Exploration-Exploitation

DAVIDE BACCIU - BACCIU@DI.UNIPI.IT

Outline

✓Introduction

- Exploration and Exploitation
 - Simple naïve exploration (ϵ -greedy)
 - ✓ Optimistic approaches
 - Probability matching & Information Value
- ✓ Bandits
 - ✓ Multi-armed
 - ✓Contextual
- ✓ Back to MDPs

Introduction

Exploration-Exploitation Dilemma

Online decision-making involves a fundamental choice:
 Exploitation - Make the best decision given current information
 Exploration - Gather more information

The best long-term strategy may involve short-term sacrifices

✓ Gather enough information to make the best overall decisions

Examples

✓ Restaurant Selection

Exploitation - Go to your favourite restaurant

Exploration - Try a new restaurant

✓ Holiday planning

Exploitation – The camping site you go to since you are born

✓ Exploration – Hitchhike and follow the flow

✓ Game Playing

Exploitation - Play the move you believe is best

Exploration - Play an experimental move

Principles

✓ Random Exploration

Add noise to greedy policy (e.g. -greedy)

✓ Optimism in the Face of Uncertainty

Estimate uncertainty on value

Prefer to explore states/actions with highest uncertainty

✓Information State Search

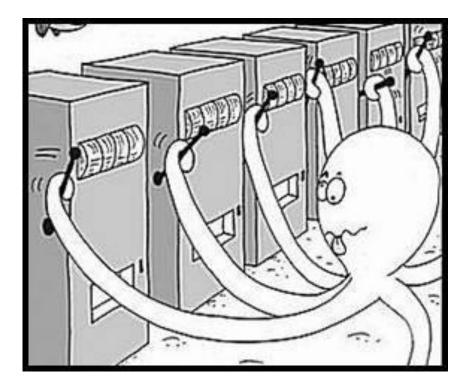
Consider agent's information as part of its state

Lookahead to see how information helps rewards

Bandits

Multi-Armed Bandit

- ✓ A multi-armed bandit is a tuple ⟨A, R⟩
 ✓ A is a known set of m actions (or "arms")
 ✓ R^a(r) = P(r|a) is an unknown probability distribution over rewards
- ✓ At each step t the agent selects an action $a_t \in A$
- ✓ The environment generates a reward $r_t \sim \mathcal{R}^{a_t}$
- ✓ The goal is to maximise cumulative reward $\sum_{\tau=1}^{t} r_{\tau}$



Regret

 \checkmark The action-value is the mean reward for action a

 $Q(a) = \mathbb{E}[r|a]$

✓ The optimal value V^* is

$$V^* = Q(a^*) = \max_{a \in \mathcal{A}} Q(a)$$

✓ The regret is the opportunity loss for one step

$$I_t = \mathbb{E}[V^* - Q(a_t)]$$

✓ The total regret is the total opportunity loss

$$L_t = \mathbb{E}\left[\sum_{\tau=1}^t V^* - Q(a_\tau)\right]$$

✓ Maximise cumulative reward \equiv minimise total regret

Counting Regret

✓ The count $N_t(a)$ is expected number of selections for action a

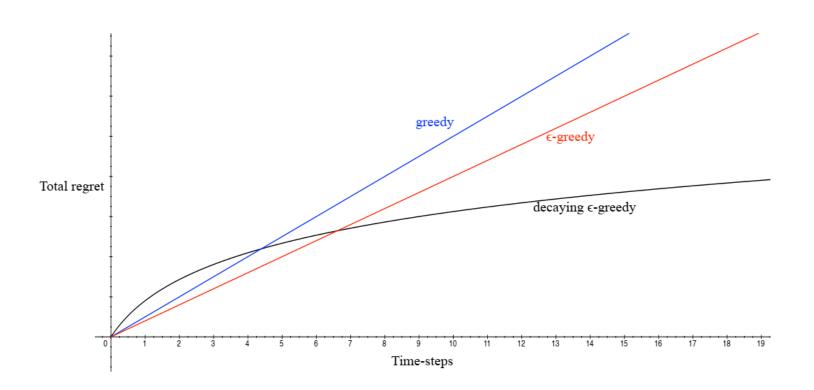
✓ The gap $\Delta_a = V^* - Q(a)$ is the difference in value between action a and optimal action a^*

✓ Regret is a function of gaps and the counts $L_t = \mathbb{E}\left[\sum_{\tau=1}^t V^* - Q(a_\tau)\right] = \sum_{a \in \mathcal{A}} \mathbb{E}[N_t(a)](V^* - Q(a_\tau)) = \sum_{a \in \mathcal{A}} \mathbb{E}[N_t(a)]\Delta_a$

✓ A good algorithm ensures small counts for large gaps

✓ Problem: gaps are not known!

Linear or Sublinear Regret



✓ If an algorithm
 forever explores it will
 have linear total regret

 ✓ If an algorithm never explores it will have linear total regret

✓ Is it possible to achieve sublinear total regret?

Exploration Strategies

✓ We consider algorithms that estimate $\hat{Q}_t(a) \approx Q(a)$

Estimate the value of each action by Monte-Carlo evaluation

$$\widehat{Q}_t(a) = \frac{1}{N_t(a)} \sum_{\tau} r_{\tau} \mathbf{1}(a_{\tau}; a)$$

✓ The greedy algorithm selects action with highest value $a_t^* = \underset{a \in \mathcal{A}}{\arg \max \hat{Q}_t(a)}$

✓ Greedy can lock onto a suboptimal action forever

Greedy has linear total regret

✓ The ϵ -greedy algorithm continues to explore forever ✓ With probability $1 - \epsilon$ select $a = \max_{a \in \mathcal{A}} \hat{Q}(a)$

 \checkmark With probability ϵ select a random action

\checkmark Constant ϵ ensures minimum regret

$$L_t \ge \frac{\epsilon}{|\mathcal{A}|} \sum_{a \in \mathcal{A}} \Delta_a$$

ϵ -greedy has linear total regret

Decaying ϵ_t -greedy Algorithms

✓ Pick a decay schedule for $\epsilon_1, \epsilon_2, ...$

✓ Consider the following schedule

c > 0 $d = \min_{a \mid \Delta_a > 0} \Delta_i$ $\epsilon_t = \min\left\{1, \frac{c \mid \mathcal{A} \mid}{d^2 t}\right\}$

Decaying ϵ_t -greedy has logarithmic asymptotic total regret

✓ Unfortunately, schedule requires advance knowledge of gaps

✓ Goal: find an algorithm with sublinear regret for any multi-armed bandit (without knowledge of R)

Lower Bound

The performance of any algorithm is determined by similarity between optimal arm and other arms

✓ Hard problems have similar-looking arms with different means

✓ This is described formally by the gap Δ_a and the similarity in distributions $KL(\mathcal{R}^a || \mathcal{R}^{a^*})$

Theorem (Lai and Robbins)

Asymptotic total regret is at least logarithmic in the number of steps

$$\lim_{t \to \infty} L_t \ge \log t \sum_{a \mid \Delta_a > 0} \frac{\Delta_a}{KL(\mathcal{R}^a \mid \mid \mathcal{R}^{a^*})}$$

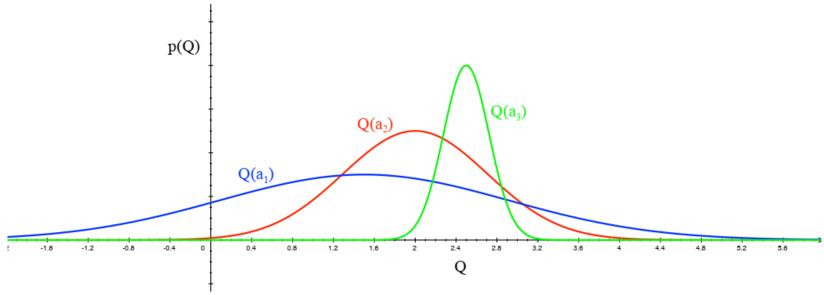
Optimism in the Face of Uncertainty (I)

✓ Which action should we pick?

✓ The more uncertain we are about an action-value

✓ The more important it is to explore that action

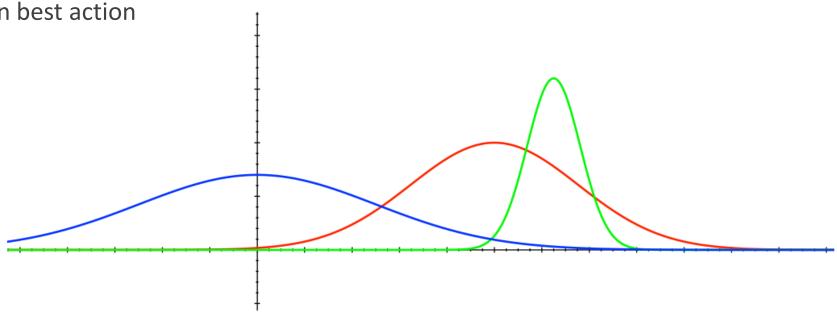
✓ It could turn out to be the best action



Optimism in the Face of Uncertainty (II)

✓ After picking blue action

- ✓ We are less uncertain about the value
- ✓ And more likely to pick another action
- ✓ Until we home in on best action



Upper Confidence Bounds

- Estimate an upper confidence $\widehat{U}_t(a)$ for each action value
- ✓ Such that $Q(a) \leq \hat{Q}_t(a) + \hat{U}_t(a)$ with high probability
- ✓ This depends on the number of times N(a) has been selected ✓ Small $N_t(a) \Rightarrow$ large $\widehat{U}_t(a)$ (estimated value is uncertain) ✓ Large $N_t(a) \Rightarrow$ small $\widehat{U}_t(a)$ (estimated value is accurate)

✓ Select action maximising Upper Confidence Bound (UCB) $a_t = \arg \max_{a \in \mathcal{A}} \hat{Q}_t(a) + \hat{U}_t(a)$

Hoeffding's Inequality

Theorem (Hoeffding's Inequality)

Let $X_1, ..., X_t$ be i.i.d random variables in [0,1] and let $\overline{X}_t = \frac{1}{\tau} \sum_{\tau=1}^t x_t$ be the sample mean. Then

$$P(\mathbb{E}[X] > \overline{X}_t + u) \le e^{-2tu^2}$$

We will apply Hoeffding's Inequality to rewards of the bandit conditioned on selecting action a

$$P(Q(a) \le \hat{Q}_t(a) + \hat{U}_t(a)) \le e^{-2N_t(a)\hat{U}_t(a)^2}$$

Calculating Upper Confidence Bounds

✓ Pick a probability p that true value exceeds UCB

✓ Now solve for $U_t(a)$

$$e^{-2N_t(a)U_t(a)^2} = p$$
$$U_t(a) = \sqrt{\frac{-\log p}{2N_t(a)}}$$

✓ Reduce p as we observe more rewards, e.g. $p = t^{-4}$

✓ Ensures we select optimal action as $t \to \infty$

$$U_t(a) = \sqrt{\frac{2\log t}{N_t(a)}}$$

UCB1

✓ This leads to the UCB1 algorithm

$$a_t = \arg \max_{a \in \mathcal{A}} Q(a) + \sqrt{\frac{2\log t}{N_t(a)}}$$

The UCB algorithm achieves logarithmic asymptotic total regret

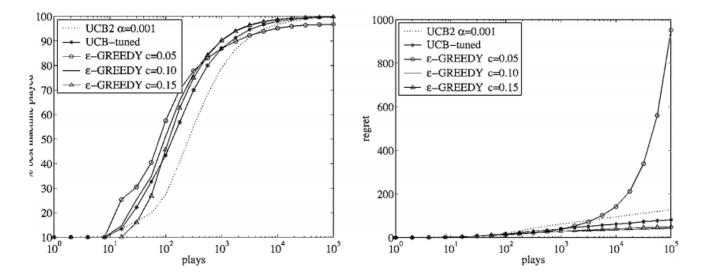
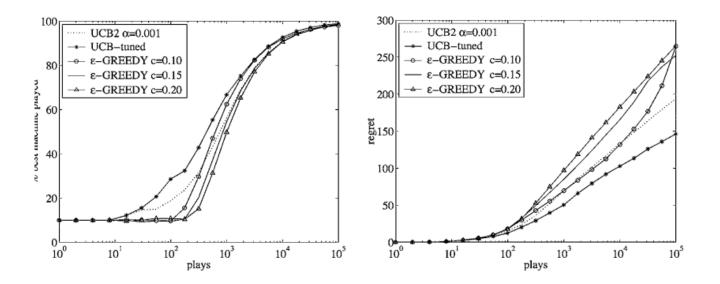


Figure 9. Comparison on distribution 11 (10 machines with parameters 0.9, 0.6, ..., 0.6).



UCB vs. *\varepsilon*greedy on 10armed Bandit

Bayesian Bandits

✓ So far, no assumptions about the reward distribution *R* ✓ Except bounds on rewards

✓ Bayesian bandits exploit prior knowledge of rewards $P(\mathcal{R})$

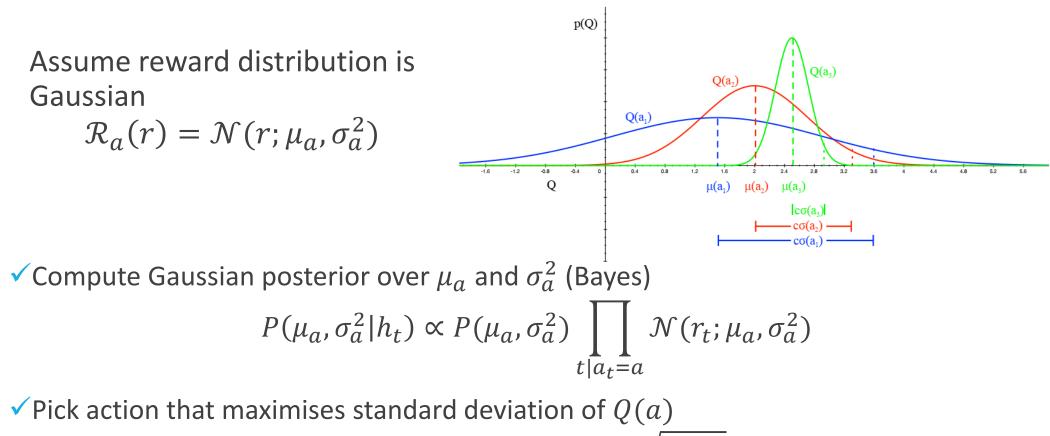
✓ They compute posterior distribution of rewards $P(\mathcal{R}|h_t)$ ✓ where $h_t = a_1, r_1; ...; a_{t-1}r_{t-1}$ is the history

✓ Use posterior to guide exploration

✓ Upper confidence bounds (Bayesian UCB)

- Probability matching (Thompson sampling)
- ✓ Better performance if prior knowledge is accurate

Bayesian UCB Example - Independent Gaussians



 $a_t = \arg \max \mu_a + c\sigma_a / \sqrt{N(a)}$

Probability Matching

Probability matching selects action a according to probability that a is the optimal action

$$\pi(a|h_t) = P\left(Q(a) = \max_{a'} Q(a') | h_t\right)$$

Probability matching is optimistic in the face of uncertainty
 Uncertain actions have higher probability of being max

Can be difficult to compute analytically from posterior

Thompson Sampling

✓ Thompson sampling implements probability matching $\pi(a|h_t) = \mathbb{E}_{\mathcal{R}|h_t} [\mathbf{1}(Q(a); \arg \max_{a' \in \mathcal{A}} Q(a'))|h_t]$

✓ Use Bayes law to compute posterior distribution $P(\mathcal{R}|h_t)$

✓ Sample a reward distribution \mathcal{R} from posterior

- ✓ Compute action-value function $Q(a) = \mathbb{E}[\mathcal{R}_a]$
- ✓ Select action maximising value on sample $a_t = \arg \max_{a \in A} Q(a)$

✓ Thompson sampling achieves Lai and Robbins lower bound!

Information State

Value of Information

Exploration is useful because it gains information

Can we quantify the value of information?

- ✓ How much reward a decision-maker would be prepared to pay in order to have that information, prior to making a decision
- ✓ Long-term reward after getting information immediate reward
- ✓ Information gain is higher in uncertain situations

✓ Therefore it makes sense to explore uncertain situations more

✓ If we know value of information, we can trade-off exploration and exploitation optimally

Information State Space

✓ We have viewed bandits as one-step decision-making problems

✓ Can also view as sequential decision-making problems

 \checkmark At each step there is an information state \tilde{s}

 $\checkmark \tilde{s}$ is a statistic of the history, i.e. $\tilde{s} = f(h_t)$

✓ summarizes all information accumulated so far

✓ Each action *a* causes a transition to a new information state \tilde{s}' (and adds information) with probability $\tilde{P}^{a}_{\tilde{s},\tilde{s}'}$

 \checkmark Defines an MDP $\widetilde{\mathcal{M}}$ in augmented information state space

$$\widetilde{\mathcal{M}} = \left\langle \widetilde{\mathcal{S}}, \mathcal{A}, \widetilde{\mathcal{P}}, \mathcal{R}, \gamma \right\rangle$$

Example - Bernoulli Bandits

✓ Consider a Bernoulli bandit, such that $\mathcal{R}_a = \mathcal{B}(\mu_a)$ (e.g. win or lose a game with probability μ_a)

Want to find which arm has the highest μ_a

✓ The information state is $\tilde{s} = \langle \alpha, \beta \rangle$

 $\checkmark \alpha_a$ counts the pulls of arm *a* where reward was 0

 $\checkmark \beta_a$ counts the pulls of arm *a* where reward was 1

Solving Information State Space Bandits

✓We now have an infinite MDP over information states that can be solved by reinforcement learning

✓ Model-free reinforcement learning

✓e.g. Q-learning (Duff, 1994)

Bayesian model-based reinforcement learning

- ✓e.g. Gittins indices (Gittins, 1979)
- ✓ This approach is known as Bayes-adaptive RL
- ✓ Finds Bayes-optimal exploration/exploitation trade-off with respect to prior distribution

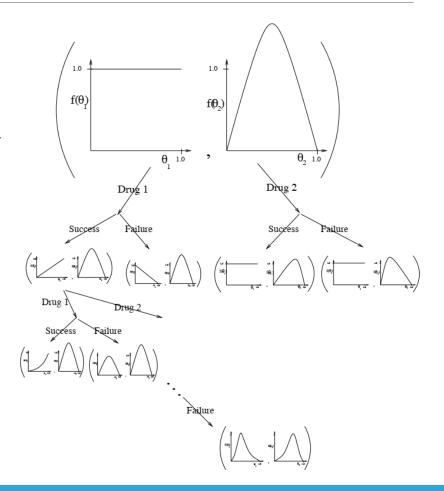
Bayes-Adaptive Bernoulli Bandits

✓ Start with $Beta(\alpha_a, \beta_a)$ prior over reward function \mathcal{R}_a

✓ Each time *a* is selected, update posterior for \mathcal{R}_a ✓ $Beta(\alpha_a + 1, \beta_a)$ if r = 0 ✓ $Beta(\alpha_a, \beta_a + 1)$ if r = 1

 \checkmark This defines transition function \tilde{P} for the Bayes-adaptive MDP

- ✓ Information state $\langle \alpha, \beta \rangle$ corresponds to reward model $Beta(\alpha, \beta)$
- Each state transition corresponds to a Bayesian model update



Gittins Indices for Bernoulli Bandits

- ✓ Bayes-adaptive MDP can be solved by dynamic programming
- ✓ The solution is known as the Gittins index
- Exact solution to Bayes-adaptive MDP is typically intractable
 Information state space is too large
- ✓ More recent idea: apply simulation-based search (Guez et al. 2012)
 - ✓ Forward search in information state space
 - ✓ Using simulations from current information state

Contextual Bandits

Contextual Bandits

 $\checkmark A \text{ contextual bandit is a tuple } \langle \mathcal{A}, \mathcal{S}, \mathcal{R} \rangle$

 $\checkmark S = P(s)$ is an unknown distribution over states (contexts)

✓ At each step t

✓ Environment generates state $s_t \sim S$

✓ Agent selects action $a_t \in A$

✓Environment generates reward $r_t \sim \mathcal{R}_{s_t}^{a_t}$

✓ Action-value function is expected reward for state *s* and action *a* $Q(s, a) = \mathbb{E}[r|s, a]$

Estimate value function with a linear function approximator $Q_{\theta}(s, a) = \phi(s, a)^T \theta \approx Q(s, a)$

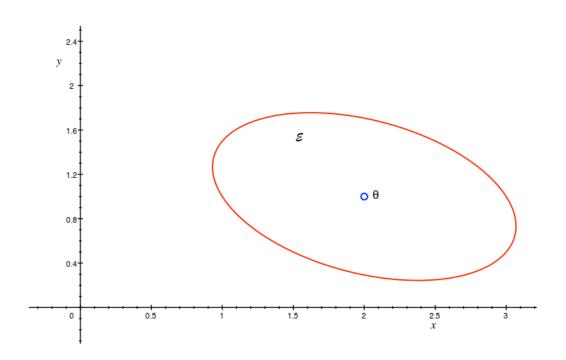
Estimate parameters by least squares regression

$$A_t = \sum_{\tau=1}^t \phi(s_\tau, a_\tau) \phi(s_\tau, a_\tau)^T$$
$$b_t = \sum_{\substack{\tau=1\\\theta_t = A_t^{-1}}}^t \phi(s_\tau, a_\tau) r_\tau$$

Linear Upper Confidence Bounds

- Least squares regression estimates the mean action-value $Q_{\theta}(s, a)$
- ✓ But it can also estimate the variance of the action-value $\sigma_{\theta}^2(s, a)$ ✓ i.e. the uncertainty due to parameter estimation error
- ✓ Add on a bonus for uncertainty, $U_{\theta}(s, a) = c\sigma$
 - ✓ i.e. define UCB to be c standard deviations above the mean

Geometric Interpretation



- ✓ Define confidence ellipsoid ε_t around parameters θ_t
- ✓ Such that ε_t includes true parameters θ^* with high probability
- Use this ellipsoid to estimate the uncertainty of action values

✓ Pick parameters within ellipsoid that maximise action value $\arg \max_{\theta \in \epsilon} Q_{\theta}(s, a)$

Calculating Linear Upper Confidence Bounds (LinUCB)

✓ For least squares regression, parameter covariance is A^{-1}

✓ Action-value is linear in features

$$Q_{\theta}(s,a) = \phi(s,a)^T \theta$$

✓ So action-value variance is quadratic

$$\sigma_{\theta}^2(s,a) = \phi(s,a)^T A^{-1} \phi(s,a)$$

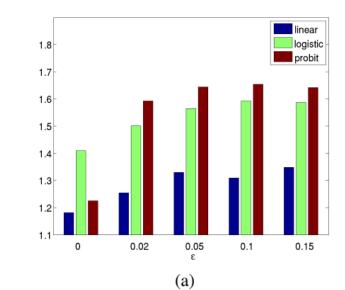
✓ Upper confidence bound is

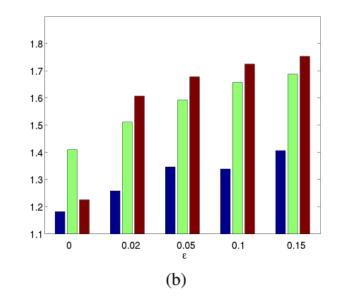
$$Q_{\theta}(s,a) + c \sqrt{\phi(s,a)^T A^{-1} \phi(s,a)}$$

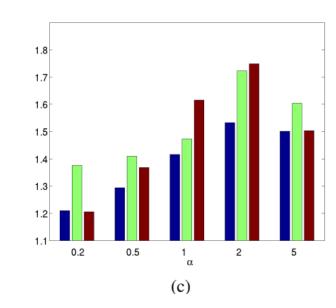
✓ Select action maximising upper confidence bound

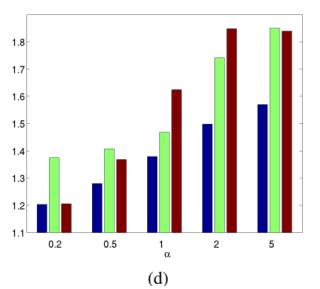
$$a_t = \arg \max_{a \in \mathcal{A}} Q_{\theta}(s_t, a) + c \sqrt{\phi(s_t, a)^T A^{-1} \phi(s_t, a)}$$

Linear UCB for Selecting Front Page News









DAVIDE BACCIU - UNIVERSITÀ DI PISA

Exploration-Exploitation in MDPs

Applying Exploration/Exploitation to MDPs

The same principles for exploration/exploitation apply to MDPs

✓ Naive Exploration

- ✓ Optimism in the Face of Uncertainty
- Probability Matching
- ✓Information State Search

Upper Confidence Bounds - Model-Free RL

✓ Maximise UCB on action-value function $Q^{\pi}(s, a)$ $a_t = \arg \max_{a \in \mathcal{A}} Q(s_t, a) + U(s_t, a)$

Estimate uncertainty in policy evaluation

✓ Ignore uncertainty from policy improvement

✓ Maximise UCB on optimal action-value function $Q^*(s, a)$ $a_t = \arg \max_{a \in \mathcal{A}} Q(s_t, a) + U_1(s_t, a) + U_2(s_t, a)$ ✓ Estimate uncertainty in policy evaluation

Estimate uncertainty from policy improvement

Information State Search in MDPs

✓ MDPs can be augmented to include information state

 \checkmark Now the augmented state is $\langle s, \tilde{s} \rangle$

- \checkmark s is original state within MDP
- $\checkmark \tilde{s}$ is a statistic of the history

✓ Each action a causes a transition ✓ to a new state s' with probability $\mathcal{P}^{a}_{s,s'}$ ✓ to a new information state \tilde{s}'

✓ Defines MDP $\widetilde{\mathcal{M}}$ in augmented information state space

 $\widetilde{\mathcal{M}} = \left\langle \widetilde{\mathcal{S}}, \mathcal{A}, \widetilde{\mathcal{P}}, \mathcal{R}, \gamma \right\rangle$

✓ Posterior distribution over MDP model is an information state $\tilde{s} = P(\mathcal{P}, \mathcal{R} | h_t)$

✓ Solve this MDP to find optimal exploration/exploitation trade-off (with respect to prior)

Wrap-up

Take (stay) home messages

✓ A selection of principles for exploration/exploitation

- ✓ Naive methods (ϵ -greedy)
- ✓ Upper confidence bounds
- Probability matching
- ✓ Information state search

Principles developed in bandit setting but also apply to MDP setting

Coming up

Imitation Learning

- Demonstration techniques
- ✓ Inverse reinforcement learning
- Reinforcement learning with generative models