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Introduction
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Exploration-Exploitation Dilemma
✓Online decision-making involves a fundamental choice:
✓Exploitation - Make the best decision given current information

✓Exploration - Gather more information

✓The best long-term strategy may involve short-term sacrifices

✓Gather enough information to make the best overall decisions
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Examples
✓Restaurant Selection
✓Exploitation - Go to your favourite restaurant

✓Exploration - Try a new restaurant

✓Holiday planning
✓Exploitation – The camping site you go to since you are born

✓Exploration – Hitchhike and follow the flow

✓Game Playing
✓Exploitation - Play the move you believe is best

✓Exploration - Play an experimental move
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Principles
✓Random Exploration
✓Add noise to greedy policy (e.g. -greedy)

✓Optimism in the Face of Uncertainty
✓Estimate uncertainty on value

✓Prefer to explore states/actions with highest uncertainty

✓Information State Search
✓Consider agent’s information as part of its state

✓Lookahead to see how information helps rewards
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Bandits
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Multi-Armed Bandit
✓A multi-armed bandit is a tuple 𝒜,ℛ
✓𝒜 is a known set of 𝑚 actions (or “arms”)

✓ℛ𝑎(𝑟) = 𝑃(𝑟|𝑎) is an unknown probability 
distribution over rewards

✓At each step 𝑡 the agent selects an action 
at ∈ 𝒜

✓The environment generates a reward 
𝑟𝑡~ℛ

𝑎𝑡

✓The goal is to maximise cumulative reward 
σ𝜏=1
𝑡 𝑟𝜏
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Regret
✓The action-value is the mean reward for action 𝑎

𝑄 𝑎 = 𝔼 𝑟|𝑎

✓The optimal value 𝑉∗ is
𝑉∗ = 𝑄 𝑎∗ = max

𝑎∈𝒜
𝑄(𝑎)

✓The regret is the opportunity loss for one step
𝐼𝑡 = 𝔼 𝑉∗ − 𝑄 𝑎𝑡

✓The total regret is the total opportunity loss

𝐿𝑡 = 𝔼 ෍

𝜏=1

𝑡

𝑉∗ − 𝑄 𝑎𝜏

✓Maximise cumulative reward ≡ minimise total regret
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Counting Regret
✓The count 𝑁𝑡(𝑎) is expected number of selections for action 𝑎

✓The gap ∆𝑎= 𝑉∗ − 𝑄(𝑎) is the difference in value between action 𝑎 and 
optimal action 𝑎∗

✓Regret is a function of gaps and the counts

𝐿𝑡 = 𝔼 ෍

𝜏=1

𝑡

𝑉∗ − 𝑄 𝑎𝜏 = ෍

𝑎∈𝒜

𝔼 𝑁𝑡 𝑎 (𝑉∗ − 𝑄 𝑎𝜏 ) = ෍

𝑎∈𝒜

𝔼 𝑁𝑡 𝑎 ∆𝑎

✓A good algorithm ensures small counts for large gaps

✓Problem: gaps are not known!
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Linear or Sublinear Regret
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✓If an algorithm 
forever explores it will 
have linear total regret

✓If an algorithm never 
explores it will have 
linear total regret

✓Is it possible to 
achieve sublinear total 
regret?



Exploration Strategies
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Greedy Algorithms
✓We consider algorithms that estimate ෠𝑄𝑡 𝑎 ≈ 𝑄(𝑎)

✓Estimate the value of each action by Monte-Carlo evaluation

෠𝑄𝑡 𝑎 =
1

𝑁𝑡(𝑎)
෍

𝜏

𝑟𝜏𝟏(𝑎𝜏; 𝑎)

✓The greedy algorithm selects action with highest value
𝑎𝑡
∗ = arg max

𝑎∈𝒜

෠𝑄𝑡 𝑎

✓Greedy can lock onto a suboptimal action forever
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Greedy has linear total regret



𝜖-greedy Algorithms
✓The 𝜖-greedy algorithm continues to explore forever
✓With probability 1 − 𝜖 select 𝑎 = max

𝑎∈𝒜
෠𝑄 𝑎

✓With probability 𝜖 select a random action

✓Constant 𝜖 ensures minimum regret

𝐿𝑡 ≥
𝜖

|𝒜|
෍

𝑎∈𝒜

∆𝑎
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𝜖-greedy has linear total regret



Decaying 𝜖𝑡-greedy Algorithms
✓Pick a decay schedule for 𝜖1, 𝜖2, …

✓Consider the following schedule
𝑐 > 0

𝑑 = min
a|Δ𝑎>0

Δ𝑖

𝜖𝑡 = min 1,
𝑐|𝒜|

𝑑2𝑡

✓Decaying 𝜖𝑡-greedy has logarithmic asymptotic total regret

✓Unfortunately, schedule requires advance knowledge of gaps

✓Goal: find an algorithm with sublinear regret for any multi-armed bandit 
(without knowledge of R)
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Lower Bound
✓The performance of any algorithm is determined by similarity between optimal 
arm and other arms

✓Hard problems have similar-looking arms with different means

✓This is described formally by the gap ∆𝑎 and the similarity in distributions 
𝐾𝐿(ℛ𝑎||ℛ𝑎∗)
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Asymptotic total regret is at least logarithmic in the number of steps

lim
𝑡→∞

𝐿𝑡 ≥ log 𝑡 σ𝑎|Δ𝑎>0
Δ𝑎

𝐾𝐿(ℛ𝑎||ℛ𝑎∗)

Theorem (Lai and Robbins)



Optimism in the Face of Uncertainty (I)
✓Which action should we pick?

✓The more uncertain we are about an action-value

✓The more important it is to explore that action

✓It could turn out to be the best action
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Optimism in the Face of Uncertainty (II)
✓After picking blue action

✓We are less uncertain about the value

✓And more likely to pick another action

✓Until we home in on best action
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Upper Confidence Bounds
✓Estimate an upper confidence ෡𝑈𝑡(𝑎) for each action value

✓Such that Q a ≤ ෠𝑄𝑡 𝑎 + ෡𝑈𝑡(𝑎) with high probability

✓This depends on the number of times 𝑁(𝑎) has been selected
✓Small 𝑁𝑡(𝑎) ⇒large ෡𝑈𝑡(𝑎) (estimated value is uncertain)

✓Large 𝑁𝑡(𝑎) ⇒ small ෡𝑈𝑡(𝑎) (estimated value is accurate)

✓Select action maximising Upper Confidence Bound (UCB)
𝑎𝑡 = argmax

𝑎∈𝒜
෠𝑄𝑡 𝑎 + ෡𝑈𝑡(𝑎)
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Hoeffding’s Inequality

We will apply Hoeffding’s Inequality to rewards of the bandit conditioned on 
selecting action 𝑎

𝑃 Q a ≤ ෠𝑄𝑡 𝑎 + ෡𝑈𝑡(𝑎) ≤ 𝑒−2𝑁𝑡 𝑎 ෡𝑈𝑡 𝑎
2
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Let 𝑋1, … , 𝑋𝑡 be i.i.d random variables in [0,1] and let ത𝑋𝑡 =
1

𝜏
σ𝜏=1
𝑡 𝑋𝑡 be the 

sample mean. Then 

𝑃 𝔼 𝑋 > ത𝑋𝑡 + 𝑢 ≤ 𝑒−2𝑡𝑢
2

Theorem (Hoeffding’s Inequality)



Calculating Upper Confidence Bounds
✓Pick a probability 𝑝 that true value exceeds UCB

✓Now solve for 𝑈𝑡(𝑎)

𝑒−2𝑁𝑡 𝑎 𝑈𝑡 𝑎
2
= 𝑝

𝑈𝑡 𝑎 =
− log 𝑝

2𝑁𝑡(𝑎)

✓Reduce 𝑝 as we observe more rewards, e.g. 𝑝 = 𝑡−4

✓Ensures we select optimal action as 𝑡 → ∞

𝑈𝑡 𝑎 =
2log 𝑡

𝑁𝑡(𝑎)
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UCB1
✓This leads to the UCB1 algorithm

𝑎𝑡 = argmax
a∈𝒜

𝑄 𝑎 +
2log 𝑡

𝑁𝑡(𝑎)

✓The UCB algorithm achieves logarithmic asymptotic total regret
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UCB vs. 𝜖-
greedy on 10-
armed Bandit
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Bayesian Bandits
✓So far, no assumptions about the reward distribution ℛ
✓Except bounds on rewards

✓Bayesian bandits exploit prior knowledge of rewards P(ℛ)

✓They compute posterior distribution of rewards P(ℛ|ℎ𝑡)
✓where ℎ𝑡 = 𝑎1, 𝑟1; … ; 𝑎𝑡−1𝑟𝑡−1 is the history

✓Use posterior to guide exploration
✓Upper confidence bounds (Bayesian UCB)

✓Probability matching (Thompson sampling)

✓Better performance if prior knowledge is accurate
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Bayesian UCB Example - Independent 
Gaussians

Assume reward distribution is 
Gaussian

ℛ𝑎 𝑟 = 𝒩(𝑟; 𝜇𝑎, 𝜎𝑎
2)
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✓Compute Gaussian posterior over 𝜇𝑎 and 𝜎𝑎
2 (Bayes)

𝑃 𝜇𝑎, 𝜎𝑎
2 ℎ𝑡 ∝ 𝑃(𝜇𝑎, 𝜎𝑎

2) ෑ

𝑡|𝑎𝑡=𝑎

𝒩(𝑟𝑡; 𝜇𝑎, 𝜎𝑎
2)

✓Pick action that maximises standard deviation of 𝑄(𝑎)

𝑎𝑡 = argmax 𝜇𝑎 + 𝑐𝜎𝑎/ 𝑁(𝑎)



Probability Matching
✓Probability matching selects action 𝑎 according to probability that 𝑎
is the optimal action

𝜋 𝑎 ℎ𝑡 = 𝑃 𝑄 𝑎 = max
a′

𝑄 𝑎′ |ℎ𝑡

✓Probability matching is optimistic in the face of uncertainty
✓Uncertain actions have higher probability of being max

✓Can be difficult to compute analytically from posterior
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Thompson Sampling
✓Thompson sampling implements probability matching

𝜋 𝑎 ℎ𝑡 = 𝔼ℛ|ℎ𝑡 𝟏 𝑄 𝑎 ; argmax
a′∈𝒜

𝑄 𝑎′ |ℎ𝑡

✓Use Bayes law to compute posterior distribution 𝑃(ℛ|ℎ𝑡)

✓Sample a reward distribution ℛ from posterior

✓Compute action-value function Q a = 𝔼 ℛ𝑎

✓Select action maximising value on sample 𝑎𝑡 = argmax
a∈𝒜

𝑄(𝑎)

✓Thompson sampling achieves Lai and Robbins lower bound!
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Information State
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Value of Information
✓Exploration is useful because it gains information

✓Can we quantify the value of information?
✓How much reward a decision-maker would be prepared to pay in order to have that 

information, prior to making a decision

✓Long-term reward after getting information - immediate reward

✓Information gain is higher in uncertain situations

✓Therefore it makes sense to explore uncertain situations more

✓If we know value of information, we can trade-off exploration and exploitation 
optimally
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Information State Space
✓We have viewed bandits as one-step decision-making problems

✓Can also view as sequential decision-making problems

✓At each step there is an information state ǁ𝑠
✓ ǁ𝑠 is a statistic of the history, i.e. ǁ𝑠 = 𝑓(ℎ𝑡)

✓summarizes all information accumulated so far

✓Each action 𝑎 causes a transition to a new information state ǁ𝑠’ (and adds 
information) with probability ෨𝑃 ǁ𝑠, ǁ𝑠′

𝑎

✓Defines an MDP ෩ℳ in augmented information state space
෩ℳ = ሚ𝒮,𝒜, ෨𝒫,ℛ, 𝛾
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Example - Bernoulli Bandits
✓Consider a Bernoulli bandit, such that ℛ𝑎 = ℬ(𝜇𝑎) (e.g. win or lose 
a game with probability 𝜇𝑎)

✓Want to find which arm has the highest 𝜇𝑎

✓The information state is ǁ𝑠 = 𝛼, 𝛽
✓𝛼𝑎 counts the pulls of arm 𝑎 where reward was 0

✓𝛽𝑎 counts the pulls of arm 𝑎 where reward was 1
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Solving Information State Space Bandits
✓We now have an infinite MDP over information states that can be 
solved by reinforcement learning

✓Model-free reinforcement learning
✓e.g. Q-learning (Duff, 1994)

✓Bayesian model-based reinforcement learning
✓e.g. Gittins indices (Gittins, 1979) 

✓This approach is known as Bayes-adaptive RL

✓Finds Bayes-optimal exploration/exploitation trade-off with respect to prior 
distribution
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Bayes-Adaptive Bernoulli Bandits
✓Start with 𝐵𝑒𝑡𝑎(𝛼𝑎, 𝛽𝑎) prior over reward 
function ℛ𝑎

✓Each time 𝑎 is selected, update posterior for ℛ𝑎
✓𝐵𝑒𝑡𝑎(𝛼𝑎 + 1, 𝛽𝑎) if r = 0

✓𝐵𝑒𝑡𝑎(𝛼𝑎, 𝛽𝑎 + 1) if r = 1

✓This defines transition function ෨𝑃 for the Bayes-
adaptive MDP

✓Information state 𝛼, 𝛽 corresponds to reward 
model 𝐵𝑒𝑡𝑎(𝛼, 𝛽)

✓Each state transition corresponds to a Bayesian 
model update
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Gittins Indices for Bernoulli Bandits
✓Bayes-adaptive MDP can be solved by dynamic programming

✓The solution is known as the Gittins index

✓Exact solution to Bayes-adaptive MDP is typically intractable
✓Information state space is too large

✓More recent idea: apply simulation-based search (Guez et al. 2012)
✓Forward search in information state space

✓Using simulations from current information state
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Contextual Bandits
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Contextual Bandits
✓A contextual bandit is a tuple 𝒜, 𝒮, ℛ

✓𝒮 = 𝑃(𝑠) is an unknown distribution 
over states (contexts)

✓ℛ𝑠
𝑎(𝑟) = 𝑃(𝑟|𝑠, 𝑎) is an unknown 

probability distribution over rewards

✓At each step t
✓Environment generates state 𝑠𝑡 ∼ 𝒮

✓Agent selects action 𝑎𝑡 ∈ 𝒜

✓Environment generates reward 𝑟𝑡 ∼ ℛ𝑠𝑡

𝑎𝑡
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Linear Regression
✓Action-value function is expected reward for state 𝑠 and action 𝑎

𝑄 𝑠, 𝑎 = 𝔼[𝑟|𝑠, 𝑎]

✓Estimate value function with a linear function approximator
𝑄𝜃 𝑠, 𝑎 = 𝜙 𝑠, 𝑎 𝑇𝜃 ≈ 𝑄 𝑠, 𝑎

✓Estimate parameters by least squares regression

𝐴𝑡 =෍

𝜏=1

𝑡

𝜙 𝑠𝜏 , 𝑎𝜏 𝜙 𝑠𝜏, 𝑎𝜏
𝑇

𝑏𝑡 =෍

𝜏=1

𝑡

𝜙 𝑠𝜏, 𝑎𝜏 𝑟𝜏

𝜃𝑡 = 𝐴𝑡
−1bt
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Linear Upper Confidence Bounds
✓Least squares regression estimates the mean action-value 𝑄𝜃 𝑠, 𝑎

✓But it can also estimate the variance of the action-value 𝜎𝜃
2 𝑠, 𝑎

✓i.e. the uncertainty due to parameter estimation error

✓Add on a bonus for uncertainty, 𝑈𝜃 𝑠, 𝑎 = 𝑐𝜎
✓i.e. define UCB to be c standard deviations above the mean
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Geometric Interpretation
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✓Define confidence ellipsoid 𝜀𝑡
around parameters 𝜃𝑡

✓Such that 𝜀𝑡 includes true 
parameters 𝜃∗ with high 
probability

✓Use this ellipsoid to estimate the 
uncertainty of action values

✓Pick parameters within ellipsoid 
that maximise action value

argmax
𝜃∈𝜖

𝑄𝜃 𝑠, 𝑎



Calculating Linear Upper Confidence 
Bounds (LinUCB)
✓For least squares regression, parameter covariance is 𝐴−1

✓Action-value is linear in features 
𝑄𝜃 𝑠, 𝑎 = 𝜙 𝑠, 𝑎 𝑇𝜃

✓So action-value variance is quadratic

𝜎𝜃
2 𝑠, 𝑎 = 𝜙 𝑠, 𝑎 𝑇𝐴−1𝜙(𝑠, 𝑎)

✓Upper confidence bound is

𝑄𝜃 𝑠, 𝑎 + 𝑐 𝜙 𝑠, 𝑎 𝑇𝐴−1𝜙(𝑠, 𝑎)

✓Select action maximising upper confidence bound

𝑎𝑡 = argmax
𝑎∈𝒜

𝑄𝜃 𝑠𝑡, 𝑎 + 𝑐 𝜙 𝑠𝑡 , 𝑎
𝑇𝐴−1𝜙(𝑠𝑡 , 𝑎)
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Linear UCB for 
Selecting Front 
Page News
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Exploration-Exploitation 
in MDPs
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Applying Exploration/Exploitation to 
MDPs

The same principles for exploration/exploitation apply to MDPs

✓Naive Exploration

✓Optimism in the Face of Uncertainty

✓Probability Matching

✓Information State Search
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Upper Confidence Bounds - Model-Free 
RL
✓Maximise UCB on action-value function 𝑄𝜋 𝑠, 𝑎

𝑎𝑡 = argmax
𝑎∈𝒜

𝑄 𝑠𝑡 , 𝑎 + 𝑈(𝑠𝑡 , 𝑎)

✓ Estimate uncertainty in policy evaluation 

✓ Ignore uncertainty from policy improvement

✓Maximise UCB on optimal action-value function 𝑄∗ 𝑠, 𝑎
𝑎𝑡 = argmax

𝑎∈𝒜
𝑄 𝑠𝑡, 𝑎 + 𝑈1(𝑠𝑡 , 𝑎) + 𝑈2(𝑠𝑡, 𝑎)

✓Estimate uncertainty in policy evaluation

✓Estimate uncertainty from policy improvement
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Information State Search in MDPs
✓MDPs can be augmented to include information state

✓Now the augmented state is 𝑠, ǁ𝑠
✓ 𝑠 is original state within MDP
✓ ǁ𝑠 is a statistic of the history

✓Each action a causes a transition
✓to a new state 𝑠′ with probability 𝒫𝑠,𝑠′

𝑎

✓to a new information state ǁ𝑠′

✓Defines MDP ෩ℳ in augmented information state space
෩ℳ = ሚ𝒮,𝒜, ෨𝒫,ℛ, 𝛾

✓Posterior distribution over MDP model is an information state
ǁ𝑠 = 𝑃(𝒫,ℛ|ℎ𝑡)

✓Solve this MDP to find optimal exploration/exploitation trade-off (with respect to prior)
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Wrap-up
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Take (stay) home messages
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✓A selection of principles for exploration/exploitation
✓Naive methods (𝜖-greedy)

✓Upper confidence bounds

✓Probability matching

✓Information state search

✓Principles developed in bandit setting but also apply to MDP setting



Coming up
Imitation Learning
✓Demonstration techniques

✓Inverse reinforcement learning

✓Reinforcement learning with generative models
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