Exploration-Exploitation

DAVIDE BACCIU — BACCIU@DI.UNIPI.IT




Outline

v'Introduction

v Exploration and Exploitation
v" Simple naive exploration (e-greedy)
v Optimistic approaches
v" Probability matching & Information Value

v'Bandits
v"Multi-armed
v"Contextual

v'Back to MDPs

DAVIDE BACCIU - UNIVERSITA DI PISA 2




Introduction




Exploration-Exploitation Dilemma

v'Online decision-making involves a fundamental choice:
v’ Exploitation - Make the best decision given current information

v’ Exploration - Gather more information
v'The best long-term strategy may involve short-term sacrifices

v'Gather enough information to make the best overall decisions

T
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Examples

v'Restaurant Selection
v’ Exploitation - Go to your favourite restaurant

v'Exploration - Try a new restaurant

v'Holiday planning
v Exploitation — The camping site you go to since you are born
v Exploration — Hitchhike and follow the flow

v"Game Playing
v'Exploitation - Play the move you believe is best
v'Exploration - Play an experimental move
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Principles

v'"Random Exploration
v Add noise to greedy policy (e.g. -greedy)

v’ Optimism in the Face of Uncertainty
v Estimate uncertainty on value

v Prefer to explore states/actions with highest uncertainty

v'Information State Search
v'Consider agent’s information as part of its state

v'Lookahead to see how information helps rewards

T
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Bandits
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Multi-Armed Bandit

v A multi-armed bandit is a tuple (A, R)

v'A is a known set of m actions (or “arms”)

vV R*(r) = P(r|a) is an unknown probability
distribution over rewards

v'At each step t the agent selects an action
ar € A

v'The environment generates a reward
Tt~iRat

v'The goal is to maximise cumulative reward
t
Dr=1Tr
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Regret

v'The action-value is the mean reward for action a

Q(a) = E[r|d]

v'The optimal value V* is

V:=Q(a") = max Q(a)

v'The regret is the opportunity loss for one step
I, = E[V* - Q(a,)]

v'The total regret is the total opportunity loss

Ly =E Zt: Q(a;)

v'Maximise cumulative reward = minimise total regret
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Counting Regret

v'The count N¢(a) is expected number of selections for action a

v'The gap A,= V* — Q(a) is the difference in value between action a and
optimal action a”

v'Regret is a function of gaps and the counts

L=E|) V'=0@)|= ) EN@IV" - Q) = ) ElN(@]a,
T=1 _

aceA a€eA

v'A good algorithm ensures small counts for large gaps

v'Problem: gaps are not known!
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Linear or Sublinear Regret

Total regret

vIf an algorithm
forever explores it will
have linear total regret

greedy

el vIf an algorithm never
explores it will have
ecaying crgreedy linear total regret

v'Is it possible to
achieve sublinear total

8

A regret?

Time-steps
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Exploration Strategies




Greedy Algorithms

v'We consider algorithms that estimate Q,(a) = Q(a)

v Estimate the value of each action by Monte-Carlo evaluation

~ 1
— 1 :
v'The greedy algorithm selects action with highest value

a; = arg max Q,(a)
aeA

v'Greedy can lock onto a suboptimal action forever

Greedy h-tal regret
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e-greedy Algorithms

v'The e-greedy algorithm continues to explore forever
v'With probability 1 — € select a = max 0(a)
a

v'With probability € select a random action

v'Constant € ensures minimum regret

RSLA o
t_lclql a

aceA

e-greedy h-total regret
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Decaying €,-greedy Algorithms

v'Pick a decay schedule for €4, €5, ...

v'Consider the following schedule
c>0

d = min A;
alAg>0

. { Cla‘ll}
€; = minq1

" d?t
v'Decaying €;-greedy has logarithmic asymptotic total regret

v'Unfortunately, schedule requires advance knowledge of gaps

v'Goal: find an algorithm with sublinear regret for any multi-armed bandit
(without knowledge of R)
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Lower Bound

v'The performance of any algorithm is determined by similarity between optimal
arm and other arms

v'Hard problems have similar-looking arms with different means

v'This is described formally by the gap A, and the similarity in distributions
KL(R%[|R*)

Theorem (Lai and Robbins)

Asymptotic total regret is at least logarithmic in the number of steps

A
u > a
lim Ly > 10gt 2qja,>0 g7 cra e
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Optimism in the Face of Uncertainty (l)

v"Which action should we pick?

v'The more uncertain we are about an action-value
v'The more important it is to explore that action

v'It could turn out to be the best action
p(Q)

c ;]
Q(ay) e,

Q(a,)

H -1.6 -1.2

0.8 -0.4 L4} 0.4 0.8 1.2 18 2 2.4 28
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Optimism in the Face of Uncertainty (Il)

v After picking blue action

v"We are less uncertain about the value
v And more likely to pick another action

v"Until we home in on best action
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Upper Confidence Bounds

v'Estimate an upper confidence U, (a) for each action value
v'Such that Q(a) < Q,(a) + U,(a) with high probability

v'This depends on the number of times N(a) has been selected
v'Small N, (a) =large U,(a) (estimated value is uncertain)
v'Large N, (a) = small U(a) (estimated value is accurate)

v'Select action maximising Upper Confidence Bound (UCB)
a; = argmax Q¢(a) + Ue(a)
a
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Hoeffding’s Inequality

Let X4, ..., X; be i.i.d random variables in [0,1] and let X, = ~%t_, X be the
sample mean. Then

P(E[X] > X, +u) < e~ 2t

We will apply Hoeffding’s Inequality to rewards of the bandit conditioned on
selecting action a

P(Q(a) < @t(a) + ﬁt(a)) < e_ZNt(a)ﬁt(a)z
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Calculating Upper Confidence Bounds

v'Pick a probability p that true value exceeds UCB

v"Now solve for U;(a)

e 2Ne(@U(@)? — p

—logp
2N¢(a)

-4

Ur(a) =

\
v'Reduce p as we observe more rewards, e.g.p = t

v Ensures we select optimal action ast — oo
2logt
N¢(a)

Ur(a) =
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UCB1

v'This leads to the UCB1 algorithm

B (@) + 2logt
a; = argmax ((a JNe(@)

v'The UCB algorithm achieves logarithmic asymptotic total regret

23
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Bayesian Bandits

v'So far, no assumptions about the reward distribution R
v Except bounds on rewards

v'Bayesian bandits exploit prior knowledge of rewards P(R)

v'They compute posterior distribution of rewards P(R|h;)
v'where hy = aq,1q; ...; Q;_11+_1 is the history

v'Use posterior to guide exploration
v'Upper confidence bounds (Bayesian UCB)
v'Probability matching (Thompson sampling)

v'Better performance if prior knowledge is accurate
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Bayesian UCB Example - Independent
(Gaussians

p(Q)

Assume reward distribution is | - 1\ o)
Gaussian | TN
. ] 2 Q(a) i [
Ra(r) = N(7; Ua) 0a) I A

S e T e ww e

| )|

cola,
co(a,
cao(a

)
)

v'Compute Gaussian posterior over 1, and ag (Bayes)

P(a, 02 1he) & P(g,02) | | (s b, 02)

v'Pick action that maximises standard deviation of Q(a)

a; = argmaxu, + ca,/+/N(a)
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Probability Matching

v'Probability matching selects action a according to probability that a
is the optimal action

m(alhy) = P(Q(a) = maxQ(a’) |h;)

v'Probability matching is optimistic in the face of uncertainty
v"Uncertain actions have higher probability of being max

v'Can be difficult to compute analytically from posterior
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Thompson Sampling

v Thompson sampling implements probability matching
m(alhe) = Erjp,[1(Q(a); arg max Q(a’))|h]

v'Use Bayes law to compute posterior distribution P(R|h;)

v'Sample a reward distribution R from posterior
v'Compute action-value function Q(a) = E[R,]

v'Select action maximising value on sample a; = arg max Q(a)
ae

v'Thompson sampling achieves Lai and Robbins lower bound!
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Information State




Value of Information

v’ Exploration is useful because it gains information

v'Can we quantify the value of information?

v"How much reward a decision-maker would be prepared to pay in order to have that
information, prior to making a decision

v'Long-term reward after getting information - immediate reward
v'Information gain is higher in uncertain situations
v'Therefore it makes sense to explore uncertain situations more

v'If we know value of information, we can trade-off exploration and exploitation
optimally
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Information State Space

v"We have viewed bandits as one-step decision-making problems

v'Can also view as sequential decision-making problems

v'At each step there is an information state S
v'§ is a statistic of the history, i.e. § = f(h;)
v'summarizes all information accumulated so far

v'Each action a causes a transition to a new information state §’ (and adds
information) with probability Pg's,

v'Defines an MDP M in augmented information state space
M =(S,AP,R,y)
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Example - Bernoulli Bandits

v'Consider a Bernoulli bandit, such that R, = B(u,) (e.g. win or lose
a game with probability u,)

v"Want to find which arm has the highest u,

v'The information state is § = («, )
v a, counts the pulls of arm a where reward was 0
v' B, counts the pulls of arm a where reward was 1
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Solving Information State Space Bandits

v"We now have an infinite MDP over information states that can be
solved by reinforcement learning

v'"Model-free reinforcement learning
v'e.g. Q-learning (Duff, 1994)

v'Bayesian model-based reinforcement learning
v'e.g. Gittins indices (Gittins, 1979)
v'This approach is known as Bayes-adaptive RL

v'Finds Bayes-optimal exploration/exploitation trade-off with respect to prior
distribution
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Bayes-Adaptive Bernoulli Bandits

v'Start with Beta(a,, ;) prior over reward
function R, S

f®) £6,)

v'Each time a is selected, update posterior for R,
\/Beta(aa + 1, ,Ba) ifr=0 o 10 6 10

v Beta(a, B, +1)ifr=1 7& ng\

v'This defines transition function P for the Bayes- ,, ~ A
adaptive MDP S AV NCAVE 74V Gt AN

Dmg\mgz\k
v'Information state (a, ) corresponds to reward = ¥% ™
model Beta(a, ) REAVVANAY )
v'Each state transition corresponds to a Bayesian AN

model update (‘&ﬂ)
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Gittins Indices for Bernoulli Bandits

v'Bayes-adaptive MDP can be solved by dynamic programming

v'The solution is known as the Gittins index

v'Exact solution to Bayes-adaptive MDP is typically intractable
v'Information state space is too large

v'"More recent idea: apply simulation-based search (Guez et al. 2012)
v'Forward search in information state space
v'Using simulations from current information state
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Contextual Bandits




Contextual Bandits

v'A contextual bandit is a tuple (A, S, R)

v'§ = P(s) is an unknown distribution
over states (contexts)

vVR&(r) = P(r|s,a) is an unknown
probability distribution over rewards

v At each step t
v Environment generates state s; ~ &
v'Agent selects action a; € A

. a
v Environment generates reward 1, ~ R.°
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Linear Regression

v'Action-value function is expected reward for state s and action a
Q(s,a) = E[r|s, a]

v Estimate value function with a linear function approximator
Qo(s,a) = ¢p(s,a)"0 =~ Q(s,a)

v Estimate parameters by least squares regression

At z d)(s‘c» ar)¢(5‘5: aT)T

bt z ¢(ST' a’c)r
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Linear Upper Confidence Bounds

v'Least squares regression estimates the mean action-value Qg (s, a)

v'But it can also estimate the variance of the action-value 05 (s,a)
vi.e. the uncertainty due to parameter estimation error

v'Add on a bonus for uncertainty, Ug(s,a) = co
v'i.e. define UCB to be c standard deviations above the mean
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Geometric Interpretation

v'Define confidence ellipsoid &;
around parameters 6,

v'Such that &; includes true
parameters 8 with high
probability

v'Use this ellipsoid to estimate the
uncertainty of action values

v'Pick parameters within ellipsoid
that maximise action value

argmax Qy (s, a)
O€e
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Calculating Linear Upper Confidence
Bounds (LinUCB)

v'For least squares regression, parameter covariance is A™1

v'Action-value is linear in features
Qo(s,a) = ¢(s,a)"6
v'So action-value variance is quadratic
0§ (s,a) = ¢(s,a)" A P (s, a)
v'Upper confidence bound is
Qo(s,a) + cy/p(s,a)TA~1P(s, )
v'Select action maximising upper confidence bound
a; = argmax Qo (sp,a) + ¢/ d(s;, )TA 1P (s;, a)
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Exploration-Exploitation
In MDPs




Applying Exploration/Exploitation to
MDPs

The same principles for exploration/exploitation apply to MDPs

v"Naive Exploration

v Optimism in the Face of Uncertainty

v'Probability Matching

v'Information State Search




UJpper Confidence Bounds - Model-Free
L

v"Maximise UCB on action-value function Q™ (s, a)

a, = argmax Q(s;,a) + U(sy, a)
aeA

v' Estimate uncertainty in policy evaluation
v" Ignore uncertainty from policy improvement

v"Maximise UCB on optimal action-value function Q*(s, a)
a; = argmax Q(sy, a) + Uy (s, @) + Uz(sp, @)
a

v'Estimate uncertainty in policy evaluation
v Estimate uncertainty from policy improvement
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Information State Search in MIDPs

v'"MDPs can be augmented to include information state

v'"Now the augmented state is (s, §)
v’ s is original state within MDP

v’ § is a statistic of the history

v'Each action a causes a transition
v'to a new state s’ with probability P}’

v'to a new information state §'

v'Defines MDP M in augmented information state space
M =(5,A,P,Ry)

v Posterior distribution over MDP model is an information state
§=P(P,R|h;)

v'Solve this MDP to find optimal exploration/exploitation trade-off (with respect to prior)
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Wrap-up
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Take (stay) home messages

v'A selection of principles for exploration/exploitation
v'Naive methods (e-greedy)

v'Upper confidence bounds
v'Probability matching
v'Information state search

v'Principles developed in bandit setting but also apply to MDP setting
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Coming up

Imitation Learning
v'Demonstration techniques
v'Inverse reinforcement learning
v'Reinforcement learning with generative models
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