
Chapter 3 
Random Networks

Summary
● Random Graphs
● Erdos-Renyi model
● Paths, Connectedness & Density
● Advanced: Configuration Model

Reading
● Chapter 3 of Barabasi's book.



Random Graphs 

The Erdős-Rényi 
Random Graph model (ER)

Pál Erdős 

(1913-1996) 

Alfréd Rényi

(1921-1970)

“If we do not know anything else than the number 
N of nodes and the number L of links, the simplest 
thing to do is to put the links at random (no 
correlations)”

[1] P. Erdős and A. Rényi. 
     On random graphs, I. Publicationes Mathematicae. 1959. 
[2] P. Erdős and A. Rényi. 
     On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci., 1960.



Why using 
Random Graph 
models?

● Study some properties in a 

“controlled environment” 
How does property X behaves when increasing property Y ? 

● Compare an observed network with a randomized 
version
Is observed property X “exceptional”, or any similar network 

with same property Y and Z ? 

● Explain a given phenomenon
Such simple mechanism can reproduce property X and Y 

● Generate synthetic datasets
Testing an algorithm on 100 variations of the same network



ER model

(General) Definition. 
A random graph is a graph of N nodes where each pair of 
nodes is connected by probability p.

The G(n,L) definition.
1. Take N disconnected nodes 
2. Add L edges uniformly at random 

The G(n,p) definition.
1. Take N disconnected nodes 
2. Add an edge between any of the nodes 

independently with probability p

p=1/6 N=12 

p=0.03 N=100 

In the G(n,p) variant, the number of edges may vary



Random Graphs

P(L): probability to have exactly L links in a network of N nodes and 
probability p (binomial distribution)

<L>: The average number of links in a random graph
<k>: The average degree (and its variance)

The maximum number of links 
in a network of N nodes.

Number of different ways we can choose 
L links among all potential links.

Reminder (Binomial Coefficient)
Number of ways, disregarding order, 
that k objects can be chosen from 
among n objects



Degree Distribution

For each node, independent probabilities to 
take each neighbor => Binomial distribution As the network size increases, the distribution becomes 

increasingly narrow—we are increasingly confident that the degree 
of a node is in the vicinity of <k>.

Select k nodes from N-1 

probability of having k edges

probability of missing N-1-k edges

Characteristics:



Degree Distribution

For large N and small k (p,L), we can 
approximate the degree distribution using a 
poisson distribution of parameter (mean) 
λ = < k >

Poisson distribution

Distribution of degrees

Standard deviation



Exact Result -Binomial distribution                 Large N limit - Poisson distribution



Real Networks are not Poisson



Maximum & 
Minimum Degree

Let’s assume <k> =1,000, N=109.
We can derive the max and min degrees as follows:

k
max

= 1,185 

k
min

= 816 



No Outliers in a 
Random Society!

The most connected individual has degree 
k

max
~1,185 

The least connected individual has degree 
k

min
 ~ 816 

The probability to find an individual with degree 
k>2,000 is 10-27. 

Hence the chance of finding an individual with 2,000 
acquaintances is so tiny that such nodes are virtually 
inexistent in a random society. 

● A random society would consist of mainly 
average individuals, with everyone with 
roughly the same number of friends. 

● It would lack outliers, individuals that are 
either highly popular or recluse. 



Facing Reality:
Degree distribution of real networks



Clustering & Distance



Clustering in
Random Graphs Reminder (clustering coeff.)

where n
i
 is the number of links 

between the neighbours of node i

For fixed average degree, C is decreasing as N 
goes large

● Low clustering coefficient
● It is vanishing with the system size

We know that

thus, 



Clustering

ER Graphs vs 
Real-World

ER
Expected Small Clustering Coefficient

Real-World Networks



Distance in
Random Graphs

Low Clustering coefficient
➔ Random graphs tend to have a tree-like topology 

with almost constant node degrees.

nr. of first neighbors: 

nr. of second neighbors: 

nr. of neighbours at distance d:

Intuition: At which distance are all nodes reached?

Diameter, avg. distance is O(log n)



ER
Logarithmically short distance 
among nodes

Real-World Networks

Distance

ER Graphs vs 
Real-World



Connected Components



Random Graphs

Connected 
Components

Network structure goes through a transition.
How and when does this transition happen?



Structural (percolation) phase transition at =1 (or equivalently when p=1/N)



Subcritical (<k> < 1, p < p
c
=1/N) 

No giant component;

N-L isolated clusters, cluster size distribution is exponential;

The largest cluster is a tree, its size ~ ln N.

Network Regimes

Critical (<k> = 1, p=p
c
=1/N ) 

Unique giant component: NG~ N2/3 

Contains a vanishing fraction of all nodes, NG/N~N-1/3 

Small components are trees, GC has loops.

Supercritical (<k> > 1, p > p
c
=1/N ) 

Unique giant component: NG~ (p-p
c
)N;

GC has loops; 

Cluster size distribution: exponential.

Connected (<k> > ln N, p > (ln N)/N) 

Only one cluster: NG=N; 

GC is dense; 

Cluster size distribution: None.



Real Network are Supercritical



Summarizing...



Random Networks
in a Nutshell

Degree Distribution
(Poisson for large N)

Clustering
(vanishing for large size)

Path length
(distance with logarithmic relation to nodes)

Network Degree Distribution Path Length Clustering Coefficient

Real-world networks Broad Short Large

ER graphs Poissonian Short Small

ER model is not capturing the properties of 
any real system but it serves as a reference 

system for any other network model
More on distances
 in Chapter 4!



Advanced Topic:
Configuration Model



Problem The ER Random Graph model has a Poisson 
degree distribution 

● Most real-world networks have 
heavy-tailed degree distributions 

● We need to generate networks which 
have pre-determined degrees or degree 

distribution, but they are maximally 
random otherwise 

● The observed properties (clustering 
coefficient, etc.) might be due only to the 
difference in degree distribution



Configuration 
Model Based on an observed network

Defined as                where                 is a degree 
sequence on n nodes, with k

i 
being the degree of 

node i

Sampled from an ad-hoc degree distributions

Delta/Dirac function, Poisson, Scale-free

How many observed patterns are driven by 
the degrees alone?

Random Graphs with specified degrees

Global condition to satisfy (even degree sum): 

each edge has to have ending nodes



Configuration model

Molloy-Reed
Original idea:

1. Given a degree sequence
2. Assign to each node            ,       stubs
3. Select random pairs of unmatched stubs and 

connect them
4. Repeat 3 while there are unmatched stubs  

Such process produces a configuration model that 
preserves the input degree sequence, allowing:

- multi-links,
- self-links

Theory



Configuration model

Molloy-Reed An effective algorithm

1. Take an array     with length 2m and fill it with ki 
indices of each node 

2. Make a random permutation of the array

3. Read the content of the array as ordered pairs

4. Each pair of consecutive node indices create a 
links in the configuration network 

Practice



Configuration model

Properties

Clustering coefficient
(independent from network size)

Degree distribution
(of a randomly selected node’s neighbor)

Average Degree
(of a randomly selected node’s neighbor)

Network Degree Distribution Path Length Clustering Coefficient

Real-world networks Broad Short Large

ER graphs Poissonian Short Small

Configuration
model

Custom, 
can be broad Short Small



Take Away Messages

1. ER model generates random graphs
2. ER graphs have well-known properties
3. In ER Different values of p reflects 

different network regimes 
4. Configuration models allow the generation 

of random graphs having heterogeneous 
degree distributions

What’s Next

Chapter 4:

It’s a Small World!

Suggested Readings

● Chapter 3 of Barabasi's book

Chapter 3 
Conclusion


