
A′

Block
B

Block
B′

· · ·

(b) Block chain state in the event that both branches in a fork get extended
to equal height

Block
N − 2

Block
N − 1

Block
A

Block
A′

Block
A′′

Block
B

Block
B′

· · ·

(c) Block chain state in the event one branch in a fork becomes longer than
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Figure 4.8: Block chain forks

received block A first and nodes labelled B received block B first. Such a
situation is called a blockchain fork since the state of blockchain as seen by
the network as a whole consists of two branches both originating from the
same parent block at height N − 1.

Another way to represent the blockchain fork is shown in Figure 4.8(a).
Nodes which first received block A extended their copy of the blockchain using
the upper branch containing block A. The nodes which first received block
B extended the blockchain using the lower branch. Both branches will have
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some proportion of the miners in the Bitcoin network working to extend them.
It is possible that valid blocks are found once again around the same time on
both branches and broadcast on the network. This results in a situation
shown in 4.8(b). Blocks A′ and B′ were found by miners trying to extend
the branches containing blocks A and B respectively. Due to the randomness
inherent in the mining process and the block propagation in the network, it is
unlikely that both branches in a blockchain fork get extended to equal height
indefinitely. Eventually, one branch will become longer than the other. This
situation is shown in Figure 4.8(c) where the branch starting from block A
has been extended to height N + 2 while the branch starting from block B
has been extended to height N + 1. The Bitcoin protocol requires the network
nodes to switch to the longest branch they become aware of. So when the
block A′′ is received by the miner nodes which are working on extending the
branch starting at block B, they will switch to the branch starting at block
A and begin mining candidate blocks which have block A′′ as their previous
block. They will request the intermediate blocks A and A′ from the peer who
communicated block A′′ to them. Non-miner full nodes which have block B′

as the latest block in their copy of the blockchain also switch to the branch
starting from blockA upon receiving blockA′′. The branch consisting of blocks
B and B′ will no longer be extended. Blocks belonging to such abandoned
branches are called stale blocks and they are eventually deleted. By having
all nodes switch to the longest branch, the protocol ensures that only a single
linear list of blocks survives after the resolution of blockchain forks. The
network is said to have achieved consensus about which linear list of blocks
constitute the blockchain.

What about the transactions in the stale blocks? A transaction is valid
only if it belongs to a block which survives after any blockchain forks have
been resolved. The coinbase transactions in stale blocks become invalid. A
regular transaction in a stale block could already be present in one of the
blocks which survived after fork resolution. If not, it is added back to the
mempool of transactions which nodes use to construct new candidate blocks.

4.4 Bitcoin Transactions

In this section, we give a high-level description of Bitcoin transactions in
order to discuss the security properties of the blockchain. A more detailed
description of the transaction format will be given in Chapter 5.

A Bitcoin transaction encodes a transfer of bitcoins between entities. A
destination of the transfer in a transaction is called an output. A single trans-
action can have several outputs. Each output in a transaction can serve as a
source of bitcoins in a later transaction. When previous transaction outputs
are specified as sources of bitcoins in a transaction, they are called inputs.
A coinbase transaction has no input and at least one output. There is no
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Figure 4.9: Illustration of a coinbase transaction.

input because the source of bitcoins is not a previous transaction output but
the block reward, i.e. the sum of the block subsidy and the transaction fees
from the transactions in the block. Each output in the coinbase transaction
specifies two items:

• The amount of bitcoins from the block reward which are associated with
this output.

• A script which specifies the conditions under which the bitcoins associ-
ated with this output can be spent.

The script in an output can be thought of as a challenge. An entity which
provides a satisfactory response can transfer the bitcoins associated with the
output. Figure 4.9 illustrates a coinbase transaction with two outputs. The
first output specifies an amount x1 and a challenge script C1. A satisfactory
response to C1 is needed to spend the x1 bitcoins. Similarly, a satisfactory
response to the challenge script C2 is needed to spend the x2 bitcoins in the
second output.

To see an example of a challenge and a satisfactory response to it, consider
a miner who creates a block and wants the block reward to be paid to P2PKH
addresses it owns. Ownership of a P2PKH address is the same as knowing
the private key corresponding to the public key used to create the address.
In this case, the challenge script in an output of the coinbase transaction will
contain a P2PKH address. The challenge script will require anyone who wants
to spend the bitcoins to provide a response script which consists of two items:

• A public key which hashes to the given P2PKH address.

• A digital signature created using the private key corresponding to the
public key. The signature can be verified using the provided public key.

While a single output in the coinbase transaction is sufficient for a miner to
gain control of the block reward, multiple outputs give the miner flexibility to
distribute the block reward to multiple addresses.
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The sum of the amounts in all the outputs of the coinbase transaction
should not exceed the block reward. Suppose that the block reward in the
block containing the coinbase transaction of Figure 4.9 is R bitcoins. Then the
amounts x1 and x2 must satisfy x1+x2 ≤ R. This ensures that the transaction
does not spend more than the amount of bitcoins which are available for
spending. If x1 +x2 < R, then the R−x1−x2 bitcoins from the block reward
become unspendable. So coinbase transactions set the sum of the output
amounts to be equal to the block reward. In the past, errors in coinbase
transaction creation by miners have resulted in blocks where this sum is not
equal to the block reward.

To spend the bitcoins earned in a coinbase transaction, the miner would
have to create a regular transaction. Regular transactions have at least one
input and at least one output. Each input specifies three items:

• The transaction identifier (TXID) of a previous transaction on the blockchain.
The TXID of a transaction is its double SHA-256 hash.

• The index of an output in the previous transaction. The first output in
a transaction has index 0, the second output has index 1 and so on.

• A response script which will satisfy the conditions required to spend the
bitcoins in the output.

Essentially each input in a regular transaction unlocks the bitcoins associated
with a previous transaction output. This previous transaction could be a
coinbase transaction or a regular transaction. Note that the inputs do not
specify the amount of bitcoins to be spent from an output. If an output of a
previous transaction is referenced by an input, all the bitcoins associated with
that output need to be spent in the transaction.

The outputs in a regular transaction have the same format as the outputs
in a coinbase transaction. Each of them specifies an amount of bitcoins being
associated with that output and a challenge script. The amounts in the regular
transaction outputs can take any value as long as the sum of the amounts does
not exceed the total amount of bitcoins unlocked by the inputs. Suppose a
regular transaction has N inputs and M outputs. Let the ith input unlock
xi bitcoins from a previous transaction output. Then

∑N
i=1 xi bitcoins will

be available for transfer from all the inputs. Let the jth output specify an
amount of yj bitcoins. The transaction is valid if

∑M
j=1 yj ≤

∑N
i=1 xi. The

constraint ensures that the amount of outgoing bitcoins is at most the amount
of incoming bitcoins. But why are these amounts not equal? The difference
in the amounts is the transaction fees paid to the miner which includes this
transaction in a block, i.e.

Transaction fees =

N∑
i=1

xi −
M∑
j=1

yj .
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Figure 4.10: Illustration of a regular transaction spending outputs from two
previous transactions.

Figure 4.10 illustrates a regular transaction which has three inputs and
two outputs. The first two inputs refer to two outputs from a previous regular
transaction with transaction identifier equal to TXID1. The third input refers
to the output of a previous coinbase transaction with transaction identifier
equal to TXID2. The first output in the previous regular transaction specifies
a bitcoin amount x1 and a challenge script C1. The first input of the regular
transaction unlocks the x1 bitcoins by providing a satisfactory response R1 to
C1. Similarly, the second and third inputs of the regular transaction unlock x2
and x3 bitcoins by providing satisfactory responses R2 and R3 to challenges C2

and C3 respectively. A total of x1 + x2 + x3 bitcoins are available for transfer
to the outputs. The two outputs of the regular transaction are allocated y1
and y2 bitcoins respectively, where y1 + y2 ≤ x1 + x2 + x3. Challenge scripts
C4 and C5 are included in the outputs specifying conditions under which these
outputs can be spent. A transaction fee of x1+x2+x3−y1−y2 can be claimed
by the miner which includes this transaction in a block on the blockchain.

How is the value of the transaction fee determined? Miners aim to max-
imize their block reward while constructing candidate blocks. As the block
subsidy is fixed, they seek to maximize the sum of the transaction fees from
the transactions included in the block. A high transaction fee is not the only
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factor in determining which transaction to include in a block. The size of
the transaction in bytes also matters as the block size is constrained to be at
most one megabyte. A transaction t1 may pay a lower transaction fee than a
transaction t2 but t1 may have a smaller size in bytes allowing for more trans-
actions to be included in the block. Miners divide the transaction fee offered
by a transaction by the transaction size in bytes to get the transaction fee per
byte or the fee rate of the transaction. While collecting regular transactions
to form a candidate block, they give higher priority to transactions which pay
a higher fee rate. Nodes which want to add their regular transactions to the
blockchain need to pay a fee rate which is competitive with the other trans-
actions being broadcast on the network. The probability that a transaction
paying a certain fee rate r will be included in the next m blocks can be es-
timated by observing the fee rates paid by the transactions being included
in the blockchain. When a transaction t with fee rate r is first heard by a
node, the height h1 of the latest block in the blockchain is recorded. If t gets
included in a block on the blockchain at height h2, the difference between h2
and h1 gives an estimate of the expected delay incurred by a transaction which
pays fee rate r. Using such estimates from several transactions, a competitive
fee rate can be estimated as a function of the amount of delay in blocks the
node creating the transaction is willing to tolerate. The Bitcoin Core software
implements such a fee estimation algorithm.

4.5 Bitcoin Ownership

When an output of a previous transaction is unlocked by the input of a later
transaction, all the bitcoins in the output need to be spent. This implies that a
transaction output can be in only one of two states: spent or unspent. Unspent
transaction outputs (UTXOs) refer to outputs in transactions recorded on the
blockchain which have not been unlocked by the inputs of later transactions.
When a new block is added to the blockchain, the output of the coinbase
transaction is a UTXO containing the block reward. Every regular transaction
in the new block unlocks UTXOs from transactions in previous blocks and
creates new UTXOs. The unlocked outputs cease to be UTXOs. So the set
of UTXOs changes with every block addition.

The set of all UTXOs on the blockchain represent an ownership record
of all the bitcoins in circulation. Suppose a UTXO has x bitcoins and a
challenge script C in it. An entity which can unlock the UTXO by providing
a satisfactory response R to C is considered the owner of the x bitcoins. The
total amount of bitcoins owned by an entity is the sum of the amounts in all
the UTXOs it can unlock.

During a blockchain fork, different network nodes may consider different
branches in the fork to be the longest branch. Since a node calculates the
set of UTXOs from its local copy of the blockchain, the UTXO set will differ
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across nodes whose local copies differ. For example, consider the blockchain
fork illustrated in Figure 4.8(a) where miners MA and MB have mined blocks
A and B respectively. The UTXO set in nodes which consider the branch
containing block A to be the longest branch will contain the output of the
coinbase transaction which transfers the block reward to MA. This output
will not be present in nodes which consider the branch ending in block B to
be the longest branch. The UTXO set in these nodes will contain the output
of the coinbase transaction which transfers the block reward to MB. Hence
the ownership of the block reward in the block at height N is undetermined
until the fork is resolved. Once blockchain forks are resolved, the UTXO set
(and consequently the bitcoin ownership record) seen by all the nodes in the
network will be identical. But the temporary ambiguity about the UTXO
set during blockchain forks should be taken in account in situations where
bitcoins are used as a mode of payment.

4.6 Double Spending Attacks

Suppose Alice wants to use bitcoins to pay for some goods which Bob is
selling. In order to pay Bob, Alice needs to unlock some UTXOs she controls
and create a new UTXO which only Bob can unlock. For Alice to be able to
create the new UTXO, Bob needs to provide Alice with a Bitcoin address he
owns. Suppose Bob provides Alice with a P2PKH address for which he knows
the corresponding private key. Alice will then create a new regular transaction
t1 where one of the outputs contains the amount of bitcoins Alice wants to
pay Bob. The challenge script in this output will contain the P2PKH address.
Constructing a satisfactory response to this challenge will require the private
key known only to Bob. Alice will broadcast t1 on the Bitcoin network where
miners will include it in the candidate blocks they are mining. Bob will keep
scanning the new blocks being added to the blockchain for t1. Once Bob sees
a new block with t1 included in it, he will wait for the branch containing
this block to grow further before handing the over the goods to Alice. This
is illustrated in Figure 4.11(a). Suppose the transaction t1 is included in a
block BN at height N . The t1 is said to have received one confirmation.
When a valid block BN+1 at height N + 1 is added to the blockchain with
BN as its previous block, t1 is said to have received two confirmations. Before
transferring the goods to Alice, Bob waits until t1 receives m confirmations,
i.e. the branch containing t1 has been extended by m − 1 blocks. This is to
safeguard against a double spending attack by Alice in which the transaction
t1 can be cancelled.

Suppose Bob asks Alice for x bitcoins as payment for the goods. Also
suppose that Alice can unlock a UTXO OA which has at least x bitcoins. A
double spending attack by Alice proceeds as follows.

1. Alice creates two transactions t1 and t2. In t1, an input unlocks OA and an
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(b) Block chain state after Alice succeeds in creating a longer branch con-
taining t2

Figure 4.11: Illustration of a double spending attack

output pays Bob x bitcoins. In t2, an input unlocks OA but the x bitcoins
are paid back to Alice in an output. The transactions t1 and t2 conflict
because they both spend the same UTXO OA. Only one of them can be
included in the blockchain.

2. Alice will broadcast t1 on the Bitcoin network for inclusion in the blockchain.
She will keep t2 a secret.

3. Suppose a miner includes t1 in a valid block BN which is at height N . Bob
will wait for t1 to receive m confirmations before transferring the goods to
Alice.

4. Immediately after broadcasting t1, Alice begins work on constructing a
branch containing t2. She does not announce the valid blocks found on this
branch to the Bitcoin network before Bob transfers the goods to her.

5. After receiving the goods, if Alice succeeds in creating a branch containing
t2 which is longer than the branch containing t1 then she broadcasts all the
blocks in the t2 branch in the Bitcoin network. This is illustrated in Figure
4.11(b) where the branch containing t2 is one block longer than the branch
containing t1. The blocks AN , AN+1, . . . , AN+m are broadcasted by Alice
after she receives the goods from Bob.

6. All the nodes in the Bitcoin network will eventually switch to the t2 branch
and the t1 branch will be abandoned. Usually, transactions which are in
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stale blocks, i.e. blocks which are in abandoned branches, are added back
to the transaction pool if they have not already appeared in the surviving
branch. Miners use this transaction pool for constructing new candidate
blocks. However, miners which have switched to the t2 branch will not
add t1 to their transaction pools as it conflicts with t2. The end result is
that Bob has already transferred the goods to Alice but the x bitcoins he
thought he received from Alice in t1 are back in Alice’s possession. Since
Alice can now spend these bitcoins again, this attack is called a double
spending attack.

The double spending attack as described above will always succeed if Alice
can influence 50% or more of the total network hash rate to work on the branch
containing t2. With the majority of the network hash rate working to extend
it, the t2 branch will eventually overtake the t1 branch. Alice could herself be
a miner who controls a majority of the network hash rate or she could collude
with a group of miners who collectively control a majority of the network hash
rate. If less than 50% of the network hash rate is used to attempt a double
spending attack, it may or may not succeed. Suppose that a fraction q of the
network hash rate is used to mount the double spending attack where q < 1

2
and that the remaining p = 1− q fraction of the network hash rate continues
to extend the branch containing t1. If Bob waits for m confirmations before
transferring the goods to Alice, then the success probability of the double
spending attack is

P (m, q) = 1−
m∑
k=0

(
m+ k − 1

k

)[
pmqk − pk−1qm+1

]
. (4.1)

It is derived in Appendix B. Table 4.2 lists P (m, q) for some values of m and
q. For all values of q less than 0.5, P (m, q) decreases with increasing m. So
waiting for more confirmations reduces the risk of a successful double spending
attack. While the rate of decrease in P (m, q) is exponential for q = 0.1, it
slows down as q increases. For q = 0.49, a double spending attack has a 95%
chance of success if Bob waits for only one confirmation. Even if Bob waits
for ten confirmations, a double spending attack has a 90% chance of success.
For a fixed value of m, P (m, q) increases exponentially with q, eventually
becoming one when q exceeds 0.5.

In spite of the guaranteed success of a double spending attack mounted
using a majority of the network hash rate, such attacks have not been observed
in practice. This is probably because successful double spending attacks would
undermine confidence in the Bitcoin currency as a mode of payment and reduce
its exchange rate in terms of fiat currency. The miners who control significant
fractions of the network hash rate have invested large amounts of capital in
establishing their mining infrastructure. These investments will continue to
generate a profit for the miners when the bitcoins earned as part of the block
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m q = 0.1 q = 0.2 q = 0.3 q = 0.4 q = 0.49 q = 0.5

1 0.031111 0.130000 0.308571 0.586667 0.950984 1
2 0.009511 0.072400 0.232971 0.529067 0.943637 1
3 0.003031 0.041680 0.180051 0.482987 0.937517 1
4 0.000990 0.024477 0.141155 0.444279 0.932164 1
5 0.000329 0.014568 0.111750 0.410836 0.927348 1
6 0.000110 0.008754 0.089107 0.381407 0.922936 1
7 0.000037 0.005300 0.071446 0.355172 0.918840 1
8 0.000013 0.003227 0.057538 0.331561 0.915002 1
9 0.000004 0.001974 0.046505 0.310153 0.911378 1
10 0.000002 0.001212 0.037700 0.290630 0.907937 1

Table 4.2: Success probability of a double spending attack as a function of m
and q.

reward can be sold at a high price. So these miners will avoid any behaviour,
like attempting double spending attacks, which may negatively affect the price.
Nevertheless, double spending attacks are still possible by an attacker who
does not have a long term stake in Bitcoin. For example, a hacker may be
able to temporarily take control of a miner node and divert its hash rate
toward mounting a double spending attack. So it is prudent for merchants
like Bob to wait for confirmations on a transaction before considering it valid.

How many confirmations m should Bob wait for? Bob does not know the
fraction of network hash rate q which will be used by Alice to mount a double
spending attack. If q ≥ 1

2 , then the attack will be successful irrespective of the
value of m. By accepting bitcoins as a valid mode of payment, Bob is implicitly
assuming that Alice cannot gain control over a majority of the network hash
rate. If q < 1

2 , then the success probability of the double spending attack
decreases as m increases. As he does not know the value of q, Bob cannot
choose the value of m to bring the success probability below a predetermined
level like 0.01. He can only hope to reduce the success probability by increasing
m. But m cannot be very large as each confirmation takes approximately 10
minutes to appear. Consequently, all customers, irrespective of whether they
are honest or malicious, will experience a delay of about 10m minutes before
Bob transfers the goods to them. Several merchants in the Bitcoin ecosystem
wait for six confirmations (m = 6), which corresponds to a delay of about an
hour before goods are transferred from a merchant to a customer. Smaller or
larger values of m are used by merchants depending on the value of the goods
being sold.

A zero confirmation transaction is one which has been broadcast on the
Bitcoin network but has not been included in a valid block on the blockchain.
When the value of goods involved is small and confirmation delays cannot
be tolerated, merchants may accept zero confirmation transactions as valid
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payment. For example, suppose Bob runs a coffee shop where bitcoins can be
used to buy coffee. To pay for a cup of coffee, Alice broadcasts a transaction
on the Bitcoin network paying Bob the required amount of bitcoins. Bob
may choose to give Alice her coffee as soon as he hears the transaction on
the network and before it has been included in a valid block. Since this
transaction has zero confirmations, it can be cancelled more easily through a
double spending attack. But Bob may take this risk because it is unlikely that
Alice will undertake the effort involved in a double spending attack just for a
cup of coffee’s worth of bitcoins. Also, the delay incurred in waiting for even
one confirmation may be undesirable in case Alice is an honest customer.

4.7 Blockchain Integrity

Suppose Alice wants to modify an existing blockBN which is at heightN in the
blockchain and has received m confirmations.4 Let BN+1, BN+2, . . . , BN+m−1
be the blocks which succeed BN on the blockchain as shown in Figure 4.12(a).
Alice may want to delete a transaction from BN , add a transaction to BN , or
just modify the timestamp in BN ’s block header. Let B′N be the block after
the modifications have been made to BN . Modifying the timestamp clearly
causes the block headers of B′N and BN to be different. Adding or deleting
a transaction causes the hashMerkleRoot fields in the block headers of B′N
and BN to be different. If the block hash of B′N does not below the target
threshold, Alice will have to perform mining on B′N until it finds a nNonce

value which makes B′N a valid block. To replace BN with B′N in all the copies
the blockchain stored across the Bitcoin network, Alice has to create a branch
containing B′N which is longer than the branch containing BN (as illustrated
in Figure 4.12(b)) and broadcast it. Once all the nodes in the Bitcoin network
switch to the branch containing B′N , it will become the block at height N
in the blockchain. This strategy of constructing a longer branch is also used
in double spending attacks. The difference is that here the BN branch has
a lead of m blocks when Alice begins mining the B′N branch. In the double
spending attack scenario, the t1 branch has no lead in terms of blocks when
Alice begins mining the t2 branch.

Even though Alice is interested in only modifying the block at height N ,
she has to construct new valid blocks at heights N + 1, N + 2 and so on.
This is because the block B′N is not a drop-in replacement for BN in the
blockchain. The block header of BN+1 contains the block hash of BN in the
hashPrevBlock field. As the block headers of BN and B′N differ, their block
hashes also differ by the collision resistance of the SHA-256 hash function. So
BN+1 is not a valid successor block to B′N . Alice has to mine a new valid
block B′N+1 which has the block hash of B′N in its hashPrevBlock field. By

4A block is said to have received m confirmations if the transactions in it have received
m confirmations as defined in Section 4.6.
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Figure 4.12: Illustration of the work required to modify an existing block

the same argument, BN+2 is not a valid successor to B′N+1 and Alice has
to mine a new valid block B′N+2 which has the block hash of B′N+1 in its
hashPrevBlock field.

While Alice is mining blocks on the B′N branch, the other miners will con-
tinue mining blocks on the BN branch as it is the longest branch they know.
Let q be the fraction of the total network hash rate which Alice controls. If
q ≥ 1

2 , then Alice will eventually succeed in constructing the longer branch
irrespective of the value of m. If q < 1

2 , then the probability5 that Alice suc-
ceeds is ( q

1−q )m+1 where m is the number of confirmations BN has received

when Alice begins mining the B′N branch. As this probability decreases expo-
nentially with m, blocks become more difficult to tamper with as the number
of confirmations they have received increases. Table 4.3 lists Alice’s success
probability for some values of m and q. Unless Alice controls a fraction of the
network hash rate which is close to 0.5, it becomes nearly impossible for her
to tamper with blocks which have received 50 or more confirmations. Even
with q = 0.4, Alice only has a one in a billion chance of modifying a block
with 50 confirmations. Given that a block receives about six confirmations in
an hour, a block with 50 confirmations is about eight hours old.

Even if Alice controls the majority of the network hash rate, she cannot
make modifications to existing blocks which require her to know the private
keys of other users. For example, suppose a block contains a transaction where
Bob transfers some bitcoins to Carol. Such a transaction will have an input
which unlocks a UTXO owned by Bob and an output which creates a UTXO

5See Appendix B for the derivation.
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m q = 0.1 q = 0.2 q = 0.3 q = 0.4 q = 0.49

1 0.012346 0.062500 0.183673 0.444444 0.923106
5 1.88× 10−6 0.000244 0.006196 0.087791 0.786603

10 3.19× 10−11 2.38× 10−7 8.96× 10−5 0.011561 0.643999
20 9.14× 10−21 2.27× 10−13 1.87× 10−8 0.000200 0.431662
50 2.16× 10−49 1.97× 10−31 1.71× 10−19 1.05× 10−9 0.129993

100 4.18× 10−97 1.56× 10−61 6.83× 10−38 1.64× 10−18 0.017588

Table 4.3: Success probability of block modification as a function of m and q.

that can be unlocked only by Carol. Alice cannot modify this transaction to
make herself the recipient of the bitcoins instead of Carol. This is because
the response script Bob uses to unlock his UTXO requires a digital signature
which can only be generated using Bob’s private key. The output of the
transaction which specifies Carol as the recipient is part of the the message
that is used to generate the signature. If Alice replaces this output with
an output which specifies her as the recipient, the message used to generate
the signature changes and Bob’s private key is needed to generate the new
signature. Furthermore, Alice cannot even change the amount of bitcoins
which Bob is transferring to Carol as this amount is also part of the message
that is used to generate the signature. A more detailed description of the
signature generation procedure is given in Section 5.6.

4.8 The 51% Attacker

An attacker who controls 50% or more of the network hash rate is called a
51% attacker in the Bitcoin literature. This is a slight misnomer as the ac-
tual percentage of the network hash rate controlled by the attacker may differ
from 51%. As explained in the last two sections, a 51% attacker can suc-
cessfully mount double spending attacks and modify blocks in the blockchain
irrespective of the number of confirmations. But these two attacks are minor
compared to the other attacks a 51% attacker can mount.

Consider the situation where a 51% attacker performs mining like a regular
miner node with the exception that she does not switch to longer branches
which are announced by the rest of the network. As the branch mined by the
attacker will eventually become the longest branch of the blockchain, all new
bitcoins generated as part of the block subsidy will be owned by her. This
will make mining financially unviable for the other miners in the network. If
these miners stop mining, the attacker may end up becoming the only miner
in the network. The Bitcoin system will then resemble a centralized system
controlled by the 51% attacker. The attacker can unilaterally decide which
transactions get recorded on the blockchain. For instance, the attacker can
censor transactions which transfer bitcoins to a merchant by not including
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such transactions in new blocks. She can also decide the minimum fee rate
for transactions by not including those transactions which pay less than this
minimum into new blocks. Such behaviour will cause the Bitcoin system to
become less attractive as a mode of payment. The attacker can even cause
the Bitcoin system to stop functioning as a payment system by mining only
empty blocks. These are blocks which contain only the coinbase transaction
and no regular transactions. Such blocks are considered valid by the Bitcoin
protocol. Without any new regular transactions appearing on the blockchain,
the Bitcoin currency would be worthless.

While the presence of a 51% attacker can lead to the collapse of the Bitcoin
system, such an event is unlikely due to the prohibitive costs involved in
generating a majority of the network hash rate. Even if the cost of acquiring
the required mining equipment can be ignored, the electricity and cooling costs
involved in keeping the equipment running will be high. The 51% attacker
cannot hope to recover these costs by selling bitcoins as the attack itself will
drive the Bitcoin price down to zero by undermining the effectiveness of the
Bitcoin system.

4.9 Summary

The blockchain is the main innovation in Bitcoin. By incentivizing addition of
blocks to the blockchain, the Bitcoin system ensures that multiple copies of the
blockchain are maintained across a geographically distributed network. The
network achieves consensus over the state of the blockchain by having each
node switch to the longest branch it hears. The computationally demanding
task of mining valid blocks not only ensures a predictable rate of new currency
creation but also makes the whole system resistant to control by a single entity.
With attackers not able to control significant fractions of the network hash
rate, double spending attacks become unlikely and transactions with a few
dozen confirmations can be considered irreversible.



Chapter 5

Bitcoin Transactions

In this chapter, we describe the format of Bitcoin transactions including the
format of the challenge and response scripts. Our description assumes that
the reader is familiar with the high-level description of transactions given in
Section 4.4. The original transaction format introduced by Satoshi Nakamoto
in 2009 was the only valid transaction format until August 2017, when a set
of changes to the Bitcoin protocol called Segregated Witness (SegWit) was
activated. SegWit added a new transaction format to solve the problem of
transaction malleability which affected the original transaction format. For
clarity and convenience, we will call the original transaction format the pre-
SegWit transaction format. This transaction format continues to be valid after
SegWit activation.

We will present the pre-SegWit transaction format first and discuss the
structure of the challenge and response scripts supported by it. This will
enable us to illustrate the problem of transaction malleability, whose solution
was one of the main motivations for SegWit. It will also help us motivate
the design of the SegWit transaction format, which will appear unnatural
without an understanding of the pre-SegWit transaction format. SegWit is
a soft fork change1 to the Bitcoin protocol that requires SegWit transactions
to look like valid pre-SegWit transactions to network nodes which are not
running SegWit-capable client software. The SegWit transaction format has
been cleverly designed to accommodate this constraint.

5.1 Block Format

Before delving into the pre-Segwit transaction format, let us discuss the block
format. Each block in the blockchain begins with a 80-byte block header (see
Section 4.2). The field immediately following the block header encodes the
number of transactions n included in the block as shown in Figure 5.1. This is

1For details on how new features are added to the Bitcoin protocol via soft forks, see
Chapter 7.

63



CHAPTER 5. BITCOIN TRANSACTIONS 64

Block Header

Number of
Transactions n

Coinbase
Transaction

Regular
Transaction 1

Regular
Transaction 2

...

Regular
Transaction n− 1

80 bytes

VarInt (1 – 9 bytes)

List of
Transactions

Figure 5.1: Block format

followed by a list of transactions which must begin with a coinbase transaction.
The coinbase transaction is mandatory in a block as it encodes the transfer
of the block subsidy to the miner who mined the block. Regular transactions
are optional as it is possible that there are no regular transactions available
to be included in a block. While such a scenario is unlikely today due to the
popularity of Bitcoin, it was common in the early days of Bitcoin. Each of
the regular transactions in a block can be either a pre-SegWit or a SegWit
transaction. If all the regular transactions are pre-SegWit transactions then
the coinbase transaction also adheres to the pre-SegWit transaction format.
Otherwise, the coinbase transaction adheres to the SegWit transaction format.

The number n is encoded by a variable length integer (VarInt) which
occupies 1, 3, 5, or 9 bytes depending on its value. With fixed length encoding,
one needs 8 bytes to represent an integer in the range 0 to 264−1. The VarInt
encoding uses 5 bytes or less for the integers in this range 0 to 232 − 1, as
shown in Table 5.1. It is a more efficient encoding if smaller integers are more
likely. The VarInt encoding proceeds as follows:

• If n ∈ {0, 1, . . . , 252}, encode n as a 8-bit unsigned integer.

• If n ∈ {253, 254, . . . , 216− 1}, encode n using three bytes. The first byte
contains the prefix 253 followed by the representation of n as a 16-bit
unsigned integer.

• If n ∈ {216, 216+1, . . . , 232−1}, encode n using five bytes. The first byte
contains the prefix 254 followed by the representation of n as a 32-bit
unsigned integer.
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Integer Range VarInt Encoding VarInt Size
Prefix (bytes)

0 to 252 None 1
253 to 216 − 1 253 3
216 to 232 − 1 254 5
232 to 264 − 1 255 9

Table 5.1: Representation of integers from 0 to 264 − 1 using a VarInt

• If n ∈ {232, 232 + 1, . . . , 264 − 1}, encode n using nine bytes. The first
byte contains the prefix 255 followed by the representation of n as a
64-bit unsigned integer.

Decoding an integer stored in VarInt form is trivial as the first byte tells
us the length of the encoding. The VarInt encoding is used frequently in the
Bitcoin transaction format to specify the lengths of lists or variable length
fields.

5.2 Pre-SegWit Regular Transactions

The format of a pre-SegWit regular transaction is shown in Figure 5.2. The
field names in teletype font (like nVersion) are from the Bitcoin Core reference
client.

Transaction Version

The transaction begins with a 4-byte field called nVersion which is used
to store the version number of the transaction format. The version number
dictates the rules for interpreting the fields in a transaction. As of August
2017, the transaction version number can be either 1 or 2. The two versions
differ in the interpretation of the nSequence field in the transaction inputs
(to be discussed later).

Input and Output Lists

The second field in the transaction is a VarInt encoding of the number of
inputs N . This field is followed by the N inputs. The list of inputs is followed
by the number of outputs M stored as a VarInt, which in turn is followed by
the M outputs.

Transaction Lock Time

The final field in the transaction is a 4-byte field called nLockTime. It stores
a lock time for the transaction which is the earliest time that the transaction
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Figure 5.2: Pre-SegWit regular transaction format

can be included in a block on the blockchain. The motivation behind this
design was to enable the creation of smart contracts (see Chapter 6). The
lock time can be specified either in terms of block height or Unix time.2

• If nLockTime < 5 × 108, then it is interpreted as a block height. For
example, a transaction with nLockTime = 600,000 will not be included in
a valid block whose height is less than 600,000. When such a transaction
is broadcast on the network, it will be rejected by the network nodes
unless the height of the next block to be added to the blockchain has
height 600,000 or more.

• If nLockTime ≥ 5 × 108, then it is interpreted as a Unix time. For
example, the value nLockTime = 1,514,797,200 corresponds to 9:00 AM
on January 1, 2018. A transaction having an nLockTime field interpreted
as Unix time will not be considered for inclusion in the next block on
the blockchain unless the median-time-past of the latest block in the

2See discussion about the nTime field in Section 4.3 for details about the Unix time.
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· · ·

Block
Height

h− 10 h− 9 h− 8 h− 7 h− 6 h− 5 h− 4 h− 3 h− 2 h− 1 h

nTime 8:13 8:23 8:33 8:43 8:53 9:03 9:13 9:23 9:33 9:43 9:53

Figure 5.3: Illustration of the one hour delay in the actual lock time due to
usage of median-time-past to determine expiry.

blockchain exceeds the nLockTime value. Recall that the median-time-
past of a block at height h is the median of the nTime values in the 11
blocks at heights h, h− 1, . . . , h− 10.

What if we want to have a lock time at block height which is greater than 5×108

or at a Unix time which is less than 5 × 108? Given that 2,016 blocks are
mined approximately every two weeks, it would take more than 9,500 years
for the block height to exceed 5 × 108. Not being able to specify lock times
that far ahead in the future is effectively not a restriction. The Unix time of
5 × 108 corresponds to a time in the past (12:53 AM on November 5, 1985).
Thus a lock time that expires at a Unix time which is less than 5 × 108 will
never be required.

The policy of using the median-time-past to check nLockTime validity
was proposed in BIP 113. It was made mandatory from the block at height
419328 which was mined in July 2016. Prior to that, a transaction was allowed
to be part of a block if the nTime value in the block’s header exceeded the
nLockTime value. This was changed because miners could set the nTime in a
candidate block to a future value in order to include transactions whose lock
times had not yet expired and increase the transaction fees they received. As
the median of the nTime values is known to all the miners, manipulating it
by setting the nTime value to a future value in mined blocks does not give
any specific miner an advantage over the other miners. Another advantage of
comparing nLockTime to median-time-past values instead of nTime values is
that median-time-past values increase monotonically with block height while
nTime values are not required to. So if the lock time of a transaction expires
at a certain block height, it remains in the expired state irrespective of the
nTime values in the blocks at subsequent heights.

A consequence of using the median-time-past is that the lock time of a
transaction expires approximately one hour after the time specified in the
nLockTime field. For example, suppose the nLockTime field of a transaction t
specifies a Unix time corresponding to 9:00 AM on January 1, 2018. Figure 5.3
illustrates the state of the blockchain when the lock time of this transaction
expires. The latest block in the blockchain has height h and an nTime value
of 9:53 AM on January 1, 2018. The nTime values in the 11 blocks at heights
h − 10 through h have been chosen to be exactly 10 minutes apart for the
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sake of illustration (the AM suffix and date have been omitted in the figure).
The median-time-past of the block at height h is 9:03 AM on January 1, 2018
corresponding to the nTime of the block at height h − 5. So the transaction
t can be included in the next block at height h + 1. Note that the lock
time of the transaction t expired after the block at height h was added to
the blockchain. Since the nTime field is populated before the mining of the
candidate block begins, the block at height h was probably broadcast on the
network approximately 10 minutes after 9:53 AM. So the effective time of
expiry of the lock time on the transaction t is around 10:00 AM rather than
9:00 AM on January 1, 2018.

For the nLockTime to be considered while evaluating a transaction for
inclusion in a block, at least one of the transaction inputs must have an
nSequence value which is less than 0xFFFFFFFF. The nSequence field occupies
4 bytes and can have a maximum value of 0xFFFFFFFF. If all the inputs have
nSequence value equal to 0xFFFFFFFF, then the nLockTime field is ignored
and the transaction can be included in any block.

If the lock time applies to the whole transaction, why is its validity con-
trolled by the nSequence fields in all the transaction inputs? Why not use a
single field to indicate whether the nLockTime should be ignored or not? The
nSequence field was originally intended to enable multiple entities to collabo-
ratively construct a multi-input transaction where each entity was responsible
for one of the inputs. The initial version of the transaction would have a lock
time in the future and nSequence values less than 0xFFFFFFFF. The entities
would indicate a newer version of a transaction by increasing the nSequence

values in the inputs owned by them. The original Bitcoin Core reference client
implementation allowed the replacement of a transaction in a node’s transac-
tion mempool with newer versions until the transaction’s lock time expired. A
transaction was considered final once all inputs had nSequence values equal to
0xFFFFFFFF and could be included in a block immediately without waiting for
the lock time to expire. Transaction replacement based solely on nSequence

values was disabled in 2010 as a malicious node could flood the network with
newer versions of the same transaction without incurring any penalty. There
was also no way to guarantee that miners would include a newer version of
a transaction in a block when the older version paid a higher transaction
fee. When disabling transaction replacement, the transaction format was not
changed and the nSequence field in each input continued to control the valid-
ity of the transaction lock time.3

3A fee-based transaction replacement policy called opt-in full replace-by-fee (RBF) which
does not suffer from the shortcomings of the nSequence-based transaction replacement was
proposed in BIP 125. An implementation of opt-in full RBF was added to the Bitcoin Core
reference client in 2016. But it is a policy which does not affect block validity and is not
required to be strictly followed by the nodes in the network.



CHAPTER 5. BITCOIN TRANSACTIONS 69

Input Format

Each input in a pre-SegWit regular transaction has the same five fields. Figure
5.2 shows these fields for the first input. The fields in the other inputs are not
shown for brevity. The input fields have the following semantics.

• The hash field contains the 256-bit transaction identifier (TXID) of a
previous transaction containing the output which will be unlocked by
this input. The field is called hash because the TXID is the double
SHA-256 hash of the previous transaction.

• The 4-byte n field contains the index of the output being unlocked in
the previous transaction. The index of the first output in the previous
transaction is 0, the index of the second output is 1, and so on.

• The scriptSigLen field is a VarInt encoding of the length of the re-
sponse script which is used to unlock the output.

• The scriptSig field contains the response script itself. The format of
response and challenge scripts will be described in Section 5.4.

• The 4-byte nSequence field is interpreted differently depending on the
transaction version. In both version 1 and version 2 transactions, if all
transaction inputs have their nSequence fields set to 0xFFFFFFFF, then
the nLockTime field is ignored.

In version 2 transactions, the nSequence field can be used to specify
a relative lock time of an input. The relative lock time can have units
of either number of blocks or seconds. Before we go into the details of
the encoding, let us consider the functionality of the relative lock time.
Suppose the relative lock time of an input is k blocks. If the output
which is being unlocked by this input is in a block with height K, then
a transaction containing this input cannot be included in a block whose
height is less than K+k. Now suppose the relative lock time of the input
is specified as t seconds. If the output being unlocked by this input is
in a block at height ho, let the median-time-past of the block at height
ho− 1 be T seconds. Then a transaction containing the input cannot be
included in a block at height hi until the median-time-past of the block
at height hi − 1 exceeds T + t seconds.

The relative lock time is unlike the lock time specified by nLockTime

which specifies an absolute block height or median-time-past before
which a transaction cannot be included in a block. The relative lock
time was introduced in BIP 68 in order to enable smart contracts which
involve a sequence of dependent transactions with minimum delays be-
tween them (see Chapter 6). Absolute lock times cannot be used to
ensure a delay between two transactions if the time or block height at
which the first transaction is added to the blockchain is not known.



CHAPTER 5. BITCOIN TRANSACTIONS 70

Start

nSequence[31] = 1?

k = nSequence[15:0]

nSequence does
not encode a

relative lock time

nSequence[22] = 1?

Relative lock time
is k × 512 seconds

Relative lock time
is k blocks

Yes

No

YesNo

Figure 5.4: Relative lock time encoding in the nSequence field of version 2
transactions

The flowchart in Figure 5.4 illustrates the relative lock time encoding in
version 2 transactions. Let nSequence[i] denote the bit with index i

in the field where nSequence[0] is the least significant bit (LSB) and
nSequence[31] is the most significant bit (MSB). If nSequence[31] is
set, then the nSequence field does not encode a relative lock time. If it
is not set, then the nSequence field encodes a relative block time whose
units are determined by the bit nSequence[22]. The magnitude of the
relative lock time is given by the 16 least significant bits nSequence[15]
to nSequence[0]. Let k be the unsigned integer represented by these
16 bits. If nSequence[22] is not set, then the relative lock time is
k blocks. If it is set, then the relative lock time is k × 512 seconds.
The multiplier 512 was chosen because it is the power of two closest
to 600 (the average number of seconds required to find a block). This
choice allows the relative lock time to specify similar durations of time
using either blocks or seconds. The maximum relative lock time in
blocks is 216 − 1 = 65, 535 blocks which corresponds to approximately
1.25 years. In terms of seconds, the maximum relative lock time is
(216 − 1)× 512 = 33, 553, 920 seconds ≈ 1.06 years.
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In spite of relying on the same nSequence field, absolute lock times (us-
ing nLockTime) and relative lock times can be enabled independently of each
other. Both of them can be disabled by setting all the nSequence values
to 0xFFFFFFFF. Setting nSequence[31] to 0 in any transaction input enables
both the absolute lock time for the whole transaction and the relative lock time
for that particular input. Choosing nSequence strictly less than 0xFFFFFFFF

but with nSequence[31] equal to 1 in any transaction input enables the ab-
solute lock time for the whole transaction and disables the relative lock time
for that particular input. Finally, setting nSequence[31] to 0 and nLockTime

to 0 effectively disables the absolute lock time for the whole transaction and
enables the relative lock time for that particular input.

Output Format

Each output in a pre-SegWit regular transaction has the same three fields.
Figure 5.2 shows these fields for the first output. The fields in the other out-
puts are not shown for brevity. The output fields have the following semantics.

• The 8-byte nValue field contains the number of satoshis (1 satoshi =
10−8 bitcoins) being locked in the output. For example, nValue =
2, 500, 000, 000 corresponds to 25 bitcoins.

• The scriptPubkeyLen field is a VarInt encoding of the length of the
challenge script which is used to lock the output.

• The scriptPubkey field contains the challenge script itself.

5.3 Pre-SegWit Coinbase Transactions

A pre-SegWit coinbase transaction structurally looks like a pre-SegWit regu-
lar transaction with a single input and multiple outputs as shown in Figure
5.5. Like a regular transaction, the coinbase transaction begins with a 4-byte
nVersion field that contains the transaction version number. The last field
in the coinbase transaction is the 4-byte nLockTime field which is ignored as
lock times on coinbase transactions are meaningless. Absolute lock times (via
nLockTime) on regular transactions are intended to delay their inclusion in
the blockchain until the latest block in the blockchain has a certain height or
median-time-past value. When a miner creates a coinbase transaction for a
new candidate block, he intends this transaction to be included in the next
block on the blockchain. There is no reason for the miner to make the coin-
base transaction invalid by imposing a lock time which expires sometime in
the future.
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Figure 5.5: Pre-SegWit coinbase transaction format

Input Format

The sole input in the coinbase transaction is a dummy input in spite of having
the five fields corresponding to a regular transaction input. It does not unlock
a previous transaction output. The input fields have the following semantics.

• The 256-bit hash field is always set to all zeros (0x00000...000).

• The 4-byte n field is always set to 0xFFFFFFFF.

• The scriptSig field does not contain a response script which can unlock
a previous output. Instead, it contains the coinbase field which can have
a maximum length of 100 bytes. The length of the coinbase field is
specified in the scriptSigLen field.

The height of the block containing the coinbase transaction is stored
at the beginning of the coinbase field. The rest of the bytes can be
arbitrarily set by the miner creating the coinbase transaction. Miners
use these bytes to modify the hashMerkleRoot value in the block header
in case they run out of nNonce values to try when mining the block.

The height currently occupies the first four bytes in the coinbase field.
The first byte is set to 0x03 to indicate that the height is encoded in
the next three bytes. The following three bytes contain the height as a
signed integer in little-endian format. When the block height increases



CHAPTER 5. BITCOIN TRANSACTIONS 73

to a value that cannot be accommodated in three bytes (which will take
more than 150 years), the first byte will be set to 0x04 and the following
four bytes will be used to encode the height.

• The nSequence field is ignored as lock times are not relevant for coin-
base transactions. Relative lock times do not make sense as the coin-
base transaction input does not unlock a previous output. The non-
applicability of absolute lock times was discussed a t the beginning of
this section.

Why were the hash, n, nSequence, and nLockTime fields included in the coin-
base transaction format if they either take fixed values or are ignored? While
there is no way to know for sure, these fields were probably included to main-
tain consistency with the the regular transaction format. While wasteful in
terms of space, this consistency translates to some minor conveniences in the
C++ code of the Bitcoin Core reference client.

Output Format

The outputs in the coinbase transaction have the same fields as the outputs
in a regular transaction. As in a regular transaction output, the nValue

field specifies the amount of bitcoins (in satoshis) locked in the output, the
scriptPubkey field contains a challenge script, and the scriptPubkeyLen field
contains the length of scriptPubkey in bytes. The main difference is that the
amount specified in the nValue field should be less than or equal to the block
reward (block subsidy + transaction fees) in the block. Furthermore, the sum
of the nValue fields from all the coinbase outputs should not exceed the block
reward.

An output in a coinbase transaction cannot be spent until it has received
101 confirmations. So an input unlocking the coinbase transaction output of
a block at height h has to be in a block at height strictly higher than h+ 100.
This rule ensures that coinbase transaction outputs are spent only after they
are unlikely to become invalid due to a blockchain fork.

Why is the block height stored in the coinbase field? This is to ensure that
the coinbase transactions in different blocks on the blockchain have different
TXIDs. The coinbase transactions in two blocks mined by the same miner can
contain the same challenge scripts in the scriptPubkey fields of the outputs.
The nValue field values can also be the same. If the block height is not
included in the coinbase field, then the scriptSig fields can also be the same.
Consequently, the two coinbase transactions will have the same TXID (the
double SHA-256 hash). This is undesirable as we will not be able to distinguish
between the two coinbase transactions when we specify this TXID in the hash
field of an input. The idea of including the block height in the coinbase field
was proposed in BIP 34. This behaviour was made mandatory from the block
at height 2,24,413 which was mined in March 2013.
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5.4 Bitcoin Script

The challenge and response scripts stored in the scriptPubkey and scriptSig

fields of a transaction are encoded using a scripting language which was devel-
oped specifically for Bitcoin. The language, which is simply called Script, is a
stack-based language, i.e. it uses a stack to store input parameters and return
values of a function. To execute a function which takes n arguments, the ar-
guments are first pushed onto a stack. The function performs its calculation
by reading these n values directly from the stack and stores the return value
on the stack. The stack removes the need for variables to store the arguments
or the return value.

Script has limited functionality when compared to general-purpose lan-
guages. For example, it does not support loops. But it does have functions
which perform cryptographic operations specific to Bitcoin like SHA-256 hash
calculation and ECDSA signature verification. There is no document defin-
ing the functionalities supported by Script. The implementation of the Script
interpreter in the Bitcoin Core reference client serves as its de facto specifica-
tion.

A Script script is just a bytestring which is parsed into a sequence of data
values and operators. Operators are encoded in a single byte. For example,
the byte 0x93 is used to represent the addition operator. The byte value is
called the opcode of the operator. For the sake of exposition, operators are
usually denoted by the names given to them in the source code of the Bitcoin
Core reference client. These names start with the string OP . For example,
the addition operator is called OP ADD.

The operators with opcodes in the range 0x00 to 0x60 (except for 0x50)
push data values of different lengths onto the stack as shown in Table 5.2.
Each stack element is an array of bytes (an empty array is allowed). After
the execution of an operator from Table 5.2, the number of elements in the
stack increases by one and the top element contains the data value which was
pushed onto the stack.

• The OP 0 operator pushes an empty array of bytes onto the stack. An
empty array is used to denote a Boolean return value of False from an
operator. For this reason, the OP 0 operator is also called OP FALSE.

• The operators with opcodes in the range 0x01 to 0x4B (1 to 75 in dec-
imal) are used to push upto 75 bytes following the operator onto the
stack. These operators do not have names starting with OP in the Bit-
coin Core reference client source code.

• The operators OP PUSHDATA1, OP PUSHDATA2, and OP PUSHDATA4 enable
the storage of data values having length greater than 75 bytes on the
stack. While the OP PUSHDATA4 operator can specify the push of upto
232 − 1 bytes onto the stack, the Bitcoin protocol limits the largest size
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Opcode Operator Name Operator Action

0x00 OP 0 Push an empty array of bytes onto the
stack.

0x01 Not applicable Push the next 0x01 bytes onto the stack.

0x02 Not applicable Push the next 0x02 bytes onto the stack.
...

...
...

0x4B Not applicable Push the next 0x4B bytes onto the stack.

0x4C OP PUSHDATA1 Let N be integer represented by the
single byte b immediately following
OP PUSHDATA1. Push the N bytes after
byte b onto the stack.

0x4D OP PUSHDATA2 Let N be integer represented by the two
bytes b1b2 immediately following
OP PUSHDATA2. Push the N bytes after
bytes b1b2 onto the stack.

0x4E OP PUSHDATA4 Let N be integer represented by the four
bytes b1b2b3b4 immediately following
OP PUSHDATA4. Push the N bytes after
bytes b1b2b3b4 onto the stack.

0x4F OP 1NEGATE Push the number −1 onto the stack.

0x51 OP 1 Push the number 1 onto the stack.

0x52 OP 2 Push the number 2 onto the stack.
...

...
...

0x60 OP 16 Push the number 16 onto the stack.

Table 5.2: Script operators which push data onto the stack

of a data value which can be pushed to 520 bytes. Scripts containing
data pushes of more than 520 bytes are considered invalid.

• The operator OP 1NEGATE pushes the number −1 onto the stack. The
operators OP 1 to OP 16 are used to push numbers in the range 1 to 16
onto the stack. While these push operations can be performed using the
opcode 0x01, doing so will require two bytes: one byte for the opcode
0x01 and one byte for the number to be pushed. Specific operators
for pushing the numbers −1, 1, 2, . . . , 16 were probably included because
these small numbers are more likely to occur in scripts.

• The opcode 0x50 is reserved for future use. There is a minor convenience
in skipping 0x50 and using 0x51 as the opcode for OP 1. The number
to be pushed by the operators OP 1NEGATE, OP 1, . . . , OP 16 can be ex-
pressed as the difference between their opcodes and 0x50. For example,
−1 = 0x4F− 0x50 and 1 = 0x51− 0x50.
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Opcode Operator Name Operator Action

0x99 OP IF If the top stack element is True, execute
the statements until the next OP ELSE or
OP ENDIF. The top stack element is
popped from the stack.

0x76 OP DUP Pushes a copy of the top stack element
onto the stack

0x93 OP ADD Pops the top two stack elements and
pushes their sum onto the stack

0xAA OP HASH256 Pops the top stack element and pushes
its double SHA-256 hash onto the stack.

Table 5.3: Examples of Script operators

The operators with opcodes in the range 0x61 to 0xB2 (97 to 178 in deci-
mal) specify operators which perform flow control, stack manipulation, arith-
metic, and cryptographic operations.4 Table 5.3 lists some examples of such
operators. A complete list of all the operators and their definitions can be
found in the Bitcoin Wiki.5 We will describe some of these operators in the
next section.

Script uses postfix notation to express operations which are not the data
push operations listed in Table 5.2. In postfix notation, the parameters of an
operator are specified before the operator. For example, the postfix notation
for the sum 2 + 3 is 2 3 +. In Script, this postfix expression would be given
by the bytestring 0x525393 which corresponds to OP 2 OP 3 OP ADD when the
opcodes are replaced with operator names. Figure 5.6 shows the state of the
stack when different parts of the expression are executed. We assume that the
stack is initially empty. The expression is evaluated from left to right. The
OP 2 operator is executed first resulting in the number 2 being pushed onto
the stack. The execution of OP 3 pushes the number 3 onto the stack. When
OP ADD is executed, the numbers 3 and 2 are popped off the stack and their
sum 5 is pushed onto the stack.

Challenge and Response Script Execution

A transaction input can unlock an unspent transaction output (UTXO) for
spending by providing a response script in its scriptSig field which contains
a valid response to the challenge script stored in the UTXO’s scriptPubkey

field. When a new transaction is broadcast on the network for inclusion in
the blockchain, the nodes which receive it verify that the transaction inputs

4Not all the opcodes in the range 0x61 to 0xB2 correspond to operators. This is because
some operators which were defined in the original implementation of the Bitcoin client by
Satoshi Nakamoto were later removed due to security concerns.

5https://en.bitcoin.it/wiki/Script

https://en.bitcoin.it/wiki/Script
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Figure 5.6: Stack state during the execution of OP 2 OP 3 OP ADD

contain valid response scripts. If any of the response scripts are invalid, the
nodes will reject the transaction and not re-broadcast it to their neighbors.
The nodes validate a response script in the following manner:

1. The response script is first executed using an empty stack. If the re-
sponse script execution terminates with an error, it is considered invalid.

2. If the response script execution succeeds, the state of the stack at the
end of the execution is used to execute the challenge script. If the
challenge script execution terminates with an error, the response script
is considered invalid.

3. If the challenge script execution succeeds, the response script is consid-
ered valid if the stack at the end of the execution is not empty and the
top stack element evaluates to True. A stack element evaluates to False

if it is either an empty array of bytes or the little-endian encoding of the
integer 0 (signed or unsigned). Otherwise, it evaluates to True.

The above steps are illustrated in Figure 5.7. Before response script execution,
the stack is empty. After the response script is executed, the stack contains
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Figure 5.7: Stack state during the execution of the response and challenge
scripts

the items x1, x2, . . . , xn. This stack state is used to execute the challenge
script resulting in the stack containing the items y1, y2, . . . , ym. The response
script is considered valid if y1 evaluates to True. A valid response script
populates the stack with items which ensure that the subsequent challenge
script execution proceeds without errors and ends with a top stack element
that evaluates to True.

As an example, consider the challenge script:

OP HASH256 0x20 <256-bit string> OP EQUAL

For convenience, let S denote the 256-bit string appearing in the above script.
Figure 5.8 shows the state of the stack during the execution of this script. The
top stack element is assumed to be x before script execution. The OP HASH256

operator pops the top stack element x and pushes its double SHA-256 hash
H(x) onto the stack. The 0x20 operator pushes a 32-byte array containing S

onto the stack. The OP EQUAL operator pops the top two stack elements and
pushes the number 1 onto the stack if H(x) and S are equal. If they are not
equal, it pushes the number 0 onto the stack.
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x
OP HASH256 0x20 S OP EQUAL

H(x)
0x20 S OP EQUAL

S

H(x)OP EQUAL

0 or 1

Stack StateRemaining Script

Figure 5.8: Stack state during the execution of the challenge script OP HASH256

0x20 S OP EQUAL

As 1 evaluates to True and 0 evaluates to False, the challenge script
effectively asks for a preimage of S under the double SHA-256 hash function.
A valid response script consists of a single data push operator which pushes
a preimage x of S onto the stack.

While the challenge script used in this example is valid Script code, it does
not belong to the set of standard challenge scripts which are discussed in the
next section. However, it can be embedded inside a type of standard challenge
script called pay-to-script-hash (P2SH).

5.5 Pre-SegWit Standard Scripts

When a new regular transaction is broadcast on the network for inclusion in
the blockchain, each node which hears the transaction validates it by evalu-
ating the challenge and response scripts. Valid transactions are then relayed
by the node to its neighboring nodes, which in turn will perform their own
validation. If no restrictions are placed on the challenge and response scripts,
a malicious node can construct scripts which consume excessive amounts of
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CPU time or RAM at each network node during script validation. This consti-
tutes a denial-of-service (DoS) attack on the network as regular transactions
broadcasted by non-malicious nodes will experience delays before they are
recorded on the blockchain. To avoid such DoS attacks, network nodes will
not relay transactions containing scripts which do not belong a limited set
of standard scripts. Prior to SegWit activation, the set of standard challenge
scripts consisted of the five script templates: Pay to Public Key (P2PK), Pay
to Public Key Hash (P2PKH), m-of-n Multi-signature, Pay to Script Hash
(P2SH), and Null Data.6

Pay To Public Key (P2PK)

The P2PK challenge script template has a scriptPubkey field which consists
of a data push of a public key followed by the OP CHECKSIG operator. The
public key can be in either compressed (33 bytes) or uncompressed (65 bytes)
format. For compressed public keys, the scriptPubkey is of the form

0x21 <Compressed Public Key> OP CHECKSIG

where the 0x21 operator pushes a byte array containing the next 33 bytes onto
the stack. For uncompressed public keys, the scriptPubkey has the form

0x41 <Uncompressed Public Key> OP CHECKSIG

where the operator 0x41 pushes a byte array containing the next 65 bytes onto
the stack. Usually, the sizes of data push operations are omitted from script
descriptions. With such an omission, the P2PK challenge script template is
given by

<Public Key> OP CHECKSIG.

Let x1 and x2 be the top two elements in the stack when the OP CHECKSIG

operator is executed. OP CHECKSIG uses the ECDSA signature verification
procedure from Section 2.5 to check that x2 is a valid signature when x1
is used as the public key. Some fields from the transaction containing the
scriptPubkey are used as the message m for the signature verification (see
Section 5.6). OP CHECKSIG pushes an empty array of bytes (which evaluates
to False) onto the stack if the signature is invalid. For valid signatures, a
single non-zero byte (which evaluates to True) is pushed onto the stack.

A valid response to the P2PK challenge script contains a single data push
of a byte array containing a valid signature. So the scriptSig field is of the
form

<Signature>

where we have omitted the data push operator which pushes <Signature>

onto the stack. While the ECDSA with secp256k1 domain parameters gener-
ates a signature which is 64 bytes long, the scriptSig field contains a variable

6SegWit added two more script templates to this set which are described in Section 5.8.
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length encoding of this signature according to the Distinguished Encoding
Rules (DER) of the X.690 standard.7 The DER encoding of the ECDSA sig-
natures does not add any value to the Bitcoin protocol. It is present because
the original implementation of the Bitcoin Core client used the OpenSSL8

library for creating and validating ECDSA signatures. OpenSSL uses DER
encoding to represent ECDSA signatures. In 2016, the dependence of Bitcoin
Core on OpenSSL was removed and a new library called libsecp256k1 was
added to perform the ECDSA signature generation and validation. To main-
tain compatibility with the earlier signature format, libsecp256k1 continues
to use the DER encoding. A single byte encoding the signature hash type is
appended to the DER encoding of the ECDSA signature. The signature hash
type indicates which parts of the transaction containing the scriptPubkey are
included in the message m which is used to generate the signature. Signature
hash types will be discussed in Section 5.6. Including the data push operator,
the final length of the scriptSig field containing a valid signature is at most
74 bytes.

Figure 5.9 shows the state of the stack during the execution of the P2PK
response and challenge scripts. Recall that the response script is first exe-
cuted using an empty stack followed by the challenge script execution. The
response script pushes <Signature> onto the stack. The challenge script
pushes <Public Key> onto the stack and executes the OP CHECKSIG operator.
This operator pops the top two stack elements and pushes a True value onto
the stack if the signature is valid. If the signature is invalid, a False value is
pushed onto the stack.

A response script is considered a valid response to a challenge script if the
top stack element at the end of the challenge script execution evaluates to
True. In the P2PK case, the response script has to contain a valid ECDSA
signature created by the private key corresponding to the public key in the
challenge script.

As discussed in Chapter 2, there is no known method to recover the private
key from the public key in a computationally feasible manner. So the public
key can be safely revealed and used as a receiving address for bitcoin payments
via the P2PK script template. Public keys used in this manner are called
P2PK addresses. In practice, P2PKH addresses are used instead of P2PK
addresses for better security (see Section 3.3).

As the P2PK challenge script contains a public key and the P2PK response
script contains a signature, the names scriptPubkey and scriptSig for the
variables containing these scripts in the Bitcoin Core client were probably
chosen keeping the P2PK script template in mind. Sometimes challenge scripts
are called pubkey scripts and response scripts are called signature scripts.
We will see that these names do not accurately describe the contents of the

7See https://en.wikipedia.org/wiki/X.690
8See https://en.wikipedia.org/wiki/OpenSSL

https://en.wikipedia.org/wiki/X.690
https://en.wikipedia.org/wiki/OpenSSL
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<Signature> <Public Key> OP CHECKSIG

<Signature>

<Public Key> OP CHECKSIG

<Public Key>

<Signature>OP CHECKSIG

True/False

Stack StateRemaining Script

Figure 5.9: Stack state during the execution of P2PK response and challenge
scripts

challenge and response scripts in the other script templates.

Pay To Public Key Hash (P2PKH)

The creation of P2PKH addresses was described in Section 3.3. These ad-
dresses are derived from an uncompressed public key 0x04‖X‖Y as shown in
Figure 3.2. They are represented using an alphanumeric string in Base58 for-
mat. While the public key itself cannot be recovered from a P2PKH address,
the SHA-256 + RIPEMD-160 hash R of the public key can be recovered as
shown in Figure 5.10. In the figure, B represents a single byte containing the
address version and C4 represents the 4-byte checksum.

The P2PKH challenge script template is given by

OP DUP OP HASH160 <PubKeyHash> OP EQUALVERIFY OP CHECKSIG.

where <PubKeyHash> represents the SHA-256 + RIPEMD-160 hash R of an
uncompressed public key. The OP CHECKSIG operator works as in a P2PK
challenge script. The other operators in the script work as described below.
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P2PKH Address

Base58
Decoding

Discard last
four bytes

Discard address
version prefix byte

R

B‖R‖C4

B‖R

Figure 5.10: Recovering the hash R = RIPEMD-160(SHA-256(0x04‖X‖Y ))
of an uncompressed public key 0x04‖X‖Y from its P2PKH address

• The OP DUP operator duplicates the top stack element, i.e. it pushes a
copy of the top stack element onto the stack.

• The OP HASH160 operator pops the top stack element x and pushes
RIPEMD-160(SHA-256(x)) onto the stack.

• The OP EQUALVERIFY operator pops the top two stack elements and com-
pares them. If they are equal, the script execution continues. If they
are not equal, the script terminates with an error.

A valid response to the P2PKH challenge script contains exactly two data
pushes: the first one pushes a byte array containing a valid signature and the
second one pushes a byte array containing an uncompressed public key. So
the scriptSig field is of the form

<Signature> <Public Key>.

Figure 5.11 shows the state of the stack during the execution of the P2PKH
response and challenge scripts. The execution proceeds as follows:

1. The response script pushes <Signature> and <Public Key> onto the
stack.
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Figure 5.11: Stack state during the execution of P2PKH response and chal-
lenge scripts
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2. The OP DUP operator in the challenge script pushes a copy of the top
stack element <Public Key> onto the stack.

3. The OP HASH160 operator pops the top stack element <Public Key> and
calculates its SHA-256 + RIPEMD-160 hash <PubKeyHashCalc>. This
hash is then pushed onto the stack.

4. The public key hash <PubKeyHash> from the challenge script is pushed
onto the stack.

5. The OP EQUALVERIFY operator pops and compares the top two stack el-
ements <PubKeyHash> and <PubKeyHashCalc>. If they are equal, then
the script execution proceeds. If they are not equal, the script execution
terminates with an error. Equality implies that the <Public Key> pro-
vided by the response script has a SHA-256 + RIPEMD-160 hash which
is equal to the <PubKeyHash> given in the challenge script.

6. If the script execution has not terminated, the OP CHECKSIG operator
checks that the <Signature> provided by the response script is a valid
signature using the <Public Key>. It pushes a True value onto the
stack if the signature is valid. If the signature is invalid, a False value
is pushed onto the stack.

The values in the response script can cause the challenge script execution
to fail in two9 ways:

• The hash <PubKeyHashCalc> calculated from the <Public Key> given
in the response script is not equal to the hash <PubKeyHash> given in
the challenge script.

• The <Signature> given in the response script fails the secp256k1 ECDSA
signature validation procedure performed using the <Public Key> given
in the response script.

In order to provide a valid response script to a P2PKH challenge script, the
entity providing the response has to first know the public key whose hash is
<PubKeyHash>. Furthermore, it has to also know the private key corresponding
to that public key to be able to create a valid signature.

As discussed in Section 3.3, the main advantage of P2PKH addresses over
P2PK addresses is that an adversary looking to derive the private key from a
P2PKH address has to first solve the difficult problems of finding RIPEMD-
160 and SHA-256 preimages. But once an output containing a P2PKH chal-
lenge script in its scriptPubkey field is unlocked by an input containing a
valid response script, the public key corresponding to the P2PKH address is

9Response and challenge script execution can also fail if the data push operations try to
push more than 520 bytes onto the stack. We ignore such failure scenarios.
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revealed as it is contained in the scriptSig field of the input. This revela-
tion occurs as soon as the transaction containing the input is broadcast on
the network and becomes permanent once this transaction is recorded on the
blockchain. While an adversary with access to the public key has to still solve
an instance of the difficult ECDLP to obtain the private key, the extra layers
of protection provided by the hash functions are lost. For this reason, it is
recommended to not reuse the same P2PKH address in multiple Bitcoin trans-
actions. It is better to create a unique P2PKH address for each transaction.
The total number of available P2PKH addresses is equal to the number of
private keys associated with the secp256k1 domain parameters (see Section
2.4). The number of private keys is n− 1 where n is the 256-bit integer given
in equation (2.3). As n − 1 is approximately 1.157 × 1077, there is no risk of
running out of P2PKH addresses by using a new one for each transaction.

m-of-n Multi-Signature (Multisig)

A m-of-n multisig challenge script specifies n public keys and requires a valid
response script to provide m ECDSA signatures created using any m out
of the n private keys corresponding to these public keys. Multisig challenge
scripts enable various forms of joint ownership of the bitcoins associated with
an output. Consider the following examples where Alice knows the private key
<PrivKeyA> corresponding to a public key <PubKeyA>, Bob knows the private
key <PrivKeyB> corresponding to a public key <PubKeyB>, and Carol knows
the private key <PrivKeyC> corresponding to a public key <PubKeyC>.

• Suppose m = n = 2. Let the 2-of-2 multisig challenge script specify the
public keys <PubKeyA> and <PubKeyB>. A valid response script requires
two valid ECDSA signatures created using the private keys <PrivKeyA>
and <PrivKeyB>. Such a response script cannot be created by Alice or
Bob alone and requires both of them to provide their respective signa-
tures. Thus the output cannot be spent unless both Alice and Bob agree
to spend it.

• Suppose m = 1 and n = 3. Let the 1-of-3 multisig challenge script
specify the three public keys <PubKeyA>, <PubKeyB>, and <PubKeyC>.
But a valid response script requires only one valid ECDSA signature
created using any one of the three private keys <PrivKeyA>, <PrivKeyB>,
<PrivKeyC>. Thus the output can be spent by any one of Alice, Bob or
Carol.

• Suppose m = 2 and n = 3. Let the 2-of-3 multisig challenge script
specify the three public keys <PubKeyA>, <PubKeyB>, and <PubKeyC>. A
valid response script requires only two valid ECDSA signatures created
using any one two of the three private keys <PrivKeyA>, <PrivKeyB>,
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<PrivKeyC>. Thus the output can be spent if any two of Alice, Bob and
Carol agree to spend it.

The scriptPubkey of the m-of-n challenge script is of the form

m <Public Key 1> · · · <Public Key n> n OP CHECKMULTISIG

where the OP CHECKMULTISIG operator checks that the signatures provided by
the response script are valid. A valid response script pushes m signatures onto
the stack. The scriptSig field is of the form

OP 0 <Signature 1> · · · <Signature m>.

where the OP 0 operator which pushes an empty array onto the stack is present
to account for a bug in the OP CHECKMULTISIG operator implementation. The
bug causes OP CHECKMULTISIG to pop one extra item off the stack. This bug
cannot be fixed without requiring all the nodes in the network to upgrade their
client software. If some of the nodes do not upgrade their clients, it would
result in a hard fork in the Bitcoin blockchain due to upgraded and non-
upgraded nodes disagreeing on the validity of the multisig challenge scripts.10

Figure 5.12 shows the state of the stack during the execution of the m-of-n
multisig response and challenge scripts. For brevity, some of the intermediate
stack states consisting of only data push operations have been omitted from
the figure. The execution proceeds as follows:

1. The OP 0 operator in the response script pushes an empty byte array
onto the stack. The m signatures <Signature 1>, . . ., <Signature m>

are then pushed onto the stack.

2. The challenge script pushes the integer m, the n public keys <Public Key

1>, . . ., <Public Key n> onto the stack, and integer n onto the stack.

3. The OP CHECKMULTISIG operator obtains the number of public keys pro-
vided by reading the top stack element n. It then obtains the num-
ber of signatures provided by reading the element m. If the signatures
<Signature 1>, . . ., <Signature m> were created by a sequence of m
private keys whose corresponding public keys form a subsequence11of
<Public Key 1>, . . ., <Public Key n>, then the OP CHECKMULTISIG op-
erator pops the top m+n+3 elements from the stack and pushes a True

value onto the stack. Otherwise, it pops the top m+n+3 elements from
the stack and pushes a False value onto the stack.

10See Chapter 7 for details about why hard forks are undesirable.
11A subsequence of a ordered sequence of elements x1, x2, . . . , xn is given by

xi1 , xi2 , . . . , xik where 1 ≤ i1 < i2 < · · · < ik ≤ n, i.e. some elements can be omitted
from the original sequence but the order of the remaining elements is unchanged.
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Figure 5.12: Stack state during the execution of m-of-n multisig response and
challenge scripts

The subsequence restriction requires that the m signatures in the response
script appear in the same order as their corresponding public keys in the
challenge script. For example, suppose a 2-of-3 multisig challenge script is
given by

OP 2 <PubKeyA> <PubKeyB> <PubKeyC> OP 3 OP CHECKMULTISIG

where Alice, Bob, and Carol control the private keys corresponding to the
public keys <PubKeyA>, <PubKeyB>, and <PubKeyC> respectively. Suppose
<SigA>, <SigB>, and <SigC> are signatures created by Alice, Bob, and Carol
respectively. Then the following response script is valid because the signatures
from Alice and Carol appear in the same order as their public keys in the
challenge script.

OP 0 <SigA> <SigC>.
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But the following response script is invalid because the signatures from Alice
and Carol do not appear in the same order as their public keys in the challenge
script.

OP 0 <SigC> <SigA>.

While the OP CHECKMULTISIG operator allows n to be as large as 20, the
Bitcoin protocol considers m-of-n multisig challenge scripts with n greater
than 3 to be non-standard. But m-of-n multisig scripts with values of n
upto 15 are considered standard if these scripts are embedded inside a P2SH
challenge script. To distinguish between the two types of multisig scripts, the
former version is called a bare multisig script while the latter is called a P2SH
multisig script.

Pay To Script Hash (P2SH)

The P2SH challenge script was added to the list of standard scripts in 2012 to
bring the usability advantages of P2PKH challenge scripts to arbitrary chal-
lenge scripts (including m-of-n multisig scripts). Suppose Alice is requesting
a bitcoin payment from Bob and wants the output containing the payment
to be locked by a P2PKH challenge script. All Alice needs to do is provide
the corresponding P2PKH address to Bob and he can create the transaction
containing the payment. The P2PKH address can be encoded in a QR code12

which can be scanned by Bob using a mobile phone camera. Or Alice can send
the address to Bob via email. If Bob makes a mistake in typing the P2PKH
address, the checksum in the P2PKH address will help detect the mistake.
These advantages are not present if Alice wants the output containing the
payment to be locked by an arbitrary challenge script. Unlike a P2PKH ad-
dress which is at most 34 characters in Base58 format, an arbitrary challenge
script may be too long to fit in a single QR code image. There is also no
checksum to prevent typing errors. Furthermore, a large challenge script will
require Bob to pay more transaction fees to make the payment as the fees are
proportional to the transaction size. For example, a P2PKH challenge script
is 25 bytes long while a 2-of-3 multisig challenge script is 105 bytes long. So if
Alice requests payment to the latter script, Bob would have to pay 80r satoshis
more as transaction fees where r is the fees per byte in satoshis. If Alice is
a merchant accepting bitcoin as payment, she may not want to inconvenience
her customer Bob with the increased transaction fees caused by payments to
arbitrary challenge scripts.

The P2SH challenge script template retains the advantages of P2PKH
challenge scripts while allowing the use of more complex challenge scripts to
lock an output. It has a 23-byte scriptPubkey field of the form

OP HASH160 <RedeemScriptHash> OP EQUAL

12https://en.wikipedia.org/wiki/QR_code

https://en.wikipedia.org/wiki/QR_code
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where <RedeemScriptHash> represents the SHA-256 + RIPEMD-160 hash of
a script called the redeem script. The redeem script is itself a challenge script
which is specified in the scriptSig field along with a valid response to it.
The scriptSig field of a P2SH response script has the form

<Response To Redeem Script> <Redeem Script Byte Array>

where <Redeem Script Byte Array> is a data push of the entire redeem
script <Redeem Script> as a byte array onto the stack as a single item. The
<Response To Redeem Script> portion of the scriptSig field contains a
valid response to the redeem script <Redeem Script>.

Figure 5.13 shows the state of the stack during the execution of the P2SH
response and challenge scripts. We assume that the <Response To Redeem

Script> portion of the response script consists of data push operations push-
ing data xn, xn−1, . . . , x1 onto the stack. The execution proceeds as follows:

1. The <Response To Redeem Script> portion of the P2SH response script
populates the stack with data items x1, x2, . . . , xn.

2. The redeem script specified by the byte array <Redeem Script Byte

Array> is pushed onto the stack. The state of the stack at this point is
saved for later use.

3. The OP HASH160 operator pops the top stack element <Redeem Script>

and calculates its SHA-256 + RIPEMD-160 hash <RedeemScriptHashCalc>.
This hash is then pushed onto the stack.

4. The redeem script hash <RedeemScriptHash> from the challenge script
is pushed onto the stack.

5. The OP EQUAL operator pops and compares the top two stack elements
<RedeemScriptHash> and <RedeemScriptHashCalc>. If they are equal,
then the number 1 is pushed onto the stack and the script execution
continues. If they are not equal, the number 0 is pushed onto the stack
and the script execution terminates with an error. Equality implies that
the redeem script provided by the response script has a SHA-256 +
RIPEMD-160 hash which is equal to the <RedeemScriptHash> given in
the challenge script.

6. If the top stack element is 1, then the state of the stack which was saved
in step 2 is restored. The redeem script <Redeem Script> is popped
from the stack and executed. If the top stack element evaluates to
True after the redeem script execution, then the P2SH response script
specified in the scriptSig field is considered valid. Otherwise, it is
considered invalid.
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Figure 5.13: Stack state during the execution of P2SH response and challenge
scripts
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As an example, let us consider the case when the redeem script is a 2-of-3
multisig challenge script. The form of the scriptPubkey field is unchanged
from the general case. The scriptSig field is given by

OP 0 <Sig1> <Sig2>︸ ︷︷ ︸
Response to Redeem

Script

< OP 2 <PubKey1> <PubKey2> <PubKey3> OP 3 OP CHECKMULTISIG >.︸ ︷︷ ︸
Redeem Script Byte Array

Figure 5.14 shows the state of the stack during the execution of the P2SH 2-of-
3 multisig response and challenge scripts. Figure 5.14(a) shows the execution
until the beginning of the redeem script execution and Figure 5.14(b) shows
the redeem script execution. The last state in the former figure is repeated
as the first state in the latter figure for continuity. In Figure 5.14(a), we have
omitted the intermediate states showing the data pushes of the empty byte
array (by OP 0) and <Sig1> for brevity. After <Sig2> is pushed onto stack,
the entire redeem script byte array is pushed onto the stack as a single item.
In the redeem script execution shown in Figure 5.14(b), the operators in the
redeem script are executed. The redeem script is enclosed in angle brackets
<...> to differentiate the data push of the redeem script as a byte array from
its execution.

Suppose Alice wants Bob to make a bitcoin payment to an output which
can be unlocked by providing signatures created by any two out of three private
keys. She can of course share the three public keys required to create the 2-of-
3 bare multisig challenge script with Bob. Alternatively, she can specify this
challenge script as the redeem script in the P2SH script template and send the
SHA-256 + RIPEMD-160 hash of the redeem script to Bob. This hash can be
conveniently shared with Bob using a P2SH address which is similar to the
P2PKH address described in Section 3.3. The generation of a P2PKH address
from a public key is illustrated in Figure 3.2. The P2SH address generation
procedure is essentially the same except for the following two differences.

1. Instead of the uncompressed public key, the redeem script is hashed first
with SHA-256 and then with RIPEMD-160.

2. The address version byte which is prefixed to the hash is 0x05 for main-
net addresses and 0xC4 for testnet addresses.

The checksum calculation and the Base58 encoding procedures are the same
as in the P2PKH address generation.

As the address version byte for P2SH addresses on mainnet is 0x05, the
input to the Base58 encoding procedure is a number described by 25 hex-
adecimal digits in the range 0x050000...0000 to 0x05FFFF...FFFF. All the
numbers in this range lie between 2 × 5833 and 2 × 5833 + 25 × 5832. Hence
they all begin with the number 2 and consist of exactly 34 digits in base 58
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(a) P2SH multisig execution until the beginning of redeem script execution

Figure 5.14: Stack state during the execution of 2-of-3 P2SH multisig response
and challenge scripts
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Figure 5.14: Stack state during the execution of 2-of-3 P2SH multisig response
and challenge scripts (continued)
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representation.13 As the number 2 is represented by the character 3 in Base58
encoding (see Table 3.1), all the P2SH mainnet addresses are 34-character
addresses beginning with the character 3. This makes it easy to distinguish
them from P2PKH mainnet addresses which all begin with the character 1.

While bare m-of-n multisig scripts with n greater than 3 are non-standard,
values of n upto 15 can be used in a P2SH m-of-n multisig script. The upper
limit of 15 arises from the 520-byte cap on the size of an item which can be
pushed onto the stack. During P2SH response script execution, the redeem
script is pushed onto the stack limiting its maximum size to 520 bytes. The
operators in a m-of-n multisig redeem script occupy 3 bytes leaving 517 bytes
for the public keys. Each compressed public key occupies 34 bytes in the script
where 33 bytes are needed for the key itelf and 1 byte is needed for the data
push operator 0x21 which pushes the 33 bytes. As 15×34 = 510, a maximum
of 15 public keys can be specified in the redeem script.

Null Data

The null data challenge script is a method to store small amounts of data
(upto 80 bytes) on the blockchain. It has a scriptPubkey of the form

OP RETURN <Data>

where <Data> can contain at most 80 bytes of arbitrary data. The scriptPubkey
field itself has a maximum size of 83 bytes with the OP RETURN operator oc-
cupying 1 byte, the length of the data occupying at most 2 bytes,14 and the
data occupying upto 80 bytes.

The OP RETURN operator causes script execution to terminate immediately
irrespective of the state of the stack. So there exists no response script which
can provide a valid response to this challenge script. For this reason, null
data outputs are unspendable and any bitcoins locked by a null data challenge
script will be lost forever. Outputs containing null data challenge scripts are
not added to the set of UTXOs even if they have some bitcoins associated
with them.

The sole reason for including the null data challenge script in the list of
standard scripts is to provide a means to securely store data on the blockchain.
Once the block containing the null data output receives a few dozen confir-
mations, it becomes computationally infeasible to change the data recorded
in the output. This property can be exploited to build timestamping applica-
tions where the hash of some document can be recorded on the blockchain to
prove the existence of the document prior to some point in time.

13The base 58 representation of a positive integer N is the sequence of digits akak−1 · · · a0

where 0 ≤ ai ≤ 5 and N =
∑k

i=0 ai58i.
14The length of the data is encoded using the data push operators given in Table 5.2.

Data lengths upto 75 bytes need only one byte to encode while data lengths from 76 to 80
need two bytes.
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Signature Hash Type Value

SIGHASH ALL 0x00000001

SIGHASH NONE 0x00000002

SIGHASH SINGLE 0x00000003

SIGHASH ANYONECANPAY 0x00000080

Table 5.4: Base signature hash types and their values

5.6 Pre-SegWit Signature Generation

When a regular transaction input unlocks a UTXO, the ECDSA signatures in
the response script serve a dual purpose. In addition to proving ownership of
the relevant private keys, they prevent the transaction from being tampered
with before its inclusion in the blockchain. Recall that the ECDSA takes two
inputs: a private key and a message digest. The message digest is a hash
of the message being signed by the ECDSA. When a new regular transac-
tion is created, the parts of the transaction which need to be protected from
modification are included in the message used to generate the signature. If
the message is modified, the message digest is also modified by the second
preimage resistance of the hash function. The signature created using the
unmodified message will no longer be valid for the modified message. When a
regular transaction is broadcast on the Bitcoin network, nodes will not relay it
if the signatures are invalid. The difference between the signature generation
schemes for pre-SegWit and SegWit transactions lies in the construction of
the message which is signed. In this section, we describe the pre-SegWit sig-
nature generation scheme and discuss the SegWit signature generation scheme
in Section 5.10.

While the option of signing the entire transaction is available, the Bitcoin
protocol has options where only some parts of the transaction are signed. The
latter options allow the signer to intentionally allow the modification of the
unsigned parts of the transaction. The available options are specified by the
least significant byte of a 4-byte field called the signature hash type. The term
signature hash is a synonym for the term message digest. The base signature
hash types and their values are shown in Table 5.4. These hash types are
applicable for both pre-SegWit and SegWit transactions.

SIGHASH ALL

The SIGHASH ALL hash type is the default option where all the inputs and
outputs in the transaction are signed. Consider the regular transaction shown
in Figure 5.15. The number 0x02 which appears once before the inputs and
once before the outputs indicates there are two inputs and two outputs in the
transaction. Input 0 unlocks a previous output which is at index n0 of a trans-
action with TXID hash0. Let prevScriptPubkey0 denote the scriptPubkey
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Figure 5.15: Message used to generate signature for the first input using the
SIGHASH ALL hash type

field of this output and let prevScriptPubkeyLen0 denote its length. If the
challenge script specified by prevScriptPubkey0 requires a signature to be
present in scriptSig0 with signature hash type SIGHASH ALL, then the mes-
sage to be signed is shown on the right in Figure 5.15. This message is obtained
according to the following rules:

• The nVersion field and the number of inputs are included without mod-
ification.

• The scriptSig0 and scriptSigLen0 fields in Input 0 are replaced with
prevScriptPubkey0 and prevScriptPubkeyLen0 respectively.15 The
other fields in Input 0 are included without modification.

• The scriptSig1 and scriptSigLen1 fields in Input 1 are replaced with
a single zero byte and the remaining fields are included without modifi-
cation.

15If prevScriptPubkey0 contains the OP CODESEPARATOR operator, the Bitcoin Core client
modifies prevScriptPubkey0 before including it in the message. The OP CODESEPARATOR

operator is an artifact of a previous implementation of the script execution algorithm in
the Bitcoin Core client. It is not used in any of the present standard scripts. To keep the
exposition simple, we assume that prevScriptPubkey0 does not contain it.



CHAPTER 5. BITCOIN TRANSACTIONS 98

• The number of outputs, the fields in the outputs, and the nLockTime

field are included without modification.

• The 4-byte signature hash type is appended at the end as shown by the
nHashType field. This step is not unique to the SIGHASH ALL signature
hash type and is done for all the other hash types as well.

The message digest is calculated as the double SHA-256 hash of this mes-
sage and signed with the private key to generate the signature. The signature
will appear in the scriptSig0 field of Input 0. As the signature is not known
at the time of message digest calculation, the scriptSig0 field cannot be
included in the message. If any of the fields included in the message are mod-
ified after the signature generation, the signature will become invalid. This
property has the following semantic consequences:

• Since hash0 and n0 are included in the message, the UTXO being un-
locked by Input 0 cannot be changed. This is because hash0 contains
the TXID of the transaction containing the UTXO and n0 contains the
index of the UTXO in the list of outputs in that transaction. Specify-
ing the UTXO location in the message prevents the signature generated
to unlock the UTXO from being used again to unlock another UTXO
locked by the same challenge script (for example, two UTXOs may have
the same P2PKH challenge script).16

• As hash1 and n1 are included in the message, the UTXO which will be
unlocked by Input 1 cannot be changed. This is useful in scenarios when
the response scripts in Input 0 and Input 1 are provided by two different
entities. The entity generating the signatures for Input 0 can be sure
that the amount of bitcoins contributed by Input 1 will not change as
the corresponding UTXO cannot change.

• As all the output fields are included in the message, the intended recip-
ients (specified by the challenge scripts) of the bitcoins unlocked by the
transaction inputs and the amounts being sent them cannot be changed.

• As the nSequence0, nSequence1, and nLockTime fields are included
in the message, the absolute and relative lock time semantics of the
transaction cannot be changed.

• As the signature hash type is included as part of the nHashType, the
procedure used to generate the signature cannot be changed.

16Including the prevScriptPubkey0 and prevScriptPubkeyLen0 fields from the UTXO in
the message with the intent of protecting them is technically unnecessary as the computation
of the TXID hash0 includes these fields in the double SHA-256 hash of the transaction. This
inclusion was done in the original implementation of the Bitcoin Core client and remains as
it will require a hard fork change to remove it.
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Figure 5.16: Message used to generate signature for the second input using
the SIGHASH ALL hash type

The message used to generate the signature for Input 1 of the transaction
from Figure 5.15 using the SIGHASH ALL hash type is shown in Figure 5.16.
We have repeated the message used for the Input 0 signature in this figure for
easy comparison between the two messages. The two messages differ only in
which input fields are included. The message for Input 1 signatures replaces
the scriptSig0 and scriptSigLen0 from Input 0 with a zero byte. This is
done even if the scriptSig0 field is already known to allow the signatures
for the two inputs to be generated in any order. The prevScriptPubkey1

and prevScriptPubkeyLen1 be the challenge script and its length from the
UTXO being unlocked by Input 1. These fields replace the scriptSig1 and
scriptSigLen1 fields in Input 1.

While we used a transaction with two inputs and two outputs to illustrate
the message generation for the SIGHASH ALL hash type, the procedure for
transactions with arbitrary number of inputs and outputs is similar. All the
outputs in the transaction are included in the message. When generating the
message for a particular input, the scriptSig and scriptSigLen fields in
that input are replaced with the scriptPubkey and scriptPubkeyLen fields
from the UTXO being unlocked. The scriptSig and scriptSigLen fields
from all the other inputs are excluded.

As discussed in Section 5.5, for all signature hash types the ECDSA sig-
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Figure 5.17: Message used to generate signature for the first input using the
SIGHASH NONE hash type

nature generated using the message digest and private key is encoded using
DER encoding. The least significant byte of the signature hash type is ap-
pended to this DER encoded signature to indicate its type. This byte is used
by the operators OP CHECKSIG and OP CHECKMULTISIG to generate the correct
message from the transaction for signature verification.

SIGHASH NONE

When the SIGHASH NONE signature hash type is used, none of the outputs
in the transaction are included in the message being signed. Figure 5.17
shows the message used to generate the signatures for the first input of the
transaction from Figure 5.15. The fields related the inputs of the transaction
are obtained by the same procedure used in the SIGHASH ALL case with one
exception. The nSequence1 field from Input 1 is set to zero (0x00000000)
in the message. This allows the nSequence1 field to be modified before the
signatures in Input 1 are generated.

The field indicating number of outputs is set to zero and none of the fields
from the outputs of the transactions are included in the message. This may
seem insecure because the outputs can be modified without invalidating the
signature. If a regular transaction in which all the inputs have signatures with
SIGHASH NONE hash type is broadcast on the network, the miner can replace
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the addresses receiving the payment with its own address and include the
transaction in the blockchain. This can be avoided by having at least one of
the transaction inputs have signatures with the SIGHASH ALL hash type.

The utility of the SIGHASH NONE hash type is that it enables entities which
trust each other to construct transactions where the receiver of the payment is
not known beforehand. For example, suppose Alice and Bob want to purchase
a rare book by pooling their bitcoin funds. They will create a transaction
containing two inputs where each of them will provided signatures for one
of the inputs. But the book is not currently available and requires them to
search for a seller who has it. Bob offers to search for the book. If Alice trusts
Bob, she can unlock the UTXO containing her contribution to the cost of the
book using signatures of SIGHASH NONE hash type and give the transaction
to Bob. The message used to generate Alice’s signature will not contain the
outputs. Hence the receiver of the payment is not fixed. When Bob finds
a seller having the book, he can include the seller’s Bitcoin address in the
transaction outputs and unlock the UTXO containing his contribution using
signatures of SIGHASH ALL hash type. When this transaction is broadcast on
the network, the outputs cannot be modified as they are protected by the
signatures in Bob’s input.

For transactions with arbitrary number of inputs and outputs, the message
for generating the signatures for each input always excludes the outputs and
sets the number of outputs to zero. Apart from setting the nSequence fields
in all the other inputs to zero when generating the message for a particular
input, the portion of the message related to the transaction inputs is generated
as in the SIGHASH ALL case.

SIGHASH SINGLE

The SIGHASH SINGLE signature hash type is used in situations when each
entity unlocking a UTXO in a multi-input transaction wants to sign only one
of the outputs. In the message for signatures in the input at index i, only the
output at index i is included. The fields related to the inputs are included in
the message by the same procedure used in the SIGHASH NONE case.

Figure 5.18 shows the messages used to generate the signatures in each of
the two inputs of the transaction from Figure 5.15. For the Input 0 message,
the number of outputs is set to one (0x01) and only the fields from Output 0
are included in the message. For the Input 1 message, the number of outputs
is set to two (0x02). A null output is included instead of Output 0. It consists
of a 64-bit nValue field set to all ones (0xFFFF FFFF FFFF FFFF) followed by
a single zero byte representing an empty scriptPubkey field. All the fields
from Output 1 are included in the message. In general, the message for an
input with index i includes the number of outputs set to i + 1, i − 1 null
outputs, and the unmodified output with index i. The outputs with index
greater than i are ignored.
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Figure 5.18: Messages used to generate signatures for each input using the
SIGHASH SINGLE hash type

If the number of outputs is less than the number of inputs, an input at
index i may not have a corresponding output at index i. In this case, if the
SIGHASH SINGLE hash type is used to generate the signature for the input at
index i, the Bitcoin Core client sets the message digest to a 256-bit string
consisting of 255 zeros followed by a single one. This is a bug as it makes the
signature independent of the message. A signature of the SIGHASH SINGLE
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hash type which was used unlock a UTXO can be reused to unlock other
UTXOs locked by the same challenge script. This bug is due to an oversight
in an early implementation of the Bitcoin Core client and has remained unfixed
as it requires a soft fork to fix.

The SIGHASH SINGLE hash type is useful in scenarios when multiple entities
fund the different inputs in a transaction. Each entity wants to ensure that a
certain amount of bitcoins from the inputs is paid to a receiver of their choice.
But each entity does not care for how the remaining amount of bitcoins are
spent.

SIGHASH ANYONECANPAY

All previous three signature hash types include all the inputs of the transaction
in the message being signed. The SIGHASH ANYONECANPAY hash type specifies
that the message used to generate signatures for a particular transaction input
includes only that input. It is always used in conjunction with one of the
three previous signature hash types. For example, the SIGHASH ANYONECANPAY

|SIGHASH ALL hash type corresponds to the case when all the outputs are
signed and only one of inputs is signed. This hash type is represented by
the value 0x81 which is the bitwise OR of the SIGHASH ANYONECANPAY and
SIGHASH ALL hash type values from Table 5.4. Once the signature of this hash
type has been generated, the outputs in the transaction cannot be modified
but the other inputs can be modified. Hence the name “anyone can pay”.

Figure 5.19 shows the messages used to generate the signatures having
hash type SIGHASH ANYONECANPAY|SIGHASH ALL in each of the two inputs of
the transaction from Figure 5.15. For the Input 0 message, the number of
outputs is set to one (0x01) and only the fields from Input 0 are included in
the message. For the Input 1 message, the number of outputs is once again
set to one and only the fields from Input 1 are included. In both cases, all the
output fields are included in the message.

The SIGHASH ANYONECANPAY|SIGHASH NONE and SIGHASH ANYONECANPAY

|SIGHASH SINGLE hash types have values 0x82 and 0x83. The messages gen-
erated by these hash types include only one input at a time. The inclu-
sion of the outputs follows the procedure described for SIGHASH NONE and
SIGHASH SINGLE respectively.

To see the utility of the SIGHASH ANYONECANPAY hash type, consider a
crowdfunding scenario where the recipient of the funds and the amount of
funds required are known. Some people want to participate in the crowdfund-
ing by unlocking UTXOs containing their contribution. A transaction is cre-
ated where each funder’s contribution is represented by an input and the out-
put contains the recipient’s address. Without using the SIGHASH ANYONECANPAY

hash type, the number of funders and their UTXO details will need to be
fixed before the signatures for each input can be generated. But with the
SIGHASH ANYONECANPAY hash type, the signatures for each input can be gen-
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Figure 5.19: Messages used to generate signatures for each input using the
SIGHASH ANYONECANPAY|SIGHASH ALL hash type

erated without knowing these details in advance. The transaction becomes
valid once the sum of the bitcoin amounts unlocked by the inputs exceeds the
amount in the output. Note that the excess amount will be transferred to the
miner who includes this block on the blockchain as transaction fees.
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5.7 Transaction Malleability

The TXID of a transaction is obtained by calculating the double SHA-256
hash of all the fields in it. Figure 5.20 shows the fields which are hashed for
a regular transaction with N inputs and M outputs. Due to the collision
resistance of the SHA-256 hash function, changing any of the fields in the
transaction will result in a different TXID. Transaction malleability refers to
the phenomenon where the TXID of a transaction can be modified without
making a functional change to the transaction. Two transactions are identical
from a functional viewpoint if the following conditions hold:

• They both specify the same previous UTXOs as the source of bitcoins.
The hash and n fields in the inputs of both the transactions have to be
identical.

• They both specify the same new UTXOs as destinations of the bitcoins
being transferred. The nValue and scriptPubkey fields in the outputs
of both transactions have to be identical.

• The lock time restrictions imposed by the nSequence and nLockTime

fields in both the transactions are identical.
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Note that the scriptSig fields are not required to be identical for two trans-
actions to be functionally identical. The scriptSig field contains ECDSA sig-
natures whose generation involves a random integer (see Section 2.5). Hence
there are multiple valid signatures corresponding to the same message digest
and private key. Each of these signatures will result in a different scriptSig
field in an input and consequently a different TXID for the transaction. So an
entity which knows any one of the private keys needed to generate a signature
required in the response script can change the TXID by simply regenerating
the signature with a different random integer.

Transaction malleability can even be effected by entities which do not know
any of the private keys required to generate a valid response script. Using
notation from Section 2.5, let (r, s) be a valid secp256k1 ECDSA signature
for a messagem. In Appendix A, we show that (r, n−s) is also a valid signature
for the message m where p is the 256-bit prime number given in equation (2.3).
The integer s is not allowed to be zero in an ECDSA signature. Since n is
an odd integer, n − s 6= s mod n for all s 6= 0. Hence replacing the byte
representation of (r, s) in a scriptSig field of a transaction with the byte
representation of (r, n − s) will modify the TXID without invalidating the
signature. This change does not require knowledge of the private key which
was used to generate (r, s).

Once a transaction receives a confirmation i.e. once it is included in a
block on the blockchain, changing its TXID will change the hashMerkleRoot

in the block header. With a high probability, this will cause the block hash
to exceed the target threshold invalidating the block. As a result, transac-
tion malleability does not pose problems in situations when the transaction
outputs will be spent after the transaction is confirmed. However, there are
protocols where unconfirmed transaction outputs are referenced by a spend-
ing transaction. Transaction malleability will cause such protocols to fail by
breaking the dependency between the transactions.

To understand how transaction malleability causes protocols involving
spending of unconfirmed transaction outputs to fail, consider the following
situation. Suppose Alice is a professor who wants to teach her student Bob
about Bitcoin transactions. Bob does not own any bitcoins. So Alice decides
to transfer x bitcoins to Bob with the intention of getting them back. But
Alice does not have enough trust in Bob’s integrity or competence to send the
bitcoins to a Bitcoin address which requires only Bob’s signature to spend (for
example, a P2PK or P2PKH address derived from Bob’s private key). Bob
may decide to cheat Alice by refusing to provide the signature required to send
the bitcoins from his Bitcoin address back to Alice. Or he may make a mis-
take in constructing the refund transaction resulting in the bitcoins being sent
to an address not owned by Alice. To prevent these undesirable situations,
Alice executes a protocol which is illustrated in Figure 5.21. Figure 5.21(a)
illustrates the transactions t1 and t2 Alice creates to initiate the protocol and
Figure 5.21(b) illustrates the messages exchanged during the protocol. The
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Figure 5.21: Alice’s protocol for transferring funds to a 2-of-2 multisig output
and reclaiming them

protocol proceeds in the following manner:

1. Alice creates a transaction t1 which transfers x bitcoins from a UTXO
she owns to an output that is locked by a 2-of-2 multisig challenge script.
The 2-of-2 multisig challenge script contains two public keys, one each
owned by Alice and Bob. A valid response script to this challenge script
will contain signatures from both Alice and Bob. But Alice does not
broadcast t1 on the network.

2. She then creates a refund transaction t2 which spends the output in t1
and transfers the bitcoins back to her Bitcoin address. Initially, t2’s
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input contains the TXID i1 of t1 and the index of the output containing
the 2-of-2 multisig challenge script. But the response script in t2’s input
has no signatures.

3. Alice includes her signature in the response script in t2 and sends it to
Bob. She asks him to add his signature in the response script and return
t2 to her. If Bob refuses to do this, Alice can stop the protocol. She has
not lost any funds as t1 has not been recorded on the blockchain.

4. If Bob includes his signature in t2 and returns it to Alice, both Alice
and Bob have fully signed the refund transaction which spends the 2-of-2
multisig output in t1 to refund Alice.

5. Alice now broadcasts t1 on the network.

6. Once t1 is included in a block, either Alice or Bob can broadcast t2 on
the network. After t2 is included in a block, the x bitcoins minus the
transaction fees have returned to Alice.

Even though Alice creates t1 in step 1, she does not broadcast it on the network
until Bob sends her the refund transaction t2 with his signature included in
it. The dependency between t1 and t2 is created using the TXID i1 of t1.

Transaction malleability can be used to cause Alice’s protocol to fail by
breaking the dependency between t1 and t2. When Alice broadcasts t1 in step
5, Bob or any node on the network can replace Alice’s signature (r, s) in t1 with
the valid signature (r, n− s) and rebroadcast the modified t1 on the network.
Let t′1 denote the modified t1 that has a different TXID i′1. Since both t1 and
t′1 spend the same UTXO owned by Alice, only one of them will be included in
a block. If t′1 gets included in a block, then the refund transaction t2 is invalid
as its input contains the TXID i1 of t1. Now Alice will have to request Bob
to sign a new version of t2 in order to get her bitcoins back. If Bob refuses
to cooperate, then she cannot get her bitcoins back. While Bob cannot spend
the bitcoins as this requires Alice’s signature, he can inconvenience Alice by
making the funds unspendable.

The reason transaction malleability is possible is because all the signa-
ture hash types exclude the scriptSig field from the message digest used
to create signatures in a transaction. But this field is included in the TXID
calculation. Replacing the signatures in the scriptSig field with new valid
signatures changes the TXID without invalidating the transaction. SegWit
solves the problem of transaction malleability by defining two new script tem-
plates which move the signature data out of the scriptSig field and into a
separate structure called the witness. This witness structure is not included
in the TXID calculation. In the Bitcoin Core client, the witness structure is
stored in a field called scriptWitness.
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5.8 SegWit Standard Scripts

SegWit adds two new challenge script templates to the set of standard script
templates: Pay to Witness Public Key Hash (P2WPKH) and Pay to Witness
Script Hash (P2WSH). Both of these templates can be embedded inside a
P2SH template and the resulting templates are called P2SH-P2WPKH and
P2SH-P2WSH respectively.

The first byte in SegWit challenge scripts is used to indicate the script
version. P2WPKH and P2WSH are version 0 scripts which is indicated by a
zero byte. SegWit allows for future definition of script versions 1 through 16.

Pay to Witness Public Key Hash (P2WPKH)

The P2WPKH script template is the SegWit analog of the P2PKH script tem-
plate. The P2WPKH challenge script template has a 22-byte scriptPubkey

field of the form
OP 0 0x14 <PubKeyHash>

where the OP 0 operator indicates that it is a version 0 script and <PubKeyHash>

is the 20-byte SHA-256 + RIPEMD-160 hash of a compressed public key. The
0x14 operator pushes the 20-byte hash onto the stack.

Recall that the script execution for pre-SegWit scripts consists of the ex-
ecution of the script in the scriptSig field on an empty stack followed by
the execution of the script in the scriptPubkey field. If we consider the pre-
SegWit script execution procedure for the P2WPKH challenge script, then
an empty scriptSig field is a valid response script. An empty response
script does nothing but the subsequent execution of the P2WPKH consists
of a push of an empty byte array (due to OP 0) followed by the push of the
20-byte <PubKeyHash> field. Thus the <PubKeyHash> is the top stack ele-
ment when the script execution completes. Since <PubKeyHash> is extremely
unlikely to be the all zeros bytestring, it evaluates to True and the script
execution succeeds. This is illustrated in Figure 5.22. The implication is
that a transaction output which is locked by a P2WPKH challenge script ap-
pears like an anyone-can-spend output to nodes which have not upgraded to
SegWit-capable clients. On the other hand, SegWit-capable clients perform a
different script execution procedure for SegWit scripts. To unlock the output
locked by a P2WPKH challenge script, both the public key whose hash is
equal to <PubKeyHash> and a valid signature created using the corresponding
private key are needed. As long as nodes which control a majority of the
network hashrate run SegWit-capable clients, transactions which attempt to
spend P2WPKH outputs without providing the required signatures will not
be included in the blockchain.

A valid response to a P2WPKH challenge script consists of an empty
scriptSig field and a scriptWitness field which has a valid signature and
a compressed public key whose SHA-256 + RIPEMD-160 hash is equal to
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<Empty Response Script> OP 0 0x14 <PubKeyHash>

OP 0 0x14 <PubKeyHash>

<Empty Array>

0x14 <PubKeyHash>

<PubKeyHash>

<Empty Array>

Stack StateRemaining Script

Figure 5.22: Stack state during the execution of an empty response script
followed by a P2WPKH challenge script

<PubKeyHash>, i.e.

scriptSig: (empty),

scriptWitness: <Signature> <Public Key>.

The location of the scriptWitness field in the spending transaction is de-
scribed in Section 5.9. To verify that the response to a P2WPKH challenge
script is valid, a SegWit-capable client first constructs the following P2PKH
challenge script using the <PubKeyHash> field in the challenge script.

OP DUP OP HASH160 <PubKeyHash> OP EQUALVERIFY OP CHECKSIG.

The fields in the scriptWitness are pushed onto an empty stack and the
P2PKH challenge script is executed on this stack. Note that the fields in the
scriptWitness are identical to the scriptSig fields of the P2PKH response
script described in Section 5.5. The script execution is as shown in Figure
5.11.

Suppose a miner mines a new valid block which has a transaction with an
input which spends P2WPKH outputs. When this block is broadcast on the
network, nodes running SegWit-capable clients receive both the scriptSig
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and scriptWitness fields. But nodes running pre-SegWit clients do not re-
ceive the scriptWitness fields. They see only the empty scriptSig fields
which are valid responses as per the pre-SegWit script execution procedure.
Hence the block is considered valid by the nodes running pre-SegWit clients.

While each transaction input which unlocks an output locked by a SegWit
challenge script has a scriptWitness field associated with it, this field is
not included in the input data structure to maintain backward compatibility
with pre-SegWit clients. The signature data which was part of the scriptSig

field in pre-SegWit regular transactions is moved to the scriptWitness field.
In cryptography, digital signatures are considered witnesses which prove that
the signer knows the private key corresponding to a public key. The phrase
“segregated witness” is motivated by the separation of the signature data from
the inputs.

The P2WPKH challenge script can be embedded inside a P2SH script
template resulting in a P2SH-P2WPKH challenge script. The scriptPubkey

field has a P2SH challenge script of the form

OP HASH160 <RedeemScriptHash> OP EQUAL

where RedeemScriptHash is the 20-byte SHA-256 + RIPEMD-160 hash of
the P2WPKH challenge script. The scriptSig and scriptWitness fields are
given by

scriptSig: 0x16 OP 0 0x14 <PubKeyHash>︸ ︷︷ ︸
Redeem Script

,

scriptWitness: <Signature> <Public Key>︸ ︷︷ ︸
Response to Redeem Script

.

The 0x16 operator in the scriptSig field pushes the 22-byte P2WPKH chal-
lenge script (which is the P2SH redem script) onto the stack. The scriptWitness
field once again contains a signature and a compressed public key. While
the response to the redeem script was present in the scriptSig field in pre-
SegWit P2SH scripts, it is located in the scriptWitness field in the P2SH-
P2WPKH script. The advantage of a P2SH-P2WPKH script template over
the P2WPKH script template is that an entity requesting bitcoin payment to
an output locked by the former can simply share the P2SH address generated
from the RedeemScriptHash.

When pre-SegWit clients encounter a transaction input which unlocks a
P2SH-P2WPKH output, they will first verify that the SHA-256 + RIPEMD-
160 hash RedeemScriptHashCalc of the redeem script in the scriptSig field
matches the RedeemScriptHash given in the scriptPubkey of the output.
When they execute the redeem script, the OP 0 operator pushes an empty
byte array and the 0x14 operator pushes the 20-byte PubKeyHash onto the
stack making it the top stack element. As PubKeyHash is extremely unlikely
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to be the all zeros bytestring, it evaluates to True and the script execution
succeeds. This is illustrated in Figure 5.23. On the other hand, SegWit-
capable clients will insert the PubKeyHash in the redeem script into a P2PKH
challenge script as before and use the contents of the scriptWitness field to
execute it.

Pay to Witness Script Hash (P2WSH)

The P2WSH script template is the SegWit analog of the P2SH script template.
The P2WSH challenge script template has a 34-byte scriptPubkey field of
the form

OP 0 0x20 <RedeemScriptHash>

where RedeemScriptHash is the 32-byte SHA-256 hash of a redeem script
contained in the witness field. The 0x20 operator pushes this 32-byte hash
onto the stack. As in the P2WPKH case, the OP 0 operator indicates that
this scriptPubkey contains a version 0 SegWit script.

A valid response to a P2WPKH challenge script consists of an empty
scriptSig field and a scriptWitness field which has a valid response to the
redeem script and a byte array containing the redeem script itself, i.e.

scriptSig: (empty),

scriptWitness: <Response To Redeem Script> <Redeem Script Byte Array>.

In general, the scriptWitness contains a list of stack items. The <Redeem

Script Byte Array> is the entire redeem script represented as a single stack
item.

As in the P2WPKH case, a pre-SegWit client will consider the empty
scriptSig field as a valid response to the P2WSH challenge script. The
response and challenge script execution will be as illustrated in Figure 5.22
with one difference. The top stack element at the end of script execution will
be a 32-byte hash instead of the 20-byte hash in the P2WPKH case.

On the other hand, a SegWit-capable client will first verify that the SHA-
256 hash of the redeem script byte array in the scriptWitness field is equal
to RedeemScriptHash. If it is not equal, the script execution fails. Otherwise,
the data in the scriptWitness which comprises the response to the redeem
script is pushed onto the stack and the redeem script is executed against this
stack. If the redeem script execution succeeds, the response is considered
valid. This procedure is as illustrated in Figure 5.13 with the OP HASH160

operator replaced by the OP SHA256 operator which replaces the top stack
element with its SHA-256 hash. While the P2SH script validation procedure
takes the redeem script and the response to it from the scriptSig field, the
P2WSH validation takes these fields from the scriptWitness field.

The P2WPKH challenge script can also be embedded inside a P2SH script
template to take advantage of P2SH addresses. The challenge script itself is
the redeem script for the P2SH script. To avoid confusion between the two
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Figure 5.23: Stack state during P2SH-P2WPKH script execution by a pre-
SegWit client
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redeem scripts, we will call the redeem script in the scriptSig field the P2SH
redeem script and the redeem script in the scriptWitness field the P2WSH
redeem script. The scriptPubkey field has a P2SH challenge script of the
form

OP HASH160 <P2SH RedeemScriptHash> OP EQUAL

where P2SH RedeemScriptHash is the 20-byte SHA-256 + RIPEMD-160 hash
of the P2WSH challenge script (which is the P2SH redeem script). The
scriptSig and scriptWitness fields are given by

scriptSig: 0x22 OP 0 0x20 <P2WSH RedeemScriptHash>︸ ︷︷ ︸
P2SH Redeem Script

,

scriptWitness: <Response To P2WSH Redeem Script>

<P2WSH Redeem Script Byte Array>.

The 0x22 operator in the scriptSig field pushes the 34-byte P2WSH chal-
lenge script onto the stack. The scriptWitness field once again contains the
response to the P2WSH redeem script followed by the script itself.

As in the P2SH-P2WPKH case, pre-SegWit clients validate inputs spend-
ing P2SH-P2WSH outputs based on the equality of the P2SH redeem script
hash and the hash given in the scriptPubkey field. SegWit-capable clients
perform the additional step of executing the P2WSH redeem script in the
scriptWitness field.

5.9 SegWit Regular and Coinbase Transactions

A transaction output which is locked by a SegWit challenge script (P2WPKH,
P2WSH, P2SH-P2WPKH, or P2SH-P2WSH) is called a SegWit output. If
a transaction input unlocks a SegWit output, it is called a SegWit input.
A regular transaction can have any combination of SegWit and pre-SegWit
inputs and outputs. If a regular transaction has at least one SegWit input, it
is called a SegWit regular transaction. The implication is that at least one of
the inputs in a SegWit regular transaction has a non-trivial witness structure.

A SegWit regular transaction has two serialization formats (byte repre-
sentations). The first serialization excludes the witness structures and looks
exactly like the serialization of a pre-SegWit regular transaction. The dou-
ble SHA-256 hash of this serialization yields the TXID of the transaction as
illustrated in Figure 5.24. When a SegWit regular transaction is sent to a
pre-SegWit client, this serialization of the transaction is used.

The second serialization of a SegWit regular transaction differs from the
first in the following manner:

1. The nVersion field is followed by a 1-byte marker which contains 0x00.

2. The marker byte is followed by a flag byte which contains 0x01.



CHAPTER 5. BITCOIN TRANSACTIONS 115

nVersion
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Serialization for TXID
Calculation

Serialization for WTXID
Calculation

Figure 5.24: SegWit regular transaction serialization formats

3. If the transaction has N inputs, there are N witness structures between
the outputs and the nLockTime field. The ith witness structure corre-
sponds to the ith input. If an input is not a SegWit input, its corre-
sponding witness structure is just a single byte containing 0x00. The
witness structures corresponding to SegWit inputs consist of a list of
stack items. The first field in a witness structure is a VarInt which spec-
ifies the number of stack items in the witness structure as illustrated in
Figure 5.25. This is followed by the stack items themselves where each
stack item is preceded by a VarInt specifying its length in bytes.

The double SHA-256 hash of the second serialization is called the witness
transaction identifier (WTXID). If all the inputs in a transaction are SegWit
inputs, the TXID is not malleable as its calculation does not involve any
signatures which will be present in the witness structures. Even if one of
the inputs in a transaction is a non-SegWit input, then the TXID of the
transaction is malleable. The WTXID of transaction will be malleable as
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VarInt
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Figure 5.25: Witness structure format

its calculation involves the witness structures. As UTXOs are identified by
the TXID of the transaction they are included in and the output index, the
malleability of WTXIDs is not an issue.

Why is the WTXID calculated and how is it used? Recall that the root
hash of the Merkle tree formed using the TXIDs is included in the hashMerkleRoot
field of the block header (see Section 4.2). The motivation was that any tam-
pering of the transaction data in a valid block, i.e. a block whose block hash
falls below the target threshold, will cause the block hash to exceed the thresh-
old invalidating it. With the exclusion of the signature data from the TXID
calculation for SegWit inputs, there was a need to protect the integrity of this
data from tampering. While invalid signatures can be detected by performing
ECDSA signature validation, this is computationally expensive compared to
verifying that the block hash falls below the target threshold. To make the
block hash dependent on the WTXIDs, a new Merkle tree is constructed using
the WTXIDs of all the transactions in a block as leaves using the following
rules:

• The WTXID of the coinbase transaction is fixed to be the all zeros
bytestring 0x0000...0000.

• For non-SegWit transactions, the TXID is taken instead of its WTXID.

This is illustrated in Figure 5.26 where the Merkle tree corresponding to a
block with only four transactions is shown. In the figure, t0 is the coin-
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h = H(h0‖h1)

h0 = H(h00‖h01)

h00 = All zeros
(32 bytes)

t0

h01 = WTXID
of t1

t1

h1 = H(h10‖h11)

h10 = TXID
of t2

t2

h11 = WTXID
of t3

t3

Figure 5.26: WTXID Merkle tree for a block with four transactions

base transaction, t1 and t3 are SegWit regular transactions, and t2 is a non-
SegWit regular transaction. The function H(·) represents the double SHA-256
function and ‖ represents the concatenation operator. The root hash of the
WTXID Merkle tree is called the witness root hash.

The double SHA-256 hash of the concatenation of the witness root hash
and a 32-byte witness reserved value is then calculated and stored in the
scriptPubkey field of a coinbase output. The witness reserved value is ob-
tained from the coinbase transaction input’s witness structure. This reserved
value does not have any functionality associated with it for now and has been
included to accommodate future changes. The coinbase output storing the
witness root hash is a null data output with scriptPubkey of the form

OP RETURN 0x24 0xAA21A9ED︸ ︷︷ ︸
Commitment

header

H(Witness root hash‖Witness reserved value)︸ ︷︷ ︸
Commitment hash (32 bytes)

where the 0x24 operator indicates that the following 36 bytes are of interest.
The 4-byte field containing 0xAA21A9ED is the fixed commitment header for
SegWit witness commitments. Figure 5.27 illustrates a coinbase transaction
for a block containing SegWit transactions. There are two outputs in the
transaction: the first output is a regular P2PKH output used by the miner
to send the block reward to a P2PKH address owned by him and the sec-
ond output is a null data output containing the witness commitment hash.
The second output has a nValue field equal to zero as null data outputs are
unspendable. The scriptPubkeyLen field is set to 0x26 indicating that the
scriptPubkey is 38 bytes long. The scriptPubkey field contains the null
data challenge script containing the witness commitment hash. Even though
the dummy input in the coinbase transaction is not a SegWit input, it has
a witness structure containing a single stack item consisting of the 32-byte
witness reserved value.
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Figure 5.27: Example of a coinbase transaction for a block with SegWit trans-
actions

As the coinbase transaction outputs are included in its TXID calcula-
tion, any tampering with the signature data in the witness structures will
modify the TXID of the coinbase transaction. This in turn will change the
hashMerkleRoot in the block header. Thus modifying the witness structures
in a valid block will invalidate it. This indirect method for ensuring the in-
tegrity of the witness structures is necessary due to the need to maintain com-
patibility with pre-SegWit clients. Integrity of the witness structures could
have been ensured by including a new field in the block header containing the
witness commitment hash. But this is a hard fork which would require all the
nodes in the network to upgrade to SegWit-capable client software.

Pre-SegWit clients do not receive the witness structures associated with
SegWit inputs. When these clients receive a block whose coinbase transaction
has an output with a witness commitment, they will interpret the output as a
null data output and ignore it. On the other hand, SegWit-capable clients will
check that the witness commitment hash is correct using the WTXID Merkle
root hash and the witness reserved value.

5.10 SegWit Signature Generation

The messages which are hashed to generate pre-SegWit signatures for each
input typically have several fields in common. For example, consider the mes-
sages shown in Figure 5.16 corresponding to the two inputs of the transaction
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shown in Figure 5.15. The fields corresponding to the two transaction outputs
appear in both the messages. The fields containing the TXID and index of the
previous outputs (hash0, n0, hash1, n1) being unlocked by the inputs appear
in both the messages. The sequence number fields of the inputs (nSequence0,
nSequence1) appear in both the messages. The consequence of such repeti-
tions is that the amount of data to be hashed by the double SHA-256 hash
function increases quadratically, i.e. O(N2), with the number of inputs N .
This is undesirable as this quadratic complexity is due to an oversight in the
original design. The amount of data hashed can be made to increase only
linearly with the number of inputs if the fields which are repeatedly hashed
are hashed only once and the hash values reused. Such a modification of the
message digest calculation will require a hard fork change in the Bitcoin pro-
tocol which entails upgrading all the nodes in the network. For this reason,
the message digest calculation was not changed. But when SegWit was pro-
posed as a soft fork solution to transaction malleability, the Bitcoin developers
saw an opportunity to introduce a more efficient message digest calculation
algorithm for the signatures in SegWit inputs. As pre-SegWit clients see Seg-
Wit outputs as anyone-can-spend outputs, they do not need to calculate the
signatures required to validate the SegWit inputs which unlock these outputs.
SegWit-capable clients use the new message digest calculation algorithm for
validating SegWit inputs and the old message digest calculation algorithm for
validating non-SegWit inputs.

Figure 5.28 shows the messages used to generate the signatures in each
of the two inputs of a regular transaction. The message always contains the
nVersion field, the nLockTime field, and the nHashType field. Three new fields
hashPrevouts, hashSequence, and hashOutputs not present in pre-SegWit
signature messages are also always included in the message. The signature
message corresponding to a particular input includes six fields related to that
input. They are as follows:

1. The TXID (hash0 or hash1) of the transaction containing the output
being unlocked.

2. The index (n0 or n1) of the output being unlocked in the transaction
containing it.

3. The length of the challenge script (prevScriptPubkeyLen0 or prev-

ScriptPubkeyLen1) from the output being unlocked.

4. The challenge script itself (prevScriptPubkey0 or prevScriptPubkey1).17

5. The nValue field from the output being unlocked (prevNValue0 or
prevNValue1) which contains the amount of bitcoins associated with

17To keep the exposition simple, we once again assume that the challenge script does not
contain the OP CODESEPARATOR operator.
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Figure 5.28: Messages used to generate SegWit signatures for the both inputs
of a transaction with two inputs

the output. This field was not present in any of the messages used in
the pre-SegWit signature generation. The motivation for including this
field was to make the offline signing of transactions by devices which
do not have access to the whole blockchain safer. When an untrusted
entity requests an offline device to sign a transaction, the presence of
the amount in the message ensures that the signature becomes invalid
if the amount was misrepresented.

6. The sequence number field of the input (nSequence0 or nSequence1) is
always included.

The hashPrevouts, hashSequence, and hashOutputs fields are defined
according to the signature hash type as shown in Table 5.5. In the table and
description below, we have omitted the SIGHASH prefix of the hash types and
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Signature Field Definitions
Hash Type

ALL hashPrevouts = SHA256d(hash0 ‖ n0 ‖ hash1 ‖ n1)
hashSequence = SHA256d(nSequence0 ‖ nSequence1)
hashOutputs =

SHA256d(nValue0 ‖ scriptPubkeyLen0 ‖ scriptPubkey0 ‖
nValue1 ‖ scriptPubkeyLen1 ‖ scriptPubkey1)

NONE hashPrevouts = SHA256d(hash0 ‖ n0 ‖ hash1 ‖ n1)
hashSequence = 0x0000...0000

hashOutputs = 0x0000...0000

SINGLE hashPrevouts = SHA256d(hash0 ‖ n0 ‖ hash1 ‖ n1)
hashSequence = 0x0000...0000

hashOutputs =
SHA256d(nValue0 ‖ scriptPubkeyLen0 ‖ scriptPubkey0)

or
SHA256d(nValue1 ‖ scriptPubkeyLen1 ‖ scriptPubkey1)

ALL| hashPrevouts = 0x0000...0000

ANYONECANPAY hashSequence = 0x0000...0000

hashOutputs =
SHA256d(nValue0 ‖ scriptPubkeyLen0 ‖ scriptPubkey0 ‖

nValue1 ‖ scriptPubkeyLen1 ‖ scriptPubkey1)

NONE| hashPrevouts = 0x0000...0000

ANYONECANPAY hashSequence = 0x0000...0000

hashOutputs = 0x0000...0000

SINGLE| hashPrevouts = 0x0000...0000

ANYONECANPAY hashSequence = 0x0000...0000

hashOutputs =
SHA256d(nValue0 ‖ scriptPubkeyLen0 ‖ scriptPubkey0)

or
SHA256d(nValue1 ‖ scriptPubkeyLen1 ‖ scriptPubkey1)

Table 5.5: Definitions of the hashPrevouts, hashSequence, and hashOutputs

fields used to generate the SegWit signature messages for the regular transac-
tion in Figure 5.28.

use SHA256d(·) to denote the SHA256d hash function. The following rules
are used to define the fields:

1. If the ANYONECANPAY hash type is used in conjunction with any of the
other three base hash types, the hashPrevouts field is set to the 256-bit
all zeros bitstring. Otherwise, hashPrevouts field is set to the SHA256d
hash of the concatenation of the TXIDs and indices of the outputs being
unlocked by the transaction. The rationale is that if the ANYONECANPAY

hash type is specified then all the outputs being unlocked may not be
known at the time of signature generation for a particular input.

2. If the hash type is ALL, the hashSequence field is to the SHA256d hash of
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all the sequence number fields from the inputs. Otherwise, it is set to the
256-bit all zeros bitstring. This definition of hashSequence follows from
the fact that all the sequence numbers are included in the pre-SegWit
messages only when the hash type is ALL.

3. If the hash type is ALL or ALL|ANYONECANPAY, the hashOutputs field is
set to the SHA256d hash of the concatenation of all the output fields.
If the hash type is SINGLE or SINGLE|ANYONECANPAY, the hashOutputs

field is set to the SHA256d hash of the output which has the same
index as the input being signed. For example, messages for Input 0 with
SINGLE hash type will have a hashOutputs field equal to

SHA256d(nValue0 ‖ scriptPubkeyLen0 ‖ scriptPubkey0).

If the hash type is NONE or NONE|ANYONECANPAY, the hashOutputs field
is set to the 256-bit all zeros bitstring. So hashOutputs either contains
a hash of all the outputs, a single output, or none of the outputs.

These three fields help reduce the amount of data which is hashed if the hash
types of the inputs result in identical field values. For example, in Figure 5.28
suppose both Input 0 and Input 1 have signatures of hash type ALL. The the
values of the hashPrevouts, hashSequence, and hashOutputs fields are the
same for both the inputs. These fields will calculated once for Input 0 and
reused for Input 1.

5.11 Block Size and Sigop Limits

Prior to SegWit activation, the size of single block could be at most 1 MB
(106 bytes). Additionally, the number of signature operations (sigops) in a
block could be at most 20,000. The operators which validate ECDSA signa-
tures, i.e. OP CHECKSIG, OP CHECKSIGVERIFY, OP CHECKMULTISIG, OP CHECK-

MULTISIGVERIFY, contribute to the sigop count. The OP CHECKSIG and OP CH-

ECKMULTISIG operators were discussed in Section 5.5 in the context of P2PK,
P2PKH, and multisig challenge scripts. The OP CHECKSIGVERIFY operator
does the same operation as the OP CHECKSIG operator and then checks that
the top stack element evaluates to True. The OP CHECKMULTISIGVERIFY is
a similar extension of the OP CHECKMULTISIG operator. The limit on sigops
is to prevent malicious nodes from causing CPU exhaustion attacks on the
network by broadcasting blocks with a large number of signature validation
operations. The number of sigops in a block is calculated as follows:

1. Each OP CHECKSIG and OP CHECKSIGVERIFY operator in the scriptPub-
key and scriptSig fields in the transactions contained in the block is
counted as one sigop. For example, the below P2PKH challenge script
contributes only one sigop corresponding to the OP CHECKSIG operator.

OP DUP OP HASH160 <PubKeyHash> OP EQUALVERIFY OP CHECKSIG.
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2. Each OP CHECKMULTISIG and OP CHECKMULTISIGVERIFY operator in the
scriptPubkey and scriptSig fields in the transactions contained in the
block is counted as 20 sigops. The number 20 is the maximum number
for public keys (the number n in a m-of-n multisig script) which these
operators accept. Taking this maximum number instead of the actual
number of public keys was probably done to keep the implementation
simple. It gives a pessimistic estimate of the number of sigops in a block.
For example, the below 1-of-2 multisig challenge script contributes 20
sigops.

OP 1 <PubKey1> <PubKey2> OP 2 OP CHECKMULTISIG.

3. If the scriptSig field of a transaction contains a response to a P2SH
challenge script, then the redeem script contributes sigops according to
the following rules:

(i) Each OP CHECKSIG and OP CHECKSIGVERIFY operator in the redeem
script is counted as one sigop.

(ii) Each OP CHECKMULTISIG and OP CHECKMULTISIGVERIFY operator
in the redeem script preceeded by an OP n operator with n ∈
{1, 2, . . . , 16} is counted as n sigops.

(iii) OP CHECKMULTISIG and OP CHECKMULTISIGVERIFY operators not
preceeded by an OP n operator are counted as 20 sigops each.

For example, the below P2SH response script with a redeem script con-
sisting of a 1-of-2 multisig script contributes 2 sigops. We have explicitly
indicated the push of the N -byte redeem script by the PushN operator.

OP 0 <Signature 1> <PushN> < OP 1 <PubKey1> <PubKey2> OP 2 OP CHECKMULTISIG >︸ ︷︷ ︸
Redeem Script of Length N bytes

.

Note that the OP CHECKMULTISIG in the redeem script does not con-
tribute 20 sigops (according to rule 2) inspite of being in a scriptSig

field. This is because when the operators in the P2SH response script
are parsed the OP CHECKMULTISIG in the redeem script is considered part
of the N -byte data which is pushed onto the stack. It is not interpreted
as an operator in the scriptSig field.

SegWit increased both the block size and sigop limits for blocks containing
SegWit transactions while keeping these limits the same for blocks without
SegWit transactions. We discuss the block size increase first followed by the
sigop limit increase.
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Block Weight Limit

Recall that there are two serializations of a transaction as shown in Figure 5.24.
The first serialization does not include the witness structures while the second
serialization does not include them. Both these serializations are identical for
non-SegWit transactions which do not contain any SegWit inputs. Let the
base size of a block be the size of the block when all its transactions (SegWit
or not) are serialized according to the first serialization. Let the total size of a
block be the size of the block when all its transactions are serialized according
to the second serialization. Define the block weight as follows:

Block Weight = 3× Base Size + Total Size.

SegWit imposes the restriction

Block Weight ≤ 4 MB = 4× 106 bytes

Note that the total size of a block is equal to the base size plus the size of
the witness structures in it (let us call the latter witness size). So the block
weight restriction can be rewritten as

4×Base Size+Witness Size ≤ 4 MB =⇒ Base Size+
Witness Size

4
≤ 1 MB.

The above inequality implies that the base size cannot exceed 1 MB irrespec-
tive of the witness size. This design was intentional as SegWit is a soft fork
change to the Bitcoin protocol. If a block with SegWit transactions satisfies
the block weight restriction, it will also satisfy the pre-SegWit block size re-
striction. So the block will be considered valid by nodes running pre-SegWit
clients. By scaling down the witness size by a factor of four, SegWit allows
for an increase in the number of transactions which can be included in a block
if they follow the SegWit script templates. As the actual size of the block
which is added to the blockchain is sum of its base size and witness size, the
block size limit exceeds the previous limit of 1 MB. The factor four in the
block weight calculation was chosen to constrain the increase to a moderate
amount.

After SegWit activation, the virtual size of a transaction is used to calcu-
late the fee rate. Let the base transaction size and the total transaction size
be length of a transaction in bytes given by the first and second serializations
in Figure 5.24 respectively. The virtual size of a transaction is given by

3× Base Tx Size + Total Tx Size

4
= Base Tx Size +

Tx Witness Size

4

where fractional values are rounded up to the next integer. The fee rate of
the transaction is then given by the fees divided by its virtual size. For non-
SegWit transactions, the virtual size is equal to the base transaction size since
there are no witness structures in them. So the fee rate calculation remains
the same for these transactions.
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Sigop Limit

SegWit increases the limit on the number of sigops in a block to 80,000. The
number of sigops in a block is calculated as follows where the first three rules
are the same as the pre-SegWit sigop rules with a scaling factor of four.

1. Each OP CHECKSIG and OP CHECKSIGVERIFY operator in the scriptPub-
key and scriptSig fields in the transactions contained in the block is
counted as four sigops.

2. Each OP CHECKMULTISIG and OP CHECKMULTISIGVERIFY operator in the
scriptPubkey and scriptSig fields in the transactions contained in the
block is counted as 80 sigops.

3. If the scriptSig field of a transaction contains a response to a P2SH
challenge script, then the redeem script contributes sigops according to
the following rules:

(i) Each OP CHECKSIG and OP CHECKSIGVERIFY operator in the redeem
script is counted as four sigops.

(ii) Each OP CHECKMULTISIG and OP CHECKMULTISIGVERIFY operator
in the redeem script preceeded by an OP n operator with n ∈
{1, 2, . . . , 16} is counted as 4n sigops.

(iii) OP CHECKMULTISIG and OP CHECKMULTISIGVERIFY operators not
preceeded by an OP n operator are counted as 80 sigops each.

4. Each P2WPKH input in a transaction contributes one sigop. Recall that
a P2WPKH script template has challenge and response scripts given by

scriptPubkey: OP 0 0x14 <PubKeyHash>,

scriptSig: (empty),

scriptWitness: <Signature> <Public Key>.

A transaction with a P2WPKH input has the scriptSig and scriptWitness

fields in its serialization. Even there are no signature validation oper-
ators explicitly appearing in these fields, the validation of this input
involves a OP CHECKSIG operation (see Section 5.8).

5. P2SH-P2WPKH inputs also contribute one sigop each.

6. If an input is a P2WSH input, then operators in the P2WSH redeem
script contribute sigops according to the following rules:

(i) Each OP CHECKSIG and OP CHECKSIGVERIFY operator is counted as
one sigop.
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(ii) Each OP CHECKMULTISIG and OP CHECKMULTISIGVERIFY operator
preceeded by an OP n operator with n ∈ {1, 2, . . . , 16} is counted
as n sigops.

(iii) OP CHECKMULTISIG and OP CHECKMULTISIGVERIFY operators not
preceeded by an OP n operator are counted as 20 sigops each.

7. P2SH-P2WSH inputs contribute the same sigops as a P2WSH input
with the scriptWitness field.

For a non-SegWit input, rules 4 through 7 do not apply. The sigop count is
exactly four times the pre-SegWit sigop count. Since the sigop limit is also
four times the previous limit, a non-SegWit block which has at most 20,000
sigops will continue to be valid under the SegWit sigop calculation rules.



Chapter 6

Contracts

In spite of its limited functionality, the Bitcoin scripting language can be
used to create contracts which encode conditional exchange of bitcoins among
entities. The entities participating in a contract typically signal their intent
by signing a transaction or by providing a valid response script to unlock
a UTXO. Some contracts have safeguards protecting honest entities against
malicious or uncooperative behaviour other participants. These safeguards
either enable complete recovery of the bitcoins invested by the honest entities
while entering the contract. While there are several contracts possible, we
discuss three examples: escrow, micropayments, and decentralized lotteries.

6.1 Escrow

Consider the scenario where Alice (the buyer) wants to purchase a used book
from Bob (the seller) using bitcoins. Alice and Bob live in different cities mak-
ing it infeasible for them to meet and perform the transaction. Bob promises
to ship the book to Alice once he receives the bitcoin payment. But Alice does
not trust Bob and fears that he may not send her the book after receiving the
payment. To reduce her risk, Alice proposes to use an escrow contract to pay
Bob. The contract needs a third party Carol (the escrow) who both Alice and
Bob trust. The contract proceeds as follows:

1. Alice requests public keys from Bob and Carol. Let these keys be
PubKeyB and PubKeyC respectively.

2. Alice transfers x bitcoins to a 2-of-3 multisig output which has the chal-
lenge script

OP 2 <PubKeyA> <PubKeyB> <PubKeyC> OP 3 OP CHECKMULTISIG

where PubKeyA is Alice’s public key.

3. Once Bob sees that Alice’s transaction has appeared on the blockchain,
he ships the book to Alice.

127
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4. The funds locked in the multisig output can be spent if any two of Alice,
Bob, and Carol provide signatures created by their respective private
keys. Any of the three following scenarios can happen.

(i) Alice is happy with the book she has received. She signs a transac-
tion which unlocks the 2-of-3 multisig output and transfers the x
bitcoins (minus the transaction fees) to the P2PK address contain-
ing Bob’s public key. She sends this transaction to Bob who adds
his own signature and broadcasts it on the network for inclusion
on the blockchain.

(ii) Alice receives the book but refuses to sign the transaction paying
Bob. Bob provides proof of shipment to the escrow Carol and
requests her to sign a transaction paying him. If Carol is convinced
that Bob actually shipped the book to Alice, she will send the
signed transaction to Bob, who will add his own signature to the
transaction and broadcast it on the network.

(iii) Bob does not ship the book to Alice. Furthermore, he refuses to
sign the transaction refunding the bitcoins to Alice. In this case,
Alice requests Carol to sign a transaction refunding the bitcoins. If
Carol complies, Alice adds her own signature to the refund trans-
action and broadcasts it on the network.

The above escrow contract fails if the escrow Carol colludes with Alice or Bob.
If Alice and Carol collude, then they can refuse to pay Bob even if he sent the
book to Alice. If Bob and Carol collude, then they can transfer the bitcoins
to any address without sending the book to Alice. Another weakness of the
contract is that it is difficult for Bob to give proof of shipment. He can send
the tracking information of the package to Carol but the package itself may be
empty. A solution to the empty package problem is to choose an escrow Carol
who lives in the same city as Alice, ask Bob to ship the book to Carol, and
have Alice collect it from her. Alice can open the package in Carol’s presence
and Carol can verify that it is not empty.

6.2 Micropayments

Even Bitcoin transaction involves paying transaction fees which makes using
Bitcoin to make small payments expensive (the transaction fees may exceed
the payment amount). But if a sequence of small payments are to be made
to the same entity, the micropayment contract can be used which aggregates
the small payments and requires that transaction fees be paid for only one
transaction.

Consider the scenario where Alice offers proofreading and editing services
online in return for bitcoins. Clients can email Alice their documents and
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Alice will reply with typos and grammatical errors she has found in the docu-
ments. Alice charges her clients a fixed amount of bitcoins per edited page. To
avoid the situation where a client refuses payment after receiving the edited
document, Alice uses the micropayment contract. This contract enables her
to get payment incrementally for each page she edits. Let Bob be a client who
wishes a to have a 100 page document proofread by Alice. Let us assume that
Alice charges 0.0001 bitcoins per page. So Bob expects to pay a maximum of
0.001 bitcoins to Alice. The protocol proceeds as follows:

1. Bob requests a public key from Alice. He also generates a public key
for himself. Let PubKeyA and PubKeyB be Alice’s and Bob’s public keys
respectively.

2. Bob creates a transaction t1 which transfers 0.01 bitcoins to a 2-of-2
multisig output which has the challenge script

OP 2 <PubKeyA> <PubKeyB> OP 2 OP CHECKMULTISIG.

Bob does not broadcast t1 on the network at this point. If he does, then
he is liable to have his funds locked in the multisig output forever in
the event that Alice refuses to sign any transaction which spends this
output.

3. Bob creates a refund transaction t2 which using the TXID of t1 which
unlocks the multisig output in t1 and transfers the 0.01 bitcoins (minus
transaction fees) to an address owned by him. A relative lock time of n
days is set on t2. This prevents t2 from being broadcast in the network
until n days have passed after t1 was included on the blockchain. At
this point, the response script in t2’s input has no signatures.

4. Bob includes his signature in the response script in t2 and sends it to
Alice. He asks her to add her signature in the response script and return
t2 to him. If Alice refuses to do this, Bob can terminate the contract.
He has not lost any funds as t1 has not been recorded on the blockchain.

5. If Alice includes her signature in t2 and returns it to Bob, both Alice
and Bob have fully signed the refund transaction which spends the 2-of-2
multisig output in t1 to refund Bob.

6. Bob now broadcasts t1 on the network. Once it is included on the
blockchain, he sends Alice his document.

7. Alice edits only the first page of the document. She creates a transaction
e1 which unlocks the 2-of-2 multisig output in t1 and pays her 0.0001
bitcoins and the remaining 0.0099 bitcoins (minus transaction fees) to
Bob.
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8. Alice includes her signature in e1 and sends it to Bob along with the
first page edits.

(i) If Bob refuses to sign e1, then Alice is unpaid only for the effort
spent in editing one page. She terminates the contract. Bob broad-
casts the refund transaction t2 after the relative lock time expires
and receives the 0.01 bitcoins (minus transaction fees).

(ii) If Bob signs e1 and returns it to Alice, then Alice is guaranteed at
least 0.0001 bitcoins if she broadcasts e1 before the relative lock
time on t2 expires. But Alice does not broadcast e1 at this point.

9. Alice edits the second page of the document. She creates a transaction
e2 which unlocks the 2-of-2 multisig output in t1 and pays her 0.0002
bitcoins and the remaining 0.0098 bitcoins (minus transaction fees) to
Bob.

10. Alice includes her signature in e2 and sends it to Bob along with the
second page edits.

(i) If Bob refuses to sign e2, then Alice can broadcast e1 and get paid
for the edits in the first page. She is unpaid only for the effort
spent in editing the second page. She terminates the contract.
When Alice broadcasts e1, Bob receives 0.0099 bitcoins (minus
transaction fees).

(ii) If Bob signs e2 and returns it to Alice, then Alice is guaranteed at
least 0.0002 bitcoins if she broadcasts e2 before the relative lock
time on t2 expires. But Alice does not broadcast e2 at this point.

11. Alice continues this process of sending edits for the next page along with
a transaction requesting cumulative payment for all pages edited so far.
Once all the pages have been edited, the contract terminates. Figure 6.1
illustrates the steps in the protocol when neither Alice nor Bob cheats.
Alice has to take care to finish editing before the relative lock time on
t2 expires. So she has n days after t1 is confirmed to finish the edits.

If Bob refuses to sign any of the ei transactions, Alice will not edit the subse-
quent pages. But Bob can always cheat Alice out of the payment for the last
page (page 100) as he receives the edits for the last page along with a request
to sign e100. This risk should be acceptable to Alice as she anyway receives
payment for the first 99 pages. If Alice wants to avoid not getting paid for the
last page, she can distribute the cost of editing the last page across the cost
of editing the first 99 pages and offer the last page edits for free.
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Alice Bob Network

Request public key

Send PubKeyA Create PubKeyB

Create t1
Create t2

Send t2 with B’s sig

Send t2 with A’s sig Broadcast t1

t1 confirmation

Send document

Send e1 with A’s sig and page 1 edits

Send e1 with B’s sig

Send e2 with A’s sig and page 2 edits

Send e2 with B’s sig

...

Send e100 with A’s sig and page 100 edits

Send e100 with B’s sig

Broadcast e100

e100 confirmation

Figure 6.1: Illustration of the steps in the micropayments protocol when nei-
ther Alice nor Bob cheats
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Alice Bob

Generate
random bit

Generate
random bit

xa xb+

xa ⊕ xb = 0?

Alice wins Bob wins

NoYes

Figure 6.2: High-level description of the two-person lottery protocol

6.3 Decentralized Lotteries

In a traditional lottery, participants purchase lottery tickets from the organizer
of the lottery. Some part of the money collected from the ticket sale will go
to the organizer for organizing the lottery and the rest will go to the jackpot.
The organizer picks a winner at random and awards him/her the jackpot. The
organizer can cheat in two ways. Firstly, he can charge an unreasonable fee
for organizing the lottery. Secondly, he can manipulate the procedure used to
pick the lottery winner and award the jackpot to a ticket holder of his choice.
These problems are eliminated in a Bitcoin-based decentralized lottery, i.e. a
lottery without an organizer.

For ease of exposition, we will first consider the case of a lottery with only
two participants, Alice and Bob. Let us assume that Alice and Bob each put
in one bitcoin. One of them needs to be randomly chosen to be the winner
who receives two bitcoins. At a high level, the lottery protocol involves both
Alice and Bob generating a single random bit each. Let these bits be xa and
xb. If the XOR of the bits is zero, Alice is the winner. Otherwise, Bob is the
winner. This protocol is illustrated in Figure 6.2. If a trusted third party were
available, Alice and Bob could send their bits and bitcoins to the third party
who would calculate the XOR of the bits and give the winner the two bitcoins.
In a decentralized setup, there is no trusted third party and messages need
to be exchanged between Alice and Bob. If Alice sends her bit xa to Bob
first, then Bob can claim that his bit xb is the complement of xa resulting in
xa ⊕ xb = 1. If Bob sends his bit to Alice first, Alice can cheat in a similar
manner. The solution is to use the blockchain to compel Alice and Bob to
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commit to their bits at the beginning of the lottery. The protocol proceeds as
follows:

1. Alice chooses a random bytestring SecretA of length either 16 or 17
bytes which she keeps a secret. She calculates the SHA-256 hash HashA

of SecretA and sends it to Bob. By revealing only the hash HashA

to Bob, Alice commits to the secret bytestring SecretA. The length
of SecretA represents the random bit chosen by Alice. The lengths 16
bytes (128 bits) and 17 bytes (136 bits) were chosen to make it infeasible
for Bob to recover SecretA from HashA by brute force search. Any two
distinct lengths which are long enough to prevent brute force attacks
can be used.

2. Bob also chooses a random bytestring SecretB of length either 16 or 17
bytes. He calculates its SHA-256 hash HashB and sends it to Alice.

3. The successful execution of the protocol requires Alice and Bob to re-
veal their secret bytestrings. To ensure this, Alice broadcasts a deposit
transaction on the network which unlocks a UTXO she owns and pays
two bitcoins to an output locked by a P2SH challenge script with redeem
script given below (indented for readability).

OP IF

OP SHA256 <HashA> OP EQUALVERIFY <PubKeyA>

OP ELSE

<Timeout> OP CHECKLOCKTIMEVERIFY OP DROP <PubKeyB>

OP ENDIF

OP CHECKSIG

The OP IF operator pops the the top stack element and checks if it
evaluates to True. If yes, the script between the OP IF operator and
the OP ELSE operator is executed. Otherwise, the script between the
OP ELSE operator and the OP ENDIF operator is executed. Note that
the OP CHECKSIG operator is executed at the very end in both cases.
The OP CHECKLOCKTIMEVERIFY operator checks that the top stack el-
ement is less than the nLockTime field of the transaction which un-
locks the output of the deposit transaction. If yes, the script execution
continues. Otherwise, it terminates. As transactions with a lock time
enabled cannot be included in a block until the lock time expires, the
OP CHECKLOCKTIMEVERIFY operator ensures that the deposit transaction
output is not spent until the after the block height or Unix time specified
in the Timeout field has been reached.

There are two possible response scripts to the above redeem script. Alice
can spend the output in the deposit transaction at any time by providing
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<SigAlice> <SecretA> OP 1

OP IF OP SHA256 <HashA> OP EQUALVERIFY <PubKeyA>

OP ELSE <Timeout> OP CHECKLOCKTIMEVERIFY OP DROP <PubKeyB>

OP ENDIF OP CHECKSIG

1

<SecretA>

<SigAlice>

OP IF OP SHA256 <HashA> OP EQUALVERIFY <PubKeyA>

OP ELSE <Timeout> OP CHECKLOCKTIMEVERIFY OP DROP <PubKeyB>

OP ENDIF OP CHECKSIG

<SecretA>

<SigAlice>OP SHA256 <HashA> OP EQUALVERIFY <PubKeyA> OP CHECKSIG

<HashSecretA>

<SigAlice><HashA> OP EQUALVERIFY <PubKeyA> OP CHECKSIG

<HashA>

<HashSecretA>

<SigAlice>
OP EQUALVERIFY <PubKeyA> OP CHECKSIG

<SigAlice>
<PubKeyA> OP CHECKSIG

<PubKeyA>

<SigAlice>OP CHECKSIG

True/False

Stack StateRemaining Script

Figure 6.3: Stack state during the execution of the deposit transaction redeem
script given Alice’s response

a response of the form

<SigAlice> <SecretA> OP 1

where SigAlice is Alice’s signature. Figure 6.3 shows the state of the
stack during the execution of the redeem script given Alice’s response
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<SigBob> OP 0

OP IF OP SHA256 <HashA> OP EQUALVERIFY <PubKeyA>

OP ELSE <Timeout> OP CHECKLOCKTIMEVERIFY OP DROP <PubKeyB>

OP ENDIF OP CHECKSIG

<Empty Array>

<SigBob>
OP IF OP SHA256 <HashA> OP EQUALVERIFY <PubKeyA>

OP ELSE <Timeout> OP CHECKLOCKTIMEVERIFY OP DROP <PubKeyB>

OP ENDIF OP CHECKSIG

<SigBob>

<Timeout> OP CHECKLOCKTIMEVERIFY OP DROP <PubKeyB> OP CHECKSIG

<Timeout>

<SigBob>

OP CHECKLOCKTIMEVERIFY OP DROP <PubKeyB> OP CHECKSIG

<Timeout>

<SigBob>

OP DROP <PubKeyB> OP CHECKSIG

<SigBob>

<PubKeyB> OP CHECKSIG

<PubKeyB>

<SigBob>

OP CHECKSIG

True/False

Stack StateRemaining Script

Figure 6.4: Stack state during the execution of the deposit transaction redeem
script given Bob’s response

to it. Alternatively, if the current block height or Unix time exceeds the
timeout encoded in the Timeout field then Bob can spend the output in
the deposit transaction by providing a response of the form

<SigBob> OP 0.

Figure 6.4 shows the state of the stack during the execution of the redeem
script given Bob’s response to it. Recall that the OP 0 operator pushes
an empty byte array onto the stack which evaluates to False.
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To summarize, Alice can unlock the deposit transaction output at any
time by providing the secret bytestring SecretA which hashes to HashA.
When the transaction which spends the output appears on the blockchain,
SecretA is revealed to Bob. If Alice does not spend the deposit transac-
tion output before Timeout is exceeded, then Bob can spend the output
by providing a signature. Since the deposit output contains two bitcoins
which originally belonged to Alice, she will incur a loss of two bitcoins
if she does not reveal her secret before the timeout.

4. Bob also broadcasts a deposit transaction on the network which unlocks
a UTXO he owns and pays two bitcoins to an output locked by a P2SH
challenge script with redeem script given below.

OP IF

OP SHA256 <HashB> OP EQUALVERIFY <PubKeyB>

OP ELSE

<Timeout> OP CHECKLOCKTIMEVERIFY OP DROP <PubKeyA>

OP ENDIF

OP CHECKSIG

The above script is complementary to the one used by Alice in her de-
posit transaction. Bob can unlock his deposit transaction output at any
time by providing the secret bytestring SecretB which hashes to HashB.
When the transaction which spends the output in this way appears on
the blockchain, SecretB is revealed to Alice. If Bob does not spend the
deposit transaction output before Timeout is exceeded, then Alice can
spend the output by providing a signature.

5. Alice and Bob wait for both the deposit transactions to be confirmed on
the blockchain.

6. Let us assume that Alice and Bob can both unlock UTXOs each con-
taining at least one bitcoin. Alice creates a transaction which unlocks
these UTXOs and pays two bitcoins to an output which has a P2SH
challenge script that can be unlocked by a response script1 having any
one of the following two forms:

(i) If the lengths of SecretA and SecretB are equal, the response
to the redeem script contains Alice’s signature followed by the
bytestrings SecretA and SecretB. The scriptSig field is given
by

<SigAlice> <SecretA> <SecretB>︸ ︷︷ ︸
Response to redeem script

<Redeem Script>.

1Recall that a valid response script corresponding to a P2SH challenge script consists of
the response to a redeem script followed by the redeem script itself.
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(ii) If the lengths of SecretA and SecretB are not equal, the re-
sponse to the redeem script contains Bob’s signature followed by
the bytestrings SecretA and SecretB. The scriptSig field is given
by

<SigBob> <SecretA> <SecretB>︸ ︷︷ ︸
Response to redeem script

<Redeem Script>.

While Alice and Bob know their own secret bytestrings, they need the
other secret bytestring to construct a valid response script. We will
discuss how they acquire the other bytestring below.

The redeem script consists of three functional parts shown below.

<Redeem Script> = <Check Hashes> <Compute Winner> <Check Sig>.

The <Check Hashes> portion of the redeem script checks that the bytes-
trings given in the response script hash to HashA and HashB. In Script
notation, it is given by

OP 2DUP OP SHA256 <HashB> OP EQUALVERIFY OP SHA256 <HashA> OP EQUALVERIFY

where the OP 2DUP operator duplicates the top two stack elements, the
OP SHA256 operator replaces the top stack element with its SHA-256
hash, and the OP EQUALVERIFY operator pops the top two stack ele-
ments and checks them for equality (if they are equal script execution
proceeds, otherwise it terminates). Figure 6.5 shows the state of the
stack during the execution of the <Check Hashes> portion of the redeem
script. We assume that the response to the redeem script (with Alice’s
signature) has already been pushed onto the stack. The stack items
HashSecretA and HashSecretB represent the SHA-256 hashes of the
bytestrings SecretA and SecretB respectively. The two OP EQUALVERIFY

operators check that these items are equal to the HashA and HashB

bytestrings provided in the redeem script. If either of the secret bytestrings
provided in the redeem script do not have the required hashes, the script
execution terminates and the remaining portion of the redeem script
is not executed. As the stack can only store byte arrays, the secrets
SecretA and SecretB were chosen to be bytestrings of length either 16
or 17 bytes. If the stack had allowed storage of arbitrary bitstrings, we
could have chosen the secrets to be bitstrings of length 128 or 129 bits.

If the <Check Hashes> portion of the redeem script succeeds, the script
execution proceeds with the <Compute Winner> portion which compares
the lengths of SecretA and SecretB. If the lengths are equal, then Alice
is the winner. Otherwise, Bob is the winner. This is akin to the bitwise
XOR to decide the winner where Alice won if the bits were equal and
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Bob won otherwise. After the execution of <Check Hashes>, the top
stack element is set to 0 to indicate that Alice is the winner and set
to 1 to indicate that Bob is the winner. In Script notation, <Compute
Winner> is given by

OP SIZE OP ROT OP SIZE OP NIP OP EQUAL

where the OP SIZE operator pushes the length of the top stack element
in bytes onto the stack, the OP ROT operator cyclically rotates the top
three stack elements once, and the OP NIP operator deleletes the stack
item below the top stack element.2 Figure 6.6 shows the state of the
stack during the execution of the <Compute Winner> portion of the re-
deem script. The <Check Sig> portion of the redeem script checks the
validity of the signature provided in the response to the redeem script.
Let PubKeyA and PubKeyB be public keys belonging to Alice and Bob
respectively. In Script notation, the <Check Sig> portion is given below.

OP IF

OP DROP <PubKeyB> OP CHECKSIG

OP ELSE

OP DROP <PubKeyA> OP CHECKSIG

OP ENDIF

The OP DROP operator deletes the top stack element. It is used to get
rid of the SecretB stack item as shown in Figure 6.7. We have assumed
that the top stack element after the execution of the <Compute Winner>

portion is 0.

For convenience, let us call the transaction created in this step the fund-
ing transaction as it funds the lottery by unlocking the UTXOs owned
by Alice and Bob. It requires signatures from both Alice and Bob to be
valid.

7. Alice includes her signature in the funding transaction and sends it to
Bob. Bob includes his signature in the funding transaction and broad-
casts it on the network. If Bob does not broadcast the funding trans-
action on the network, the lottery contract terminates. Alice and Bob
reclaim their deposits by revealing their respective secret bytestrings.
No one has lost any funds except for the transaction fees involved in
recording the deposit transactions and the reclaim transactions on the
blockchain.

2The <Compute Winner> script for deciding the winner is not unique and can be expressed
in several other ways.
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<SecretB>
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OP 2DUP OP SHA256 <HashB> OP EQUALVERIFY
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<SecretB>

<SecretA>
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OP SHA256 <HashB> OP EQUALVERIFY

OP SHA256 <HashA> OP EQUALVERIFY
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<HashB> OP EQUALVERIFY

OP SHA256 <HashA> OP EQUALVERIFY

<HashB>
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<SecretA>
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<SecretA>

<SigAlice>

OP EQUALVERIFY
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Stack StateRemaining Script

Figure 6.5: Stack state during the execution of the <Check Hashes> portion
of the lottery redeem script
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<SecretB>

<SecretA>

<SigAlice>
OP SIZE OP ROT OP SIZE OP NIP OP EQUAL

<LengthSecretB>

<SecretB>

<SecretA>

<SigAlice>

OP ROT OP SIZE OP NIP OP EQUAL

<SecretA>

<LengthSecretB>

<SecretB>
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OP SIZE OP NIP OP EQUAL
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<SecretA>
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Stack StateRemaining Script

Figure 6.6: Stack state during the execution of the <Compute Winner> portion
of the lottery redeem script
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0

<SecretB>

<SigAlice>

OP IF OP DROP <PubKeyB> OP CHECKSIG

OP ELSE OP DROP <PubKeyA> OP CHECKSIG OP ENDIF

<SecretB>

<SigAlice>
OP DROP <PubKeyA> OP CHECKSIG

<SigAlice>

<PubKeyA> OP CHECKSIG

<PubKeyA>

<SigAlice>
OP CHECKSIG

True/False

Stack StateRemaining Script

Figure 6.7: Stack state during the execution of the <Check Sig> portion of
the lottery redeem script

8. If the funding transaction is broadcast and confirmed, Alice reveals her
secret bytestring SecretA by claiming her deposit. Bob too claims his
deposit and ends up revealing his secret SecretB. Now both Alice and
Bob can compute the winner of the lottery by comparing the lengths of
their secrets. If Alice is the winner, she broadcasts a transaction which
unlocks the P2SH output and pays it to an address she owns. Bob does
the same if he is the winner. In case either Alice or Bob decides to abort
the contract by not revealing their secret bytestrings, the other party
can claim the aborting party’s deposit transaction output after Timeout
is exceeded. Since the deposit transaction output holds two bitcoins
(which is the same amount as the lottery jackpot), this situation is the
same as the aborting party losing the lottery.

The generalization of the two-party lottery protocol to N parties involves
each party betting one bitcoin and the winner (who can be any particular
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party with probability 1
N ) receiving N bitcoins. The protocol proceeds as

follows:

1. For i = 0, 1, . . . , N − 1, the ith party chooses a random integer li from
the set {16, 17, . . . , 16 +N − 1} and generates a random bytestring si of
length li bytes.

2. Both li and si are kept secret by each party. The parties exchange the
hashes hi of the secret bytestrings si.

3. For i = 0, 1, . . . , N − 1, the ith party broadcasts N − 1 deposit transac-
tions each of which has N bitcoins locked in its output. Each deposit
transaction output can either be reclaimed by the ith party by revealing
the secret si or by a jth party (j 6= i) after a timeout.

If the ith party does not reveal si before the timeout, it will lose a total
of N(N − 1) bitcoins which will distributed evenly among the other
N − 1 parties. So all other parties receive N bitcoins each. This ensures
that all the honest parties are rewarded with the best possible outcome
(winning the lottery) even if only one party aborts the protocol.

4. The winner of the lottery will be the party with index j where

j =
N−1∑
i=0

li mod N.

All the parties sign a funding transaction which unlocks UTXOs con-
taining one bitcoin owned by each of them and pays the sum to the
lottery winner.

5. If all the parties reveal their secrets si before the timeout, the lottery
winner claims the jackpot by spending the output in the funding trans-
action.



Chapter 7

Bitcoin Development

In this chapter, we describe the current process by which changes to the
Bitcoin protocol are made. As mentioned before, the Bitcoin Core reference
client implementation is the de facto specification of the Bitcoin protocol.
The source code of this client is available in the Github repository at https:
//github.com/bitcoin/bitcoin.

7.1 Bitcoin Improvement Proposals

Any proposed change to the Bitcoin protocol begins with a Bitcoin Improve-
ment Proposal (BIP). A BIP is a document with a precise technical description
of the proposed change. Not all changes require a BIP. Minor code changes
and enhancements can be directly submitted to the Bitcoin code repository
at GitHub. They will be discussed on GitHub by the Bitcoin Core developers
and be accepted or rejected once consensus has been reached.

For major changes, the person proposing the change discusses the proposed
change on the bitcoin-dev mailing list.1 This mailing list has all of the promi-
nent Bitcoin Core developers as members. If there are no major objections
regarding the feasibility or usefulness of the proposed change, the proposer
posts a draft BIP on the bitcoin-dev mailing list. After the suggested changes
have been incorporated, the draft BIP is submitted to the BIPs repository
on GitHub available at https://github.com/bitcoin/bips. One of the Bit-
coin Core developers is designated as the BIP editor (the current BIP editor is
Luke Dashjr). The BIP editor assigns a unique BIP number to the draft BIP.
Further changes can still be made to the draft BIP at this stage. The BIP
editor also classifies the BIP as either a process, informational, or standards
track BIP. The BIP category determines the subsequent BIP status changes.

• A process BIP describes a change to the Bitcoin development process.
For example, the details of the BIP workflow are described in BIP 2

1bitcoin-dev@lists.linuxfoundation.org
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which is titled “BIP Process, revised”.2 This BIP overrides BIP 1 which
was the original specification of the BIP workflow. Process BIPs do not
involve any code changes in the Bitcoin Core client. If there are no
objections to a draft process BIP, its status changes to active.

• Informational BIPs either provide information to the Bitcoin community
or describe features which do not affect block validity or the P2P network
protocol. For example, BIP 50 contains a post-mortem report of an
March 2013 fork in the blockchain due to unintentional differences in
block validity rules between the 0.8 release of the Bitcoin Core client
and the release prior to it.3 Another example is BIP 173 which describes
a new address format for SegWit outputs.4 Like the P2PKH address
format, this address format will be used for exchanging or representing
addresses outside of the Bitcoin network. The blockchain will not store
the outputs in this format. If the feature described in an informational
BIP receives real-world adoption, its status is changed to final. Until
such adoption becomes evident, its status may remain as draft or be
changed to proposed once the BIP author deems the BIP to be complete.

• A standards track BIP describes a change which affects transaction/block
validity rules or changes to the P2P network protocol. It may also de-
scribe changes which affect interoperability of different implementations
of the Bitcoin protocol. Standards track BIPs must include a link to an
implementation of the proposed feature along with the description of the
feature design. Once the BIP proposer has a reference implementation
of the draft BIP and does not anticipate any more changes, the status of
the BIP is changed from draft to proposed. At this stage, the implemen-
tation related to the BIP can be merged into the Bitcoin Core code and
made available in the next available release. If there is enough support
for the BIP from the Bitcoin community, the BIP status is changed to
final. The methodology used to measure support for a BIP is described
in the next section.

Figure 7.1 illustrates the various BIP status transitions. The status of a
draft BIP may be changed to deferred either by the BIP authors themselves
at any time or by the BIP editor if there has not been any progress being
made on the BIP. A deferred BIP may be changed back to a draft BIP once
progress is made. A draft BIP may also be withdrawn by the BIP authors
at any time. The status of a draft or proposed BIP is changed to rejected if
there has been no progress for three years. The status of a final or active BIP
is changed to replaced if another BIP supersedes the feature it describes. If

2https://github.com/bitcoin/bips/blob/master/bip-0002.mediawiki
3https://github.com/bitcoin/bips/blob/master/bip-0050.mediawiki
4https://github.com/bitcoin/bips/blob/master/bip-0173.mediawiki

https://github.com/bitcoin/bips/blob/master/bip-0002.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0050.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0173.mediawiki
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Figure 7.1: BIP status changes

the feature described in a final or active BIP is no longer relevant, its status
is changed to obsolete.

7.2 Hard and Soft Forks

In Chapter 4, we discussed blockchain forks which occur when two miners
find a valid block at the same time. Blockchain forks are eventually resolved
as it is unlikely that both branches in the fork continue to be simultaneously
extended to equal height. One of the branches is certain to overtake the other
resulting in all the miners switching to it.

A blockchain fork can also occur due to changes to the Bitcoin protocol
because all miners may not upgrade their Bitcoin clients to a version which
includes the changes. Hard forks refer to protocol changes which require
all the miners to upgrade to clients containing the changes in order to be
successfully deployed. For example, suppose a change to the Bitcoin protocol
raises the block size limit to 10 MB. For convenience, let us call the miners
running old clients non-upgraded miners and the miners running upgraded
clients upgraded miners. Now suppose an upgraded miner mines a 9 MB
block and broadcasts it on the network. Non-upgraded miners will reject
the block and continue working on the longest branch which contains only
blocks which abide by the old rules. Upgraded miners will accept the block.
This results in a blockchain fork with one branch containing the 9 MB block
and the other branch containing only blocks which abide by the old rules.
But this blockchain fork is seen only by the upgraded miners who consider
both branches as valid. The non-upgraded miners see only the branch not
containing the 9 MB block. The subsequent events can unfold in two ways.

• If the non-upgraded miners control the majority of the network hashrate,
then the branch containing the 9 MB block will eventually be abandoned
by the upgraded miners. This will happen for any branch containing
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blocks which violate the old size limit. The net effect is that the deploy-
ment of the block size limit increase fails.

• If the upgraded miners control the majority of the network hashrate, the
branch not containing the 9 MB block will be abandoned by them. But
this branch will not be abandoned by the non-upgraded miners as it is
the only valid branch they see. So as long non-upgraded miners exist,
this branch will continue to be extended by them. For this reason, hard
forks like block size limit increases require all the miners to upgrade for
successful deployment.

Soft forks refer to protocol changes which require only miners controlling
a majority of the network hashrate to upgrade in order to be successfully de-
ployed. SegWit was a soft fork change to the Bitcoin protocol. For example,
any P2WPKH output looks like an anyone-can-spend output to a miner run-
ning a pre-SegWit client. Such a miner will accept a transaction which spends
this output by providing an empty scriptSig and no witness structure as
valid. If a miner running a pre-SegWit client broadcasts a valid block contain-
ing the spending transaction, miners running pre-SegWit clients will accept
the block while miners running SegWit clients will reject the block as invalid.
The miners running SegWit clients will continue working on extending the
longest branch that is valid under SegWit rules. Miners running pre-SegWit
clients will see a blockchain fork with one branch containing the transaction
spending the P2WPKH output without providing a witness structure and the
other branch not containing this transaction. Miners running SegWit clients
will not see the blockchain fork as they do not consider the transaction spend-
ing the P2WPKH output without providing a witness structure as valid. The
subsequent events can unfold in two ways.

• If the miners running pre-SegWit clients control the majority of the net-
work hashrate, then the branch not containing the transaction spend-
ing the P2WPKH output without providing a witness structure will be
abandoned. This will prevent SegWit from being successfully deployed
on the network.

• If the miners running SegWit clients control the majority of the net-
work hashrate, then the branch containing the transaction spending the
P2WPKH output without providing a witness structure will be aban-
doned by the miners running pre-SegWit clients. This will happen for
any branch containing transactions which spend SegWit outputs with-
out providing witness structures. Thus SegWit remains successfully de-
ployed as long as miners controlling a majority of the network hashrate
run SegWit clients.

To gauge miner readiness prior to activating a soft fork feature like SegWit,
BIP 9 proposed allowing miners to indicate their readiness by setting bits in
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the nVersion field of blocks they mine.5 Each proposed soft fork is alloted a bit
in the nVersion field. Recall that the mining target threshold is recalculated
every 2016 blocks. This duration is called a retarget period. If at least 95%
of the blocks (≥ 1916 out of 2016) mined in a retarget period have the bit
corresponding to a soft fork set, then the soft fork is considered locked-in and
is activated at the end of the next retarget period.

5https://github.com/bitcoin/bips/blob/master/bip-0009.mediawiki

https://github.com/bitcoin/bips/blob/master/bip-0009.mediawiki


Appendix A

ECDSA Signature
Malleability

Following the notation in Section 2.5, we show that (r, n − s) is a valid
secp256k1 ECDSA signature for a message m whenever (r, s) is a valid
secp256k1 ECDSA signature for the same message.

Let e be the message digest (double SHA-256 hash) of m. Let j ∈
{1, 2, . . . , n − 1} be a randomly chosen integer where n is the 256-bit prime
number given in equation (2.3). Let k ∈ {1, 2, . . . , n− 1} be the private key.

The signature generation procedure first adds the base point P to itself
j times to get jP = (x, y). The coordinates of the signature (r, s) are then
r = x mod n and s = j−1(e+ kr) mod n.

The signature verification procedure requires the signature (r, s), the mes-
sage digest e, and the public key kP . The point Q = j1P + j2kP is calculated
where j1 = es−1 mod n and j2 = rs−1 mod n. If Q = (x1, y1) ∈ F2

p, then the
signature is considered valid if r = x1 mod n.

We need the following lemma.

Lemma 1. In the prime field Fn, (n− s)−1 = n− s−1 for all s ∈ F∗n.

Proof. By definition, the multiplicative inverse of n − s is (n − s)−1. We see
that n− s−1 is also a multiplicative inverse of n− s as

(n− s) ∗ (n− s−1) = (n2 − sn− ns−1 + ss−1) mod n = 1,

(n− s−1) ∗ (n− s) = (n2 − s−1n− ns+ s−1s) mod n = 1.

Every nonzero element in a field has a unique multiplicative inverse. To see
this, suppose x and z are both multiplicative inverses of y ∈ F∗, i.e. x ∗ y =
y∗x = 1 and y∗z = z∗y = 1. Then x = x∗1 = x∗(y∗z) = (x∗y)∗z = 1∗z = z.

So by the uniqueness of the multiplicative inverse of n − s, we have (n −
s)−1 = n− s−1.
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Consider the verification procedure for the signature (r, n− s) when (r, s)
is a valid signature. The point Q corresponding to (r, n− s) is given by

Q = e(n− s)−1P + r(n− s)−1kP
=
[
(n− s)−1(e+ kr)

]
P

(a)
=
[
(n− s−1)(e+ kr)

]
P

= nP − s−1(e+ kr)P

(b)
= O − s−1(e+ kr)P

(c)
= −jP
(d)
= (x,−y).

In the above equality chain, equality (a) follows from Lemma 1, equality (b)
follows from nP = O which was argued in Section 2.4, equality (c) follows
from O being the additive identity, and equality (d) follows from the fact that
the additive identity of jP = (x, y) is (x,−y). Since r = x mod n, (r, n − s)
is a valid signature.



Appendix B

Probability of a successful
double spending attack

In this appendix, we derive the success probability of a double spending attack
given in equation (4.1). We closely follow the derivation by Meni Rosenfeld
(https://arxiv.org/abs/1402.2009v1) with the exception that we do not
assume that the attacker Alice pre-mines a block containing t2 before com-
mencing the attack.

To be completed.
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