Chapter 3

Random Networks

Summary
° Random Graphs

° Erdos-Renyi model

° Paths, Connectedness & Density

° Advanced: Configuration Model
Reading

° Chapter 3 of Barabasi's book.




Random Graphs

The Erd6s-Rényi
Random Graph model (ER)

Pal Erd6s Alfréd Rényi
(1913-1996) (1921-1970)

“If we do not know anything else than the number
N of nodes and the number L of links, the simplest
thing to do is to put the links at random (no
correlations)”

[1] P.Erd6s and A. Rényi.
On random graphs, |. Publicationes Mathematicae. 1959.
[2] P.Erdés and A. Rényi.
On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci., 1960.
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Why USI ng ®  Studysome propertiesina
“controlled environment”

Ra n do m G ra p h How does property X behaves when increasing property Y ?
mOdelS? e  Compare an observed network with a randomized

version
Is observed property X “exceptional”, or any similar network
with same property Y and Z?

e  Explain agiven phenomenon
Such simple mechanism can reproduce property Xand Y

e  Generate synthetic datasets
Testing an algorithm on 100 variations of the same network




ER model

(General) Definition.
A random graph is a graph of N nodes where each pair of
nodes is connected by probability p.

The G(n,L) definition.
1. Take N disconnected nodes
2. Add L edges uniformly at random

The G(n,p) definition.
1. Take N disconnected nodes
2. Add an edge between any of the nodes
independently with probability p

In the G(n,p) variant, the number of edges may vary

p=0.03N=100



Random Graphs

P(L): probability to have exactly L links in a network of N nodes and
probability p (binomial distribution)

The maximum number of links
in a network of N nodes.

/ Reminder (Binomial Coefficient)

N Number of ways, disregarding order,
N(N-1) that k objects can be chosen from
P(L) = 2 pL(]_ —-p 2 L among n objects
L (n) _ n!
k)~ K(n— k)
|_'_l

Number of different ways we can choose
L links among all potential links.

<L>: The average number of links in a random graph
<k>: The average degree (and its variance)

N(N-1)
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probability of having k edges

|

N—=1\ g0 \(N-1)-k
( , )p(l p)

y N

Select k nodes from N-1 probability of missing N-1-k edges

Degree Distribution P(k)

For each node, independent probabilities to

take each neighbor => Binomial distribution As the network size increases, the distribution becomes
increasingly narrow—we are increasingly confident that the degree

/ \ of anode is in the vicinity of <k>.

o _flop 1 V1 _
<k> | p (N-1)] ~ (N-1)2

P(k)

<k> Characteristics:
<k>=pN-1)
ol =p(1 - p)(N — 1)

=
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Degree Distribution

For large N and small k (p,L), we can
approximate the degree distribution using a
poisson distribution of parameter (mean)
A=<k>

0.1

0.075

S, 0.05

0.025

Poisson --
Binomial -

- ﬁ N=10% A
A A N=10°0

! i N=10* O
N=10°V

0 ___________ )
80
A.
. o Ae=X
Poisson distribution P(K) = %
k —<k>
Distribution of degrees  P(k) = <k >k'e
Standard deviation o=+/< k>



1 1 1 | 1 1 1
014 T BINOMIAL POISSON i
o o r —_ ik k -
012 F e (Nk 1)pk(1_p)A_1_k - (k)(k_'>
p, O1F N ]
0.08 Peak at —— ™ L—— Peak at
I k=(k)=p(N -1) k = (k) 1l
0.06 F d
Width Width
0.04F o =pa-pW-1) L T
| oL
0.02 L /
1 1 1

0 5 10 15 20 25 30 35 40

Exact Result -Binomial distribution Large N limit - Poisson distribution



Real Networks are not Poisson




Maximum &
Minimum Degree

The area under the curve

Py
should be less than 1/N.

Let’s assume <k>=1,000, N=109.
We can derive the max and min degrees as follows:

N1 — P(kpay)] ~ 1

Kmax k) 0 <k> (k) Fmax
I— Pkmax) =1— —<k> ( —<k> —<k>—
(ko) ¢ ; ! " kZH (Fmex + 1)!
k_=1,185

NP(kyin) ~ 1
= min k o
Plkin) = & ® Tjet S

k =816
min

<K>+tor op=<k>?
o, = 31.62



No Outliersina
Random Society!

The most connected individual has degree
k. .~1,185

The least connected individual has degree
k. ~816

The probability to find an individual with degree
k>2,000is 10?7,

Hence the chance of finding an individual with 2,000
acquaintances is so tiny that such nodes are virtually
inexistent in a random society.

e Arandom society would consist of mainly
average individuals, with everyone with
roughly the same number of friends.

e Itwould lack outliers, individuals that are
either highly popular or recluse.



Facing Reality:

Degree distribution of real networks
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Clustering & Distance




Clustering in
Random Graphs

For fixed average degree, Cis decreasing as N

goes large
° Low clustering coefficient
° It is vanishing with the system size

Reminder (clustering coeff.)
2714'
ki(k; — 1)
where n, is the number of links
between the neighbours of node i

7 =

We know that p = sl b
n—1
thus,
_2<k>ki(ki—1) 1 <k>

C = =P

n—1 2 k(ki—-1) n-1



Clustering

ER Graphs vs
Real-World

ER
Expected Small Clustering Coefficient

1
Ci=— <k>=
N <FoTP

Real-World Networks

Network Size (k) / Ciina G Crind Reference
WWW, site level, undir. 153127 35.21 31 335 0.1078  0.00023 Adamic, 1999
Internet, domain level ~ 3015-6209 3.52-4.11 3.7-3.76 6.36-6.18 0.18-0.3  0.001 Yook et al., 2001a,
Pastor-Satorras et al., 2001
Movie actors 225226 61 3.65 2.99 0.79 0.00027 Watts and Strogatz, 1998
LANL co-authorship 52909 9.7 5.9 4.79 043 1.8x10 % Newman, 2001a, 2001b, 2001c
MEDLINE co-authorship 1520251 18.1 4.6 491 0.066 1.1x10°° Newman, 2001a, 2001b, 2001c
SPIRES co-authorship 56 627 173 4.0 212 0.726 0.003 Newman, 2001a, 2001b, 2001c
NCSTRL co-authorship 11994 3.59 9.7 7.34 0496 3x10°* Newman, 2001a, 2001b, 2001c
Math. co-authorship 70975 39 9.5 8.2 059 54x10°° Barabasi et al., 2001
Neurosci. co-authorship 209293 11.5 6 5.01 0.76 55%x107° Barabasi et al., 2001
E. coli, substrate graph 282 7:35 29 3.04 0.32 0.026 Wagner and Fell, 2000
E. coli, reaction graph 315 283 2.62 1.98 0.59 0.09 Wagner and Fell, 2000
Ythan estuary food web 134 8.7 243 2.26 0.22 0.06 Montoya and Solé¢, 2000
Silwood Park food web 154 4.75 3.40 3.23 0.15 0.03 Montoya and Solé, 2000
Words, co-occurrence 460.902 70.13 2.67 3.03 0.437 0.0001  Ferrer i Cancho and Solé, 2001
Words, synonyms 22311 13.48 4.5 3.84 0.7 0.0006 Yook et al., 2001b
Power grid 4941 2.67 18.7 12.4 0.08 0.005 Watts and Strogatz, 1998
C. Elegans 282 14 2.65 225 0.28 0.05 Watts and Strogatz, 1998



Distance in
Random Graphs

4 )

\_ /

Low Clustering coefficient

> Random graphs tend to have a tree-like topology
with almost constant node degrees.

nr. of first neighbors: N(u); =<k >
nr. of second neighbors: N(u); =< k >*
nr. of neighbours at distance d: N(u)g =<k ~d

Intuition: At which distance are all nodes reached?

logn

d
< B> e —1 g<k> 10g<k>

Diameter, avg. distance is O(log n)




Distance

ER Graphs vs
Real-World

ER
Logarithmically short distance
among nodes

~ logn
~ log(k)
Real-World Networks

Network Size (k) £ 7 o G Crand Reference
WWW, site level, undir. 1531127 3521 3.1 3.35 0.1078  0.00023 Adamic, 1999
Internet, domain level =~ 3015-6209 3.52-4.11 3.7-3.76 6.36-6.18 0.18-0.3  0.001 Yook et al., 2001a,
Pastor-Satorras et al., 2001
Movie actors 225226 61 3.65 2.99 0.79 0.00027 Watts and Strogatz, 1998
LANL co-authorship 52909 9.7 5.9 4.79 043  1.8x10"* Newman, 2001a, 2001b, 2001c
MEDLINE co-authorship 1520251 18.1 4.6 491 0.066 1.1x107> Newman, 2001a, 2001b, 2001c
SPIRES co-authorship 56627 173 4.0 212 0.726 0.003 Newman, 2001a, 2001b, 2001c
NCSTRL co-authorship 11994 3.59 9.7 7.34 0.496 3x10~* Newman, 2001a, 2001b, 2001c
Math. co-authorship 70975 3.9 9.5 8.2 059 54x107° Barabasi ef al., 2001
Neurosci. co-authorship 209293 11.5 6 5.01 0.76  55%x107° Barabasi et al., 2001
E. coli, substrate graph 282 7.35 29 3.04 0.32 0.026 Wagner and Fell, 2000
E. coli, reaction graph 315 28.3 2.62 1.98 0.59 0.09 Wagner and Fell, 2000
Ythan estuary food web 134 8.7 243 2.26 0.22 0.06 Montoya and Solé, 2000
Silwood Park food web 154 4.75 3.40 323 0.15 0.03 Montoya and Solé, 2000
Words, co-occurrence 460.902 70.13 2.67 3.03 0.437 0.0001  Ferrer i Cancho and Solé, 2001
Words, synonyms 22311 13.48 4.5 3.84 0.7 0.0006 Yook et al., 2001b
Power grid 4941 2.67 18.7 12.4 0.08 0.005 Watts and Strogatz, 1998
C. Elegans 282 14 2.65 225 0.28 0.05 Watts and Strogatz, 1998



Connected Components




Random Graphs

Connected
Components

Network structure goes through a transition.
How and when does this transition happen?

DISCONNECTED NODES > NETWORK.
1 T T
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Structural (percolation) phase transition at =1 (or equivalently when p=1/N)



Network Regimes

Subcritical (<k><1,p <p_=1/N)
No giant component;
N-L isolated clusters, cluster size distribution is exponential;
The largest cluster is a tree, its size ~ In N.

Supercritical (<k>>1,p>p_=1/N)
Unique giant component: NG~ (p-p )N;
GC has loops;

Cluster size distribution: exponential.

Critical (<k>=1,p=p_=1/N)
Unique giant component: NG~ N3
Contains a vanishing fraction of all nodes, NG/N~N"Y3
Small components are trees, GC has loops.

Connected (<k>>InN, p > (In N)/N)

Only one cluster: NG=N;
GCisdense;
Cluster size distribution: None.




SUBCRITICAL AL FULLY CONNECTED

INTERNET

POWER GRID

coriasoration PR .
COLLABORATION

wcon e [

YEAST PROTEIN

INTERACTIONS
1 10 (k)
Network N L k> «> e InN/Inck>
Internet 192,244 609,066 6.34 6.98 26 6.58
WWwW 325,729 1,497,134 4.60 1.27 93 8.31
. Power Grid 4,941 6,594 2.67 18.99 46 8.66
Real Network are Supercritical
Mobile-Phone Calls 36,595 91,826 2.51 1.72 39 11.42




izing...

Summar




Random Networks

in a Nutshell

Degree Distribution

(Poisson for large N)

Clustering

(vanishing for large size)

Path length

(distance with logarithmic relation to nodes)

Path Length

Clustering Coefficient

Network Degree Distribution
_mF
Pr = %l e
L Real-world networks Broad Short Large
<k> ER graphs Poissonian Short Small
Ci= =D
n—1
ER model is not capturing the properties of
(9(log n) More on distances any real system but it serves as a reference

in Chapter 4!

system for any other network model




Advanced Topic:
Configuration Model



PrOblem The ER Random Graph model has a Poisson

degree distribution

e Most real-world networks have
heavy-tailed degree distributions

e We need to generate networks which
have pre-determined degrees or degree
distribution, but they are maximally
random otherwise

e Theobserved properties (clustering
coefficient, etc.) might be due only to the
difference in degree distribution




Configuration
Model

How many observed patterns are driven by
the degrees alone?

Random Graphs with specified degrees
Based on an observed network

Definedas G(n,k) here k= {k;} egree
sequence on n nodes, with k. being the degree of
nodei

Sampled from an ad-hoc degree distributions

Delta/Dirac function, Poisson, Scale-free

Global condition to satisfy (even degree sum):

Zkimod2=0
i

each edge has to have ending nodes




Configuration model

Molloy-Reed

Theory

Original idea:
1. Givenadegree sequence k= {ki,ks, ..., kn}
2. Assigntoeachnode i€V k;ibs

3. Select random pairs of unmatched stubs and
connect them
4. Repeat 3 while there are unmatched stubs

RAKAAA S >

Such process produces a configuration model that
preserves the input degree sequence, allowing:

- multi-links,

- self-links



Configuration model

Molloy-Reed

An effective algorithm

1.  Takeanarray ¥ iith length 2m and fill it with ki
indices of eachnode i €V

2. Make a random permutation of the array U
3. Read the content of the array as ordered pairs

4., Each pair of consecutive node indices create a
links in the configuration network

AXpAy S

[11111222233334445567 | [14122825123784351146

Practice




Configuration model

Properties

Clustering coefficient 1 [(k)?— (k)]2

(independent from network size) C= '; T

Degree distribution % ki

(of arandomly selected node’s neighbor)  Pneighbk = %npk = W

Average Degree )

(of arandomly selected node’s neighbor)  (kpeighb) = Z kDneighbk = N
k

Network
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Degree Distribution

Path Length

Clustering Coefficient

Real-world networks Broad Short Large
ER graphs Poissonian Short Small
Configuration Custom, Short el

model

can be broad




Chapter 3

Conclusion

Take Away Messages
1. ER model generates random graphs
2. ER graphs have well-known properties
3. In ER Different values of p reflects
different network regimes
4. Configuration models allow the generation

of random graphs having heterogeneous
degree distributions

Suggested Readings
. Chapter 3 of Barabasi's book

What's Next

Chapter 4:
It's a Small World!




