Chapter 5

Scale Free Networks

Summary
° Scale Free Networks
° Power Law degree distribution
° Barabasi-Albert model
° Advanced: Alternative models

Reading
° Chapters 4 & 5 of Barabasi's book.
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World Wide Web

Nodes: WWW documents
Links: URL links

Over 3 billion documents

Data Collection:

web crawler collected all URLs found in a document and
followed them recursively

R. Albert, H. Jeong, A-L Barabasi, Nature, 401 130 (1999).
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Scale-Free

A network is called Scale-free when its degree
distribution follows (to some extent) a
Power-Law distribution:

[P(k) R = c%}

with vy called the
exponent of the distribution

Discrete Formalism:
As node degrees are always positive integers, the discrete formalism
captures the probability that a node has exactly k links:
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Interpretation Pr

Continuum Formalism:
In analytical calculations it is often convenient to assume that the

degrees can take up any positive real value:
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80/20 Rule /PARETO PRINCIPLE \

80% of World's wealth is owned
by 20% of the population

Vilfredo Federico Damaso Pareto (1848 - 1923) Low
Italian economist, political scientist and philosopher, who had Performers
important contributions to our understanding of income distribution High 20 Percent
and to the analysis of individuals choices. Performers
A number of fundamental principles are named after him, like Pareto
efficiency, Pareto distribution (another name for a power-law 80 Percent
distribution), the Pareto principle (or 80/20 law).




16 x 4 million Tokyo
cities ~30 million
4 x 8 million
cities

New York,

Mexico City
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Sizes of Cities:
there is an equivalent number of people living in cities of all sizes!




Differences between
Power-Law and Exponential distributions
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For small k the power law is above the Poisson function, indicating
that a scale-free network has a large number of small degree nodes,
most of which are absent in a random network. C.

For k in the vicinity of <k> the Poisson distribution is above the power
law, indicating that in a random network there is an excess of nodes
with degree k=<k>

For large k the power law is above the Poisson curve, indicating that
the probability of observing a high-degree node, or hub, is several
orders of magnitude higher in a scale-free than in a random network




ExamQLe

Hubs

Let us use the WWW toillustrate the properties of the
high-k regime.

The probability to have a node with k~100 is

- About pjge = 107 a Poisson distribution

- About pgo = 107 p, follows a power law
Consequently, if the WWW were to be a random
network, according to the Poisson prediction we would

expect 1018 k>100 degree nodes, or none.

For a power law degree distribution,
we expect about Nisi00 = 16%.00 degree nodes




The biggest Hub

All real networks are finite

|

We have an expected maximum degree, k _
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Estimating k
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therefore,

the probability to have a node larger
L than k___should not exceed the prob.
to have one node, i.e. 1/N fraction of all
nodes
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const. y =2

Ultra
Small World

InInN

2<y<3
In(y -1)

Size of the biggest hub is of order O(N).

Most nodes can be connected within two layers of it, thus the average path length will be
independent of the system size.

The average path length increases slower than logarithmically.
In arandom network all nodes have comparable degree, thus most paths will have comparable

length. In a scale-free network the vast majority of the path go through the few high degree hubs,
reducing the distances between nodes.

<[>~
lnN Some key models produce y=3, so the result is of particular importance for them.
- 3 This was first derived by Bollobas and collaborators for the network diameter in the context of a
y - dynamical model, but it holds for the average path length as well.
InInN
- The second moment of the distribution is finite, thus in many ways the network behaves
TEB E as arandom network. Hence the average path length follows the result that we derived for the
n lnN '}/ > 3 random network model earlier.

Small-World in Scale-Free networks

Bollobas, (1985);

Newman (2001);

Dorogovtsev et al (2002), Chung and Lu (2002);
Bollobas (2002); Cohen (2003)




We are always close to the Hubs
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"It's always easier to find someone who knows a RN
famous or popular figure than some run-the-mill, -

insignificant person.” \\
4 -

(Frigyes Karinthy, 1929)
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ANOMALOUS SCALE-FREE RANDOM
REGIME REGIME REGIME
No large network Indistinguishable
can exist here from a random network
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The Barabasi-Albert model




Modeling
Scale-Free Networks

Hubs represent the most striking
difference between arandom and a
scale-free network.
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Why does the random network model of Erdds and Rényi fail to
reproduce the hubs and the power laws observed in many real
networks?

Why do so different systems as the WWW or the cell converge to a
similar scale-free architecture?

5 8
D W RS, R
Y 9 RN, N
b W N, . e e e,
S e, Sy e, . -
PEAR AR AR A
. . - o,
. . ®e o P
O T T O
e d - BN I Zaee .
&
0

o
w olegu s .~ ools

.
R RS S -




Growth and Preferential Attachment

The random network model differs from real networks in two important characteristics:

Growth:

While the random network model assumes that the number of
nodes is fixed (time invariant), real networks are the result of a
growth process that continuously increases.

Preferential Attachment:

While nodes in random networks randomly choose their
interaction partner, in real networks new nodes prefer to link to
the more connected nodes.
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BA model

1.  Networks continuously expand by the

addition of new nodes
WWW : addition of new documents

2. New nodes prefer to link to highly

connected nodes.
WWW:: linking to well known sites

Barabasi & Albert,
Science 286,509 (1999)

1. Start with m, connected nodes

2. At each timestep add a new node with m links that
connect it to nodes already in the network

3.  The probability 77(k) that on of the links connects to node
i depends on the degree k; of i

k

(k) ==

Lk,

The emerging network will be scale-free with degree exponent
vy=3 independently from the choice of m
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Single network.

BA model
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BA model

- Thedegree exponent is independent of m

- Thedegree exponent is stationary in time
and the degree distribution is time
independent

P(k)

- Theexponent is compatible to the
exponents of real networks

Barabasi & Albert,
Science 286,509 (1999)




Ultra
Small World

2

const. ¥

InInN

2<y<3
In(y -1)

Size of the biggest hub is of order O(N).

Most nodes can be connected within two layers of it, thus the average path length will be
independent of the system size.

The average path length increases slower than logarithmically.
In arandom network all nodes have comparable degree, thus most paths will have comparable

length. In a scale-free network the vast majority of the path go through the few high degree hubs,
reducing the distances between nodes.

InN y>3

<[>~
lnN Some key models produce y=3, so the result is of particular importance for them.
_ 3 This was first derived by Bollobas and collaborators for the network diameter in the context of a
y - dynamical model, but it holds for the average path length as well.
InlnN
- The second moment of the distribution is finite, thus in many ways the network behaves
Té‘ E as arandom network. Hence the average path length follows the result that we derived for the
n random network model earlier.

BA model: Path Length

Bollobas, (1985);

Newman (2001);

Dorogovtsev et al (2002), Chung and Lu (2002);
Bollobas (2002); Cohen (2003)




BA model

Clustering
Coefficient

The clustering coeff. decreases with the system
size as
In N)?
o m (nN)
4 N

10“ L O Abert, Barabasi (2002) _|
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Due to its definition the BA model induces non-trivial degree correlation
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BA Networks

in a Nutshell

Number of nodes

Number of links

Average degree

Degree Distribution

Clustering

Path length

P(K) ~ CE"
m (InN)?
4 N

InN
Inln N

Network
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Degree Distribution

Path Length

Clustering Coefficient

Real-world networks Broad Short Large

ER graphs Poissonian Short Small

Vzliinssv?/( f:gr;?r?qzt)z Poissonian Short Large
Barabasi Albert PemErla Short Rather Small

(Scale-Free)




Advanced Topics:
- Scale-Free an open Debate
- Vertex copying and Holme-Kim models



The Scale-Free debate

Lovelis All You Need
Clauset’s fruitless search for scale-free networks

Scale-free networks are rare

Anna D. Broido & & Aaron Clauset
March 6, 2018

Nature Communications 10, Article number: 1017 (2019)

Rare|and everywhere; Perspectives on
scale-free networks

Petter Holme &

Nature Communications 10, Article number: 1016 (2019) | Cite this article



y Albert-LaszI6 Barabasi i
@barabasi

@aaronclauset Every 5 years someone is shocked to re-

A re re a l n etwo r ks discover that a pure power law does not fit many
networks. True: Real networks have predictable

deviations. Hence forcing a pure power law on these is

rea lly Sca le Free ? like...fitting a sphere to the cow. Sooner or later the hoof

will stick out.

- Inmost real networks, the scale free stands
only for arange of degrees, i.e., between a
minimum degree and maximum degree
different than those observed (cut-offs)

- Some other distributions, in particular
log-normal distributions, might “look like”
power-law




Albert-Laszl6 Barabasi @barabasi - Jan 15, 2018 v
Replying to @barabasi

Chapter 6 in Network Science networksciencebook.com/chapter/6
discusses what you should be fitting to the degree distribution of *real*
scale-free networks. You are right: Pure power laws are predictably rare.

§is

Scale-free networks are not.
Rigorous statistical tests show that Q1 Q2 O 45 &
observed degree distributions are not

Replying to @barabasi

Compatl ble Wlth a power laW d IStrl bUtlon Yes, science is hard and real data often messy. But it is worrying how

(hlgh p—vaIues) criticisms of harsh statistical evaluations can be interpreted as a belief
that "disagreement with data" (as Feynman would put it) should not be
held against a favored theory or model.

Compared with different distributions, in Q3 Qs O 18
particular log-normal, most degree distributions
are more likely to be generated by something
else than power laws.

Aaron Clauset @aaronclauset - Jan 15, 2018 v

Albert-Laszl6é Barabdsi @barabasi - Jan 15, 2018 v
We are on the same page. The question is, what you test and what you
conclude. There are multiple processes that contribute to the degree
distribution that modify the power law. Hence testmg for power Iaws only

you are ignoring them all, leading to misleading t y
QO 2 T4 Q 10 &
Aaron Clauset @aaronclauset - Jan 15, 2018 v

Perhaps. | feel good about the accuracy of our conclusions: we used

rigorous statistical methods, tested 5 distributions, considered 5 levels of
evidence, across nearly 1000 network datasets. The goal was to be
thorough and to treat the SF hypothesis as falsifiable.

Q1 n 3 9 14 L

Networks are real objects, not mathematical
abstraction, therefore they are sensible to
noise (real life limits... Albert-LészI6 Barabasi Gbarabasi - Jan 15, 2018 v
The effort is amazing. The conclusions are less so. The feather falls
slower than the rock, yet gravitation is not wrong. We add friction. You

need to fit for each system the Pk that is right for it. That is hard, | know.
Otherwise you ignore 20 year of work by hundreds.

Power law is a good, simple model of degree
distributions of a class of networks

Q 2 T4 Q 6 &
Aaron Clauset @aaronclauset - Jan 15, 2018 v

It seems easy to get confused here: an empirical power-law degree
distribution is evidence for SF structure, but no deviation from the power

090090

20 years of fruitful research based on this model

law can be evidence against SF structure? It is reasonable to believe a
fundamental phenomena would require less customized detective work.



Alternatives

Vertex-Copying
model

How to provide a local explanation to
preferential attachment?

Take a small seed network

Pick a random vertex

Make a copy of it

with probability p move each edge of the
copy to point to a random vertex

5. Repeat 2-4 until the network reach the
desired size

HAPODNDPR

Copy a vertex

Pewire edges
withp

Asymptotically scale-free with exponent y=3



Alternatives

Holme-Kim model

How to get a more realistic
clustering coefficient?

W

Take a small seed network

Create a new vertex with m edges

Connect the first of the m edges to existing
vertices with a probability proportional to
their degree k

With probability p, connect the next edge to
a random neighbor of the vertex of step 3,
otherwise repeat 3

Repeat 2-4 until the network reach the
desired size

Preferential Attachment

Connect to neighbor Preferential Attachment
1
C(k —
(k) o —

For large N the clustering more realistic!
This type of clustering is found in many real-world
networks.



Network models

in a Nutshell

“All models are wrong, but some are useful”

- ER models and Configuration models
are used as reference models in a very
large number of applications

- WS, BA are more “making a point” type
models: simple processes can explain
some non-trivial properties of networks,
unfound in random networks.

- Correlation is not causation.

Are these simple processes the “cause”?
Maybe, maybe not, sometimes...

Network

Degree Distribution

Path Length

Clustering Coefficient

Real-world networks Broad Short Large
ER graphs Poissonian Short Small
Vzliittgv‘\g; rS;g;?rgzt)z Poissonian Short Large
Barabasi Albert Power-Law Short Rather Small
(Scale-Free)
Other models Power-law Short Large




Chapter 5

Conclusion

Take Away Messages

1. Real world networks have heavy tailed
degree distributions

Scale-Free networks

Ultra Small-world phenomena

BA models scale-free with y=3
Additional models explains local
behaviours, clustering coeff,, ...

uhoN

Suggested Readings

. Chapters 4 & 5 of Barabasi's book
° Chapter 18 of Kleinberg’s book

What's Next

Chapter 6:
Centrality & Tie Strength




