
Weird Machines, Exploitability, and
Provable Unexploitability

THOMAS DULLIEN , (Member, IEEE)
The author is with the Google’s Project Zero, Zurich 8002, Switzerland

CORRESPONDING AUTHOR: T. F. DULLIEN (thomas.dullien@gmail.com)

ABSTRACT The concept of exploit is central to computer security, particularly in the context of memory
corruptions. Yet, in spite of the centrality of the concept and voluminous descriptions of various exploitation
techniques or countermeasures, a good theoretical framework for describing and reasoning about exploitation
has not yet been put forward. A body of concepts and folk theorems exists in the community of exploitation
practitioners; unfortunately, these concepts are rarely written down or made sufficiently precise for people out-
side of this community to benefit from them. This paper clarifies a number of these concepts, provides a clear
definition of exploit, a clear definition of the concept of a weird machine, and how programming of a weird
machine leads to exploitation. The papers also shows, somewhat counterintuitively, that it is feasible to design
some software in a way that even powerful attackers—with the ability to corrupt memory once—cannot gain
an advantage. The approach in this paper is focused on memory corruptions. While it can be applied to many
security vulnerabilities introduced by other programming mistakes, it does not address side channel attacks,
protocol weaknesses, or security problems that are present by design.

INDEX TERMS Computer security, computer hacking, computation theory, information security,
language-theoretic security

I. INTRODUCTION

While a lot of applied security is discussed very informally,
formalization and clarification of existing intuitions can
move the field forward: Hoare’s work on proving program
properties, Schneider’s work on enforceable security poli-
cies, and the contributions by the abstract interpretation
and cryptographic communities come to mind as examples
[1]–[4]. This article proposes a formalization and clarification
of the concept exploit.
The concept of exploit is central in computer security.

While intuitively clear, it has not been formalized—even in
the very restricted setting of memory-corruption attacks.
Two largely disjoint communities have worked on exploring
the process of exploitation: ‘Exploit practitioners’ (EPs) with
focus on building working exploits have been investigating
the topic at least since the infamous Morris worm, and aca-
demic researchers, who, after initial work on stack protec-
tions [5], [6], really began re-focusing on the problem with
the re-invention and popularization of return-oriented pro-
gramming (ROP) by Shacham et al. [7].
The aversion of the EP-community to formal publishing1

has lead to an accumulation of folklore knowledge within

that community which is not properly communicated to a
wider audience; this, unfortunately, often leads to duplicated
effort, re-invention, and sometimes even acrimony between
members of the two communities [8].
The concept of a weird machine is informally familiar in

the EP community, but widely misunderstood outside of that
community. It has numerous implications, most importantly:
� The complexity of the attacked program works in favor

of the attacker.
� Given enough time for the preparation of an exploit,

nonexploitability is the exception, not the rule. Even
extremely restricted programs consisting of little more
than a linked list with standard operations offer an
attacker sufficient degrees of freedom.

� Questions of ‘exploitability’ are often decoupled from
issues of control-flow or compromising the instruction
pointer of a target: Control flow integrity is just one
security property that can be violated, and perfect CFI
does not imply security. Attackers aim to violate CFI

1Or worse, the incentive structure that keeps the EP community from pub-
lishing at all.
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because it provides the most convenient and powerful
avenue to violate security properties, not because it pro-
vides the only such avenue.

� If exploitability is a result of target’s complexity, the
boundary where complexity causes exploitability is
much lower than commonly appreciated.

� Automated exploit generation can be viewed as the
problem of synthesizing a program for a machine with
undocumented semantics.

Themisunderstandings surroundingweird machines are partic-
ularly unfortunate as the framework of weird machines sub-
sumes many individual techniques; the framework predicts that
many exploitation countermeasures are overly specific and
bound to be bypassable. Among other things, the bypassing of
most early ROP countermeasures could have been easily pre-
dicted without the ensuing series of tit-for-tat papers, and the
somewhat limited effectiveness of control-flow-integrity (CFI)
[9]–[11] against many attacks such as counterfeit-object-
oriented programming (COOP) [12] as well as the existence of
data-oriented-programming (DOP) [13] would have come as
less of a surprise.
Contributions. This paper provides the following contri-

butions:
(1) Proper definitions and formalizations of the ‘folk

theorems’ of the EP community.
(2) A clear definition of ‘exploit’ which better matches real-

world requirements than the popular approach of show-
ing Turing-completeness of emergent computation.

(3) A first step toward understanding what distinguishes
unexploitable from exploitable programs. The paper
presents two implementations of the same program. An
attacker with the ability to flip a bit of his choosing can
exploit one variant, while the other can be shown to be
immune even to this powerful attacker. The differences
between the programs hint at differences in computa-
tional power obtained by the attacker—which depend
on the choice of data structures for the program
implementation.

The intuitions behind and implications of 1 and 2 are com-
mon knowledge, all formalisms, definitions and proofs, as
well as 3, are contributions of the author(s).
We hope that this paper bridges the gap between the two

communities and provides a common vocabulary.
Limitations of the approach. The concepts introduced in

this paper apply to memory-corrupting bugs as well as so-
called “logic flaws”—flaws where a programming mistake
leads to the program exhibiting unintended behavior without
violating memory safety. There are several forms of attacks
that are explicitly not considered in the paper at hand:
(1) Side channel attacks that leak cryptographic (or other-

wise secret) information. While it is imaginable that the
contributions of this paper could be extended to cover
these, it appears a stretch and is certainly outside the
scope of this paper.

(2) Intended features that pose a security risk. Many pieces
of software have entirely valid (and intended)

functionality that none the less poses a security risk:
Rlogin used only (spoofable) IP-addresses as authoriza-
tion mechanism in the past, and many network proto-
cols are cryptographically weak even if implemented
properly and flawlessly.

The focus of this paper is solely on security vulnerabilities
introduced through programming mistakes—as will be
explained, essentially a failure to faithfully translate a
DFA describing the application logic into a real-world
implementation.

A. RELATEDWORK

The concept of a weird machine that will be discussed in this
paper has found numerous mentions over the years; not all
these mentions refer to the same concept. Dullien [14] dis-
cussedweird machines but only provided an informal descrip-
tion, not a definition. The term itself originated in the Langsec
community in a talk given by Sergey Bratus in at an industry
seminar in 2009 in Berlin - in which he sought to extract the
implicit principles of contemporary offensive research. It is
one of the central terms of the Langsec community and has
had major influence on the direction of that community—in
spite the vaguely defined nature of the term. The lack of for-
mal definition led to the community approaching the topic
“by example”, describing various areas where the same con-
cept was evident [15]–[21]. Of these papers, [21] should be
highlighted: The current paper is heavily inspired by the use
of ‘dueling’ finite-state transducers introduced in said paper.
Bratus and Shubina [22] describes a view of exploita-

tion as a matter of two computation abstractions, one vio-
lated, one obeyed. The ideas in that paper are very similar
to the ones discussed in the present paper. This is not
surprising—it references an unpublished draft of the pres-
ent paper under the name “Fundamentals of exploitation”,
and the two papers influenced each other heavily during
their creation. The notion of two state machines at differ-
ent layers of abstraction, as well as abstraction and con-
cretization mappings between these layers, as well as
partitioning the state space of the concrete machine into
weird and non-weird states, is fundamentally the same as
in the referenced unpublished draft.
Computation (and correctness) in the presence of faults has

been studied in [23], which introduces a lambda-calculus to
calculate correctly given hardware faults. Novark et al. [24]
studies automatic detection of two classes of heap corrup-
tions in running code by keeping multiple copies of a ran-
domized heap.
By and large, while many academic and non-academic

papers have studied concrete exploitation instances, few
have considered foundational questions (such as “what is an
exploit from a computer science perspective” and “what are
the properties of the emergent computational devices”).
We will see later that weird machines arise when an

abstract, intended machine and a concrete implementation
which tries to simulate the abstract machine fails to do so.
Studying equivalence between automata which simulate each

392 VOLUME 8, NO. 2, APRIL-JUNE 2020

Dullien: Weird Machines, Exploitability, and Provable Unexploitability



other at different levels of abstraction has been studied by the
model-checking and verification community using stuttering
bisimulation extensively [25]–[27]. The idea behind stuttering
bisimulation and -equivalence is the study of traces of two
automata which reach equivalent states but with varying num-
bers of steps (for example one step of an abstract machine that
is implemented via multiple steps on a concrete machine).
This paper eschews the somewhat specialized language of
stuttering bisimulation to allow broader accessibility.

B. OVERVIEW OF THE PAPER

In order to get to the important results of the paper, a fair bit
of set-up and definitions are needed. The paper first defines
‘the software the developer intended to write’ and a simple
computing environment for which this software is written.
This is followed by further definitions that permit describing
erroneous states and distinguishing between erroneous states
with and without security implications. Finally, a precise def-
inition of exploit and weird machine is provided.
A running example is used throughout these sections. Two

implementations of the same software are introduced, along
with a theoretical attacker. We prove that one implementa-
tion cannot be exploited while the other implementation can,
and discuss the underlying reasons.
Finally, we discuss the implications for exploit mitiga-

tions, control-flow integrity, and software security.

II. THE INTENDED FINITE-STATE MACHINE (IFSM)

The design of any real software can be described as a poten-
tially very large and only implicitly specified finite state
machine (or transducer, if output is possible).2 This FSM
transitions between individual states according to inputs, and
outputs data when necessary. Since any real software needs
to run on a finite-memory computing device, the nonequiva-
lence of a FSM to a Turing machine does not matter—any
real, finite-input software can be modelled as a FSM (or
FST) given a sufficiently large state set.
For simplicity, we will use the notation IFSM in the rest of

the paper even when the machine under discussion is a trans-
ducer. t For situations when an IFSM needs to be specified for-
mally, recall that a finite-state transducer can be described by
the 7-tuple u ¼ ðQ; i;F;S;D; d; sÞ that consists of the set of
states Q, the initial state i, the final states F, input- and output
alphabets S and D, a state transition function d : Q� S! Q
and the output function s which mapsQ� S! D.

A. SOFTWARE AS EMULATORS FOR THE IFSM

Since any real-world software can be modelled as an IFSM,
but has to execute on a real-world general-purpose machine,
an emulator for the IFSM needs to be constructed. This pro-
cess is normally done by humans and called programming or
development, but can be done automatically in the rare case
that the IFSM is formally specified.

Why consider software as emulator for the IFSM instead
of examining software as the primary object of study? The
answer lies in the very definition of bug or security vulnera-
bility: When the security issue arises from a software flaw
(in contrast to a hardware problem such as [28]), it is
impossible to even define ‘flaw’ without taking into account
what a bug-free version of the software would have been.
Viewing the software as a (potentially faulty) emulator for
the IFSM allows the exploration of how software faults
lead to significantly larger (in the state-space sense) emu-
lated machines.

B. EXAMPLE IFSM: A TINY SECURE

MESSAGE-PASSING SERVER

We introduce an example IFSM with the properties of being
small, having a clearly-defined security boundary, and allowing
for enough complexity to be interesting. We describe the IFSM
informally first and subsequently give a formal example.
Informally, our example IFSM is a machine that remem-

bers a password-secret pair for later retrieval through re-
submission of the right password; retrieval removes the pass-
word-secret pair. We set an arbitrary limit that the system
need not remember more than 5,000 password-secret pairs.
A diagram sketching the IFSM is shown on page 4 in

Figure 1.
To transform this sketch into a formally defined FSM, we

replace the memory of the described machine with explicit
states. We denote the set of possible configurations of
Memory withM

!M :¼
;;
fðp1; s1Þg;
. . . ;
fðp1; s1Þ; . . . ; ðp5000; s5000Þg

pi; si 2 bits32nf0g
pi 6¼ pj

8>><
>>:

9>>=
>>;:

��������
The central looping state A in the informal diagram can be
replaced by a family of states AM indexed by a memory con-
figuration M 2 M. The starting configuration transitions
into A;, and after reading ðp; sÞ, the machine transitions into
Afðp;sÞg and so forth. With the properly adjusted transitions, it
is now clear that we have a proper FST (albeit with a large
number of individual states).
The formal specification of the example IFSM in the 7-

tuple form u ¼ ðQ; i;F;S;D; d; sÞ is as follows:
Q :¼ fAM ;M 2 Mg; i :¼ A;;F :¼ ;
S :¼ fðp; sÞjp; s 2 bits32g; D :¼ fs 2 bits32g

d :¼ AM � ðp; sÞ !
AM[ðp;sÞ if

ðp; sÞ 62 M

^jMj � 4999

^s 6¼ 0

AMnðp;sÞ if ðp; sÞ 2 M

AM otherwise

8>>>>><
>>>>>:

s :¼ AM � ðp; sÞ !
s0 if ðp; s0Þ 2 M

0 if s ¼ 0 _ jMj ¼ 5000

�
2The bisimulation community uses the concept of process, which is
similar—but more readers will be familiar with FSMs, and they serve our
purpose well enough.
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C. SECURITY PROPERTIES OF THE IFSM

Not every malfunction of a program has security implica-
tions. To distinguish between plain erroneous states and erro-
neous states that have security implications, security
properties of the IFSM need to be defined.
Security properties are statements (possibly about proba-

bilities) over sequences of states, inputs, and outputs of the
IFSM. They are part of the specification of the IFSM. Not
every true statement is a security property, but every security
property is a true statement.
The attackers goal is always to violate a security property of

the IFSMwhen interacting with the emulator for the IFSM.

1) SECURITY PROPERTIES OF THE EXAMPLE IFSM

The example IFSM should satisfy the informal notion that
“you need to know (or guess) the right password in order to
obtain a stored secret”.
Intuitively, the attacker should not be able to ‘cheat’—there

should be no way for the attacker to somehow get better-than-
guessing odds to obtain the stored secret from the IFSM.
In order to make this precise, we borrow ideas from the

cryptographic community, and define a multi-step game
where an attacker and a defender get to take turns interacting
with the machine, and we specify that there is no way that
the attacker can gain an advantage.
The game mechanics are as follows:
(1) The attacker chooses a probability distribution A over

finite-state transducers Qexploit that have an input alpha-
bet SQexploit

¼ D and output alphabet DQexploit
¼ S. This

means that the attacker specifies one or more finite-state
transducers that take as input the outputs of the IFSM,
and output words that are the input for the IFSM.

(2) Once this is done, the defender draws two elements p; s
from bits32 according to the uniform distribution.

(3) The attacker draws a finite-state transducer from his
distribution and is allowed to have it interact with the
IFSM for an attacker-chosen number of steps nsetup.

(4) The defender sends his ðp; sÞ to the IFSM.
(5) The attacker gets to have his Qexploit interact with the

IFSM for a further attacker-chosen number of steps
nexploit.

The probability for Qexploit to obtain the defenders secret
should be no better than guessing. Let oexploit be the sequence
of outputs that the Qexploit produced, and oIFSM the sequence
of outputs the IFSM produced during the game. Then our
desired security property is

P½s 2 oIFSM� � nsetup þ nexploit
jbits32j ¼ joexploitj

232
:

The probability here is given a random draw from the
attacker-specified distribution over transducers. This encodes
our desired property: An attacker cannot do better than ran-
domly guessing the password, and the attacker cannot provide
a program that does any better. It is worth noting that the
attacker model encompasses automated exploit generation.

III. A TOY COMPUTING ENVIRONMENT

The IFSM itself is a theoretical construct. In order to ‘run’
the IFSM, a programmer needs to build an emulator for the
IFSM, and this emulator needs to be built for a different, gen-
eral-purpose computing environment, which will be intro-
duced next.
For our investigation, the Cook-and-Reckhow [29] RAM

machine model is well-suited. Their machine model covers
both random-access-machine variants (Harvard architec-
tures) and random-access-stored-program variants (for von-
Neumann-Architectures); our discussion applies equally to
both, but our concrete example assumes a Harvard architec-
ture. Since the focus of this paper explicitly excludes timing
attacks, we also assume the machine is timeless: All opera-
tions take zero time.
The machine model consists of a number of registers as

well as the following operations:

FIGURE 1. A diagrammatic sketch of the example IFSM.
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LOADðC; rdÞ : rd  C Load a constant
ADDðrs1 ; rs2 ; rdÞ : rd  rs1 þ rs2 Add two registers

or a register and
a constant

SUBðrs1 ; rs2 ; rdÞ : rd  rs1 � rs2 Subtract two registers
or a register and
a constant

ICOPYðrp; rdÞ : rd  rrp Indirect memory read
DCOPYðrd; rsÞ : rrd  rs Indirect memory write
JNZ/JZðr; IzÞ Transfer control to

Iz if r is nonzero, zero
READðrdÞ : rd  input Read value from input
PRINTðrsÞ : rd ! output Write value to output

While the original model assumes an infinite quantity of
infinite-size registers, we fix the size of our registers and the
number of these registers arbitrarily. We do this for both the-
oretical (it simplifies some counting arguments later) and for
practical reasons (real machines have finite RAM).
For the purposes of this paper, we fix the size of registers/

memory cells to be 32-bit numbers (the set of which we
denote bits32), and the number of registers/memory cells to
216. We also denote the memory cells r0; . . . ; r6 as registers.
This has no effect at the moment, but will be used later when
we introduce attacker models.
The set of possible memory configurations of the machine

is denoted by Qcpu; a program for this cpu is denoted with r,
and individual lines in this program is denoted by ri where i
is the line number.
Note that the state of the machine is fully determined by

the tuple ððq1; . . . ; q216Þ ¼:~q; r; riÞ: The state of all memory
cells, the program that is running, and the line in the program
the machine will execute next.

A. EXAMPLE IFSM: WHAT TO EMULATE?

There are many different ways of emulating the IFSM in the
toy computing environment. Examining our informal dia-
gram again, emulation needs to be constructed for the three
conditional edges in the diagram (labeled b, c, and d) as well
as the 3 different state modifications (labeled B, C, D).

1) EXAMPLE IFSM EMULATION: VARIANT 1

The first emulator of the example IFSM uses registers/cells 0
through 5 as scratch for reading input, and cells 6 to 10,006 as
a simple flat array for storing pairs of values. It uses no sophis-
ticated data structures and simply searches memory for empty
pairs of memory cells, zeroing them in order to release them.
Full source code for the emulator can be found on page 14

in Figure 5.

2) EXAMPLE IFSM EMULATION: VARIANT 2

The first example does not use any sophisticated data struc-
tures. The Memory of the IFSM is emulated by a simple flat
array, at the cost of always having to traverse all 5,000 ele-
ments of the array when checking for a value.
The second variant implements the same IFSM, but in

order to be more efficient, implements Memory as two singly
linked lists, one for keeping track of free space for password-

secret tuples, and one for keeping track of currently active
password-secret tuples.
Full source code for the emulator for variant 2 can be

found on page 15 in Figure 6.

IV. ERRORS—REACHING AWEIRD STATE

A common problem when investigating foundations of com-
puter security is the difficulty of even defining exactly what a
bug is—defining precisely when a program has encountered
a flaw and is no longer in a well-defined state. Using the
abstraction of the IFSM and viewing the software as an emu-
lator for the IFSM, this becomes tractable.
Intuitively, a program has gone ‘off the rails’ or a bug has

occurred when the concrete cpu has entered a state that has
no clean equivalent in the IFSM—when the state of the cpu
neither maps to a valid state of the IFSM, nor to an intermedi-
ate state along the edges of the IFSM.
To make this notion formal, we define two mappings

(remember that Qcpu is the set of possible states of the con-
crete cpu on which the IFSM is emulated, and Qu is the set of
possible states of the IFSM):
Instantiation Given an IFSM u and a target machine cpu

on which the IFSM is emulated by means of a program r, the
instantiation mapping

gu; cpu; r : Qu ! PðQcpuÞ;
is a mapping that maps states of the IFSM to the set of states
of the concrete cputhat can be used to represent these states.
Note that it is common that one state in the IFSM can be rep-
resented by a large number of states of the target machine.
Abstraction Given an IFSM u and a target machine cpu

on which the IFSM is emulated by means of program r, the
partial abstraction mapping

au;cpu;r : Qcpu ! Qu;

maps a concrete state of the target machine to the IFSM state
that it represents. Note that this is a partial mapping: There
are many states of cpu which do not map to an IFSM state.
We denote the set of states on which a is defined as Qsane

cpu .
During the process of emulating the IFSM, the target

machine necessarily transitions through states on which
au;cpu;r is not defined—since following an edge in the IFSM
diagram often involves multi-step state modifications to
reach a desired target state of the IFSM. To differentiate these
states from erroneous states, we define transitory states .
Intuitively, a transitory state is a state occuring during the

emulation of an edge in the state machine diagram of the
IFSM that is always part of a benign and intended transition.
Transitory State Given an IFSM u and a target machine

cpu on which the IFSM is emulated by means of the program
r, a transitory state qtrans of the cpu is a state that satisfies all
of the following:
(1) there exists S; S0 2 Qu and s 2 S so that dðS; sÞ ¼

S0—the transition from S to S0 given input s is an exist-
ing transition in the IFSM, hence an intended transition.
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(2) there exists qS 2 gu;cpu;rðSÞ; qS0 2 gu;cpu;rðS0Þ and a
sequence of state transitions

qS !n qtrans !n0 qS0 ;

so that au;cpu;r is not defined on all intermediate states
and so that all sequences of transitions from qtrans lead
to qS0 , irrespective of any addition input and before the
machine performs any output.

The set of transitory states will be denoted Qtrans
cpu from

here on.
Clearly, if irrespective of any attacker actions (input) the

machine always transitions into a well-defined and intended
state without any observable effects, the transitory state is
not relevant for the security properties of the IFSM.
Example mappings for Emulator Variant 1 For our very

simple first example, we can provide the relevant mappings
explicitly. An element of Qcpu can be described by the state
of all memory cells ð~qÞ and the program line ri. Let
tðiÞ :¼ 2iþ firstIndex (firstIndex is a constant in the imple-
mentation of Variant 1 denoting the first non-register mem-
ory cell). Then

gu;cpu;rðAMÞ ¼

~q 2 Qcpu so that
8ðp; sÞ 2 M 9i 2 N< 5000 with
ðqtðiÞ; qtðiÞþ1Þ ¼ ðp; sÞ

^ð8i 6¼ j with ðqtðiÞ; qtðiÞþ1Þ ¼ ðqtðjÞ; qtðjÞþ1Þ
) qtðiÞ ¼ qtðiÞþ1 ¼ 0Þ

8>>>><
>>>>:

9>>>>=
>>>>;
:

Once we have g, we can define a in terms of it: Let
q0 2 Qcpu. It maps from the image of g under all possible
configurations ofM to the possible states of the IFSM, Q

au;cpu;r :
[

M2M
ðgu;cpu;rðAMÞÞ

 !
! Q

au;cpu;rðq0Þ ¼ AM with q0 2 gu;cpu;rðAMÞ:
Now we have all the pieces in place to define erroneous

and non-erroneous states.

A. DEFININGWEIRD STATES

With the above definitions we can partition the set of possible
states Qcpu into three parts: States that directly correspond to
states of the IFSM, transitory states that are just symptoms of
the emulator transitioning between valid IFSM states, and all
the other states.
These other states are the object of study of this paper, and

the principal object of study of the exploit practitioner com-
munity. They will be called weird states in the remainder of
this paper—to reflect the fact that they arise unintentionally
and do not have any meaningful interpretation on the more
abstract level of the ISFM.
Weird state Given an IFSM u, the computing environ-

ment cpu and the program r that is supposed to emulate u,
the set Qcpu can be partitioned into disjoint sets as follows:

Qcpu ¼ Qsane
cpu

_[Qtrans
cpu

_[Qweird
cpu :

An element ofQcpu that is neither inQsane
cpu nor inQtrans

cpu is called
aweird state, and the set of all such states is denoted asQweird

cpu .

1) POSSIBLE SOURCES OFWEIRD STATES

There are many possible sources for weird states. Some of
these sources are:
Human Error in the construction of the program r. This is

probably the single most common source of weird
statesin the real world: Since the process of constructing
r is based on humans that often have to work on a non-
existent or highly incomplete specification of the IFSM,
mistakes are made and program paths through r exist that
allow entering a weird state. Real-world examples of this
include pretty much all memory corruption bugs, buffer
overflows etc., but also logic bugs that allow an attacker
to enter a (non-memory-corrupt) state in the emulated
version of the IFSM that was not part of the IFSM.

Hardware Faults during the execution of r. While deter-
ministic computing is a convenient abstraction, the hard-
ware of any real-world computing system is often only
probabilistically deterministic, e.g., deterministic in the
average case with some low-probability situations in
which it nondeterministically flips some bits. A prime
example for this is the widely-publicized Rowhammer
hardware issue [28] (and the resulting exploitation [30]).

Transcription Errors that are introduced into r if r is trans-
mitted over a channel that can introduce errors. Exam-
ples of this include r being stored on a storage medium/
harddisk which due to environmental factors or hard-
ware failure corrupts r partially.

V. WEIRD MACHINES: EMULATED IFSM TRANSITIONS

APPLIED TOWEIRD STATES

Given the definition of weird states, we now need to examine
what happens to the emulated IFSM when r can be made to
compute on a weird state.

A. INTERACTION AS A FORM OF PROGRAMMING

Before examining computation on weird states, though, we
need to clarify to ourselves that sending input to a finite state
transducer is a form of programming. The set of symbols
that can be sent for a restricted instruction set, and the state
transitions inside the finite state transducer are the semantics
of these instructions. Sending input is the same thing as pro-
gramming. This change of perspective is crucial.
The classical perspective views a program as being a

sequence of instructions that, combined with some input,
drive the machine through a series of states:
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We can summarize the sequence of instruction that drives
the machine from state 1 to state 5 into one instruction, and
summarize the intermediate states, too: From the outside,
they are unobservable.

The symmetry of the resulting diagram makes it clear that
every finite-state transducer (and as a result, every piece of
real-world software) can be viewed from two angles: As an
intended machine where the contents of memory, combined
with the code, operate on input data—but, from the attacker
perspective, as an unintended machine where the input data,
combined with the code, operates on the contents of memory.
Each side views what it can control as the program, and what
it does not control as the data. Mathematically, there is no
distinction between the two perspectives.
Under normal conditions, this dual perspective does not

matter: By sending symbols to the IFSM, the attacker can of
course cause the IFSM to change state—this is obvious and
unremarkable. The dual perspective becomes important as
soon as a weird state is entered and the attacker obtains much
more liberty to modify states than anticipated.

B. THE WEIRD MACHINE

To recapitulate: There is the machine that the programmer
intends to have, the IFSM. Since he only has the cpu available,
he generates the program r to simulate the IFSM on the general
cpu . This program emulates all the state transitions of the
IFSM so that a state from Qsane

cpu gets transformed into another
state from Qsane

cpu , whilst traversing a number of states from
Qtrans

cpu .
Now we consider an attacker that has the ability to some-

how move the cpu into a weird state—a state that has no
meaningful equivalent in the IFSM, and that will also not
necessarily re-converge to a state that does. This initial weird
state will be called qinit 2 Qweird

cpu .
Once the attacker has achieved this, a new computing

device emerges: A machine that transforms the states in
Qcpu, particularly those in Qweird

cpu , by means of transitions that
were meant to transform valid IFSM states into each other,
and that takes an instruction stream from the attacker (in
form of further inputs).
Weird Machine The weird machine is the computing

device that arises from the operation of the emulated transi-
tions of the IFSM on weird states. It consists of the 7-tuple

Qweird
cpu ; qinit;Q

sane
cpu [ Qtrans

cpu ;S0;D0; d0; s0
� �

:

Note that Qsane
cpu [ Qtrans

cpu are terminating states for the
weird machine; if one of these states is entered, r begins
emulating the original IFSM again. Further note that the
alphabets for input and output may be different from those
for the IFSM.
The weird machine has a number of interesting properties:

Input as instruction stream The most interesting property
of the weird machine is that, contrary to individual lines
of r transforming states in Qcpu, the weird machine takes
the instruction stream from user input: Every input is an
opcode that leads to the execution of the emulated transi-
tion. While this is true for the IFSM as well, the IFSM
can only reach a well-defined and safe set of states.
The weird machine on the other hand has a state space
of unknown size that can be explored by ‘programming’
it—sending careful crafted inputs.

Unknown state space The state space is a priori not known:
It depends heavily on r and qinit , and determining the
size and shape of Qweird

cpu is very difficult. This also means
that determining whether the security properties of the
IFSM can be violated is a nontrivial endeavour.

FIGURE 2. The first part of the attack: Attacker set-up.
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Unknown computational power It is a-priori unclear how
much computational power a given weird machine will
have. Intuitively, since the transitions of the IFSM end
up being the ‘instructions’ of the weird machine, greater
complexity of the IFSM appears to imply greater
computational power; but the actual way the transitions
are implemented is just as important—some constructs
will lead to easier exploitation than others.

Emergent instruction set The attacker gets to choose the
sequence of instructions, but the instruction set itself
emerges from a combination of the IFSM and the emulator
r. This means that while the machine is programmable,
and the semantics of the instructions are well-defined, the
instructions themselves are often extremely unwieldly to
use. Furthermore, the attacker needs to discover the
semantics of his instructions during the construction of the
attack and infer them from r and qinit.

3

VI. DEFINITION OF EXPLOITATION

Exploitation Given a method to enter a weird state
qinit 2 Qinit

cpu � Qweird
cpu from a set of particular sane states

fqigi2I � Qsane
cpu , exploitation is the process of setup (choos-

ing the right qi), instantiation (entering qinit) and program-
ming of the weird machine so that security properties of the
IFSM are violated.
An exploit is “just” a program for the weird machine

that leads to a violation of the security properties. For a
given vulnerability (a method to move the machine into a
weird state) it is likely that an infinite number of different
programs exist that achieve the same goals by different
means.

A. EXPLOITABILITY OF VARIANT 1 AND VARIANT 2

A natural question arises when discussing “exploitability”:
Do the different implementations of our IFSM have different
properties with regards to exploitability ? Does the attacker
gain more power by corrupting memory in one case than in the
other? Is it possible to implement software in a way that is more
resilient to exploitation under certain memory corruptions?
In order to answer these questions, we need a model for

an attacker.

1) THE ATTACKER MODEL

How does one model the capabilities of an attacker?
The cryptographic community has a hierarchy of detailed
attacker models (known-plaintext, chosen-plaintext etc.)
under which they examine their constructs; in order to reason
about the exploitability of the different implementations we
define a few attacker models for memory corruptions. Some
of these will seem unrealistically powerful—this is by
design, as resilience against an unrealistically powerful
attacker will imply resilience against less powerful attackers
(it should be noted that attacker models of similar power are
practically realized in embedded space today).
Arbitrary program-point, chosen-bitflip In this model, the

attacker gets to stop r while executing, flip an attacker-
chosen bit in memory, and continue executing.

Arbitrary program-point, chosen-bitflip, registers This
model is identical to the above with the exception that
the memory cells 0 through 6 are protected from the
attacker. This reflects the notion that cpuregisters exist
that are normally not corrupted. The attacker still gets

FIGURE 3. The attacker uses his memory-corrupting powers.

FIGURE 4. The final successful steps of the attack.

3The approach of finding and examining “exploit primitives” was first
discussed in [31], [32].
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to stop r while executing, and gets to choose which
bit to flip.

Fixed-program point, chosen bitflip, registers In reality,
attackers can usually not stop the program at an arbitrary
point to flip bits. It is more likely that a transcription
error has happened (e.g., a bug has been introduced into
r) at a particular program point.

Various other models are imaginable.4

For the purpose of examining our two different variants,
we choose the second model: Arbitrary program-point, cho-
sen-bitflip anywhere in memory with the exception of the
first 7 cells (registers). This choice is made out of conve-
nience; obviously, more powerful attackers exist.
We show next how the variant 2 (which uses the singly-

linked lists) is exploitable in this model, while variant 1 that
uses flat arrays turns out—possibly counterintuitively—to be
not exploitable by this powerful attacker.

2) EXTENDING THE SECURITY GAME

We defined security properties involving an attacker that
can specify a probability distribution over finite-state trans-
ducers from which an “attacking” transducer is drawn. In
order to include our attacker models into this framework, we
simply allow the attacker to corrupt memory while the two
machines duel. Concretely, step 5 in the game described in
Section II.C-1 is extended so that the attacker can stop the
attacked program at any point, flip a single bit of memory,
and then resume execution.

3) PROOF OF EXPLOITABILITY OF VARIANT 2

In order to show exploitability, it is sufficient to provide a
sequence of steps (including a single chosen bitflip) that
helps an attacker violate the assumptions of the security
model. This is done using sequential diagrams (Figures 2, 3,
and 4) showing the internal state of the emulator over pages
9, 10 and 10. In this example, the attacker gets to interact
with the machine for a few steps; the user gets to store his
secret in the machine, and the attacker then gets to attempt to
extract the users secret by flipping just a single bit.
The machine begins in it’s initial state, e.g., all memory

cells are empty and the head of the free list is at zero.
The diagrams on pages 9, 10 and 10 show the first 15

non-register memory cells, along with the points-to-rela-
tions between them. Furthermore, the heads of the free
and used linked lists are marked. Between two such dia-
grams, the actions that the user or attacker takes are listed,
and the resulting state is shown in the subsequent diagram.
Following the diagrams, it is clear that an attacker can

exploit the linked-list variant of the IFSM emulator using
just a single bit-flip. It is also clear that the specific sequence
of inputs the attacker sends to the emulator after the bit-flip
constitutes a form of program.

4) PROOF OF NON-EXPLOITABILITY OF VARIANT 1

The proof idea is to show that any attacker that is capable of
flipping a single bit can be emulated by an attacker without
this capability with a maximum of 10,000 more interactions
between attacker and emulated IFSM, thus demonstrating
that the attacker can not obtain a significant advantage by
using his bit-flipping ability. The number 10,000 arises from
the fact that our IFSM has a maximum of 5,000 ðp; sÞ-tuples
in memory. In order to replace a particular memory cell in
the emulated IFSM, the emulation process needs to fill up to
4,999 tuples with temporary dummy values and remove
them again thereafter, leading to 9,998 extra interactions for
targeting a particular cell.
Assumption 1: We assume that the security property in

Section II.C-1 holds for Variant 1 provided the attacker can
not corrupt memory.
The proof proceeds by contradiction: Assume that an

attacker can specify a distribution over finite state trans-
ducers, a particular bit of memory, and a particular point in
time when to flip this bit of memory, to gain an advantage of
at least knowing one bit of the secret

P½s 2 oIFSM� > nsetup þ nexploit
jbits31j ¼ joexploitj

231
:

Let Qexploit be a transducer from the specified distribution
that succeeds with maximal advantage: No other transducer
shall have a greater gap between it’s probability of success
and the security boundary

Qexploit ¼ argmax
exploit

P½s 2 oIFSM� � joexploitj231
:

We now state two lemmas describing the set of states
reachable by an attacker. No proof is given, but they are
easily verified by inspecting the code.
Lemma 1: All states in Qtrans

cpu are of the following form:
q 2 Qsane

cpu with exactly one partially-stored tuple (corre-
sponding to program lines 36 and 37)—a short time
period where one of the memory cells contains a p 6¼ 0
with a stale s.
Lemma 2: An attacker that can flip a bit can only perform

the following 5 transitions:.
(1) Replace a ðp; sÞ tuple in memory with ðp� 2i; sÞ.
(2) Transition a state with memory containing two tuples
ðp; s1Þ; ðp� 2i; s2Þ into a state where memory contains
ðp; s1Þ; ðp; s2Þ.

(3) Replace a ðp; sÞ tuple in memory with ðp; s� 2iÞ
(4) Replace a ðp; 2iÞ tuple with ðp; 0Þ
(5) Replace a ð2i; sÞ tuple with ð0; sÞ
Note that 1, 3 and 5 are all transitions from Qsane

cpu to Qsane
cpu .

Only 2 and 4 lead to Qweird
cpu .

Now consider S 2 Qn
cpu the sequence of state transitions of

Qcpu for a successful attack by Qexploit.
Theorem 1: Any sequence of state transitions during a suc-

cessful attack that use transitions 1, 3, or 5 above can be

4Other examples that are worth exploring: Fixed-program-point random-bit
flip, Fixed-program-point chosen-bit flip, Fixed-program-point chosen-byte-
writing, Fixed-program-point arbitrary memory rewriting etc.
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emulated by an attacker that can not flip memory bits in at
most 10,000 steps.
Proof: For all cases, the attacker without the ability to flip

bits sends ðpi; xiÞ tuples to fill all empty cells preceding the
cell in which Qexploit flips a bit, performs the action
described, and then sends ðpi; xiÞ to free up these cells again.
We denote an arbitrary value with x.

For case 1: If p was previously known to the attacker, an
attacker without the ability to flip bits can simply send ðp; xÞ,
receive s, and send ðp� 2i; sÞ. If p was not previously known
to the attacker, p� 2i is not either, and the game proceeds
normally without attacker advantage.

For case 3: If p was previously known, the attacker sends
ðp; 0Þ, receives s, and then sends ðp; s� 2iÞ. If p was not
known to the attacker, the game proceeds normally without
attacker advantage.

For case 5: The value p ¼ 2i must have been known, and
the transition can be emulated by simply sending ð2i; xÞ. tu
This means that the transitions that the attacker gains that

help him transit from one sane state to another, but along an
unintended path, do not provide him with any significant
advantage over an attacker that can not corrupt memory.
What about the transitions that lead to weird states?
Lemma 3: For any sequence of state transitions that suc-

cessfully violates the security property, there exists a p0

which is never sent by either party.
Proof: Any sequence for which such a p0 does not exist is

of length 232 � 1 and can hence not break the security
property. tu
Theorem 2: Any sequence of state transitions during a suc-

cessful attack that uses transition 2 can only produce output
that is a proper subsequence of the output produced by an
attacker that cannot flip memory bits, with a maximum of
10,000 extra steps.
Proof: For case 2:
Given that the attacker only gets to flip a bit once, the

sequence S will of the form

ðqsaneÞn1 !t2 ðqweirdÞn2 !t02
ðqsaneÞn3 ;

with n3 possibly zero. The weird state the attacker enters
with t2 is identical to a sane state except for a duplicate
entry with the same p. From this state on, there are two
classes of interactions that can occur:

(1) A tuple ðp; xÞ is sent, which transitions cpu via t02 back
into a sane state.

(2) A tuple ðp0 6¼ p; xÞ is sent, which transitions into another
state in the same class (sane except duplicate p).

An attacker without bit flips can produce an output sequence
that contains the output sequence of the attacker with bit flips
as follows:
(1) Perform identical actions until the bit flip.
(2) From then on, if p� 2i is sent, replace it with p0.
(3) If p is sent and the address of the cell where p is stored

is less than the address where p0 is stored, proceed nor-
mally to receive s1. Next

a) Send ðp0; xÞ, receive s2.
b) Fill any relevant empty cells.
c) Send ðp; s2Þ.
d) Free the temporary cells again.

(4) If p is sent and the address of the cell where p is stored
is larger than the address where p0 is stored, replace the
sending of p with p0.

(5) Other operations proceed as normal. tu
Theorem 3: Any sequence of state transitions during a suc-

cessful attack that uses transition 4 can only produce output
that is a proper subsequence of the output produced by an
attacker that cannot flip memory bits.
Proof: The same properties about the weird state only tran-

sitioning into another weird state of the same form or back
into a sane state that held in the proof for transition 2 holds
for transition 4. To produce the desired output sequence, the
attacker without bit flips simply replaces the first query for p
after the bit flip with the query ð0; 0Þ. tu
We have shown that we can emulate any bit-flipping

attacker in a maximum of 10,000 steps using a non-bit-flip-
ping attacker.
Since we assumed that our bit-flipping attacker can obtain

an attack probability

P½s 2 oIFSM� > joexploitj231
;

it follows that the emulation for the bit-flipping attacker by a
non-bit-flipping attacker achieves

P½s 2 oIFSM� > joexploitj þ 10000
231

>
joexploitj
232

:

This contradicts our assumption that the non-bit-
flipping attacker cannot beat our security boundary, and
hence proves that a bit-flipping attacker cannot get an advan-
tage of even a single bit over a non-bit-flipping attacker.

VII. CONSEQUENCES

There are a number of consequences of the previous discus-
sion; they mostly relate to questions about mitigations,
demonstrating non-exploitability, and the decoupling of
exploitation from control flow.

A. MAKING STATEMENTS ABOUT

NON-EXPLOITABILITY IS DIFFICULT

Even experts in computer security routinely make mistakes
when assessing the exploitability of a particular security
issue. Examples range from Sendmail bugs [31] via the
famous exploitation of a memcpy with ‘negative’ length in
Apache [32] to the successful exploitation of hardware-fail-
ure-induced random bit flips [30]. In all of these cases, large
percentages of the security and computer science community
were convinced that the underlying memory corruption could
not be leveraged meaningfully by attackers, only to be
proven wrong later.
It is difficult to reason about the computational power of a

given weird machine: After all, a vulnerability provides an
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assembly language for a computer that has never been pro-
grammed before, and that was not designed with programma-
bility in mind. The inherent difficulty of making statements
about the non-existence of programs in a given machine lan-
guage with only empirically accessible semantics may be
one of the reasons why statements about non-exploitability
are difficult.
Furthermore, many security vulnerabilities have the prop-

erty that many different initial states can be used to initialize
the weird machine, further complicating matters: One needs
to argue over all possible transitions into weird states and
their possible trajectories thereafter.

B. MAKING STATEMENTS ABOUT

NON-EXPLOITABILITY IS POSSIBLE

While making statements about non-exploitability is
supremely difficult for complex systems, somewhat surpris-
ingly we can construct computational environments and
implementations that are provably resistant to classes of mem-
ory-corrupting attackers.
This may open a somewhat new research direction: What

data structures can be implemented with what level of resil-
iency against memory corruptions, and at what performance
cost?

C. MITIGATIONS AND REPEATED ATTACKS

Computer security has a long history of exploit mitigations—
and bypasses for these mitigations: From stack cookies [5],
[33], [34] via ASLR [35] to various forms of control-flow-
integrity [9]–[11]. The historical pattern has been the publica-
tion of a given mitigation, followed by methods to bypass the
mitigations for particular bug instances or entire classes of
bugs.
In recent years, exploit mitigations that introduce ran-

domness into the states of cpu have been very popular,
ranging from ASLR [35] via various heap layout random-
izations to efforts that shuffle existing code blocks around
to prevent ROP-style attacks. It has often been argued
(with some plausibility) that these prevent exploitation—
or at least “raise the bar” for an attacker. While introduc-
ing unpredictability into a programming language makes
programming more difficult, it is unclear to what extent
layering such mitigations provides long-term obstacles for
an attacker that repeatedly attacks the same target: Such
an attacker finds himself in a situation where he programs
a series of highly related computational devices, and it is
clear that re-use of weird machine program fragments will
both occur and work in his favor. Studying the extent to
which this negatively impacts the effectiveness of mitiga-
tions seems necessary to ascertain their long-term benefit,
but is outside the scope of this paper.

1) LIMITATIONS OF CFI TO PREVENT EXPLOITATION

It should be noted that both examples under consideration in
this paper exhibited perfect control-flow-integrity: An
attacker never subverted control flow (nor could he, in the

computational model we used). This shows that the real-
world results demonstrated in [36] (bypasses of 5 out of 6
perfectly CFI’d programs) scale down to the most minimal
of examples.
Historically, attackers preferred to obtain control over the

instruction pointer of cpu—so most effort on the defensive
side is spent on preventing this from happening. It is likely,
though, that the reason why attackers prefer hijacking
the instruction pointer is because it allows them to leave the
“difficult” world of weird machine programming and pro-
gram a machine that is well-understood with clearly specified
semantics—the cpu. It is quite unclear to what extent perfect
CFI renders attacks impossible, and depends heavily on the
security properties of the attacked program, as well as the
other code it contains.

2) THE ROLE OF REGISTERS

It may be of interest that the proof of non-exploitability
requires the existence of registers—storage that can not be
pointed to, and that cannot be modified by the attacker. This
has an interesting parallel in the development of some CFI
implementations [10], which also rely on keeping a secret in
a register and never spilling it to memory to ensure confi-
dentiality and integrity.

APPENDICES

APPENDIX A: PROGRAM LISTING FOR THE

FLAT-ARRAY VARIANT

FIGURE 5. Listing for variant1A.s.
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APPENDIX B: PROGRAM LISTING FOR THE

LINKED-LIST VARIANT
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