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Introduction
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Limitations of 
learning by 
(physical) 
interaction

The agent should 
have the chance to 
try (and fail) MANY 
times
✓Hard when safety is a 

concern

✓Hard in general when 
each interaction takes 
time
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Imitation Learning
Learning from demonstrations
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✓Kinesthetic imitation
✓Teacher takes over the end effectors of the 

agent.
✓Demonstrated actions are in the action 

space of the imitator

✓Visual imitation
✓The actions of the teacher need to be 

inferred from visual sensory input and 
mapped to the action space of the 
agent



Imitation Learning Vs Supervised 
Labelling
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Imitation Learning Vs Supervised 
Labelling
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Our actions influence 

future state and data

Predicted labels do 

not influence future



Action Labelling
A mapping from states/observations to action labels
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Buying poultry

𝑓𝜃(𝑎|𝑠)

Training 
Data

Supervised 
learning

𝑓𝜃(𝑎|𝑠)

𝑠𝑡

𝑎𝑡

Assume action labels in an annotated video are i.i.d

Train a classifier to map observations to labels at each time step



Imitation Learning (Behaviour Cloning)
Policy - A mapping from observations to actions
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Assume actions in the expert trajectories are i.i.d

Train a function to map observations to actions at each time step

Training 
Data

Supervised 
learning

𝜋𝜃(𝑎|𝑠)

𝜋𝜃(𝑎|𝑠)

𝑠𝑡

𝑎𝑡



What Possibly Can Go Wrong?

✓Compounding errors
✓Data augmentation

✓Non-markovian
observations
✓Recurrent models

✓Stochastic expert 
actions
✓Generative modelling 
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Distribution Shifts
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Independent in Time Error
At each time step t, the agent wakes up on a state drawn from the state 
distribution of the expert trajectories, and executes an action
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✓Error at each time t step bounded by ϵ

✓Expected total error for T steps: 𝔼 𝐸 ≤ ϵ 𝑇



Compounding Errors
At each time step t, the agent wakes up on a state drawn from the state 
distribution resulting from executing the action suggested by the learned policy 
previously
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✓Error at each time t step bounded by ϵ

✓Expected total error for T steps: 𝔼 𝐸 ≤ ϵ 𝑇 + 𝑇 − 1 + 𝑇 − 2 +⋯ ∝ 𝜖𝑇2



Distribution Mismatch (Distribution Shift)
Due to the interdependence between our action at time step 𝑡 and the state at 
𝑡 + 1, states seen at test time may come from a different distribution than those 
seen at training time
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𝑃𝜋∗ 𝑆𝑡 ≠ 𝑃𝜋𝜃 𝑆𝑡



Something Similar Happens in..
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Sequence 
generation/transduction

Solutions use teacher forcing 
with annealed schedule



Scheduled Sampling
✓Initial training phase 
✓Conditioning states come from the Teacher (training data)

✓Later training phase 
✓States/observations are sampled from the output of the model

✓Ground-truth for the next time step still from the expert
✓Model learns to handle its mistakes 

✓Pushing deviating generated sequences back to the right track
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Distribution Mismatch (DM)

Supervised Learning Supervised learning 
+ Control

Train (𝑥, 𝑦) ~𝑃(𝐷) 𝑠𝑡~𝑃𝜋∗ (𝒔)

Test (𝑥, 𝑦) ~𝑃(𝐷) 𝑠𝑡~𝑃𝜋𝜃 (𝒔)
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Fundamental assumption in (standard) supervised learning is that 

training and test data distributions match



DM Solution - Augment Data
✓Change 𝑃𝜋∗ (𝒔) by augmenting the expert demonstration 
trajectories
✓Add examples in expert demonstration trajectories to cover the states where 

the agent will land when trying out its own policy

✓Approaches
✓Generate synthetic data in simulation (ALVINN 1989)

✓Collecting additional data via clever tricks

✓Interactively query the experts in additional datapoints
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Clever Tricks – NVIDIA 2016
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Additional, left and right cameras 

with automatic ground-truth labels 
to recover from mistakes

End to End Learning for Self-Driving Cars , Bojarski et al. 2016



NVIDIA 2016 Demo
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https://youtu.be/NJU9ULQUwng

https://youtu.be/NJU9ULQUwng


Incremental Dataset Growing - DAgger
How can we make 𝑃𝜋∗ 𝒔 ≈ 𝑃𝜋𝜃 (𝒔)?

Key Idea - If we cannot be clever on 𝑃𝜋𝜃 𝒔 let us be clever on 𝑃𝜋∗ 𝒔
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DAgger – Dataset Aggregation

✓Collect training data from 𝑃𝜋𝜃 𝒔 in place of 𝑃𝜋∗ 𝒔

✓Collect observations by running 𝜋𝜃(𝑎𝑡|𝑠𝑡) and ask someone for labels 𝑎𝑡



Incremental Dataset Growing - DAgger
How can we make 𝑃𝜋∗ 𝒔 ≈ 𝑃𝜋𝜃 (𝒔)?

Key Idea - If we cannot be clever on 𝑃𝜋𝜃 𝒔 let us be clever on 𝑃𝜋∗ 𝒔
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DAgger – Dataset Aggregation
1. Train 𝜋𝜃(𝑎𝑡|𝑠𝑡) from expert data 𝒟 = 𝒔1, 𝒂1, … , 𝒔𝑁, 𝒂𝑁
2. Run 𝜋𝜃(𝑎𝑡|𝑠𝑡) to get data 𝒟𝜋 = 𝒔1, … , 𝒔𝑁
3. Ask expert to label 𝒟𝜋 with action 𝒂𝑛
4. Aggregate 𝒟 ← 𝒟 ∪ 𝒟𝜋

Potential issues
▪ Execute an unsafe/partially trained 

policy
▪ Repeatedly query the expert
▪ Expert is queried for an action without 

experiencing the state



Dagger Demo
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Ross et al, Learning monocular reactive UAV control in cluttered 

natural environments, 2013

https://youtu.be/hNsP6-K3Hn4

https://youtu.be/hNsP6-K3Hn4


Beyond Vanilla Dagger
✓Experts do not need to be humans
✓Generative learning can be used for imitating expert policies 

✓Solving simpler optimization in a constrained part of the state space

✓Imitation then means distilling knowledge of constrained policies into a general 
policy that can do well in all scenarios
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Rusu, Policy distillation, ICLR 2016



Meeting the Expert 
Expectations
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Non-Markovian Behaviour
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𝜋𝜃(𝑎𝑡|𝑠𝑡) 𝜋𝜃(𝑎𝑡|𝑠𝑡, 𝑠𝑡−1,… , 𝑠0)

If we see the same thing 
twice, we do the same 
thing twice, regardless of 
what happened before

Behavior depends on the 
history of past 
observations



Non-Markovian Behaviour – How to?
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Recurrent neural network
(gated to say the least)



Multimodal 
Behaviour
✓Avoiding an obstacle 
for an expert is easy

✓Take one of the two 
steering angles
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Multimodal 
Behaviour in 
Regression
✓Regression fails in 
multimodality

✓MSE minimum is the 
average

✓Which might not be 
advisable…
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Multimodal 
Behaviour in 
Regression
✓….unless you know how to do this
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Multimodality - Can we fix it?
✓Autoregressive discretization
✓Discretize the action space and train a classifier that predicts a 

categorical distribution it

✓Do it progressively on the original features to avoid curse of 
dimensionality (e.g. PixelRNN)

✓Gaussian mixture model output
✓Predict mixture components weights, means and variances 

✓Need to guess number of modes

✓Density model
✓Density networks

✓Variational Autoencoders

✓Generative Adversarial Network
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𝑃(𝑎1)

𝑃(𝑎2|𝑎1)



Multimodality - Can we fix it?
✓Autoregressive discretization
✓Discretize the action space and train a classifier that predicts a 

categorical distribution it

✓Do it progressively on the original features to avoid curse of 
dimensionality (e.g. PixelRNN)

✓Gaussian mixture model output
✓Predict mixture components weights, means and variances 

✓Need to guess number of modes

✓Density model
✓Density networks

✓Variational Autoencoders

✓Generative Adversarial Network
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𝜋𝜃 𝑎 𝑠 = σ𝑖𝑤𝑖𝒩(𝜇𝑖 , Σ𝑖)



Multimodality - Can we fix it?
✓Autoregressive discretization
✓Discretize the action space and train a classifier that predicts a 

categorical distribution it

✓Do it progressively on the original features to avoid curse of 
dimensionality (e.g. PixelRNN)

✓Gaussian mixture model output
✓Predict mixture components weights, means and variances 

✓Need to guess number of modes

✓Density model
✓Density networks

✓Variational Autoencoders

✓Generative Adversarial Network
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𝜖 ~𝒩(0, 𝜎)



Generative Imitation 
Learning
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Generative 
Adversarial Imitation 
Learning (GAIL)
✓Use a policy network as 
generator (state conditioned)

✓Find a policy that makes it 
impossible for a discriminator 
network to distinguish between 
state-actions from the expert 
demonstrations and state-actions 
visited by the learnt policy

✓Generator needs to be trained 
using RL
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This is not 
differentiable!
Generated 
actions sample 
from an MPD

Ho and Ermon, Generative Adversarial Imitation 
Learning, NIPS 2016



GAIL Algorithm
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Trust-Region
policy gradient

Entropy-based
policy regularizer

Discriminator 
provides reward
function



Rewards are not always as explicit
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Inverse Reinforcement Learning (IRL)
✓An alternative to imitation learning
✓Use demonstrations to learn a reward function

✓Train a policy using learnt reward function

✓Least expensive form of supervision
✓Does not need full demonstrations

✓RL phase can “fill in” missing behavior given partial demonstrations

✓Argued to be a more comprehensive model of expert behavior
✓Learning why the expert did something instead of mapping states to actions

✓Can potentially generalize better
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GAIL is a particular form of 
inverse RL that learns a reward 
function that tries to match state 
distributions between the expert 
and imitator



More Formally
Forward Reinforcement Learning

✓Given

✓ States s ∈ 𝒮 and actions a ∈ 𝒜

✓ Transitions 𝑃𝑠𝑠′
𝑎 (sometimes)

✓ Reward function ℛ𝑠
𝑎

✓Learn or infer policy 𝜋∗(𝑎|𝑠)

Inverse Reinforcement Learning

✓Given

✓ States s ∈ 𝒮 and actions a ∈ 𝒜

✓ Transitions 𝑃𝑠𝑠′
𝑎 (sometimes)

✓ Sampled episodes from expert 
(s, a) ~ 𝜋∗(𝑎|𝑠)

✓ Learn a reward function r𝜙(a, s), with 
𝜙 being adaptive parameters

✓ …and use r𝜙(a, s) to learn/infer 

𝜋∗(𝑎|𝑠)
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Solving IRL – MaxEntropy Deep IRL
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Expert state-action 
frequencies

Finds 𝑄 and 𝑉 and 
infers 𝜋𝑛

Expected state 
visiting 
frequencies by 
sampling with 𝜋𝑛

MAP of observing 
expert samples

Wulfmeier et al, Maximum Entropy Deep Inverse Reinforcement Learning, 2015



Guided Cost Learning
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Learned policy 
provides samples to 
reward estimator

GENERATOR

Learned rewards guide 
policy learning

DISCRIMINATOR

Finn et al, Guided Cost 
Learning: Deep Inverse Optimal 
Control via Policy Optimization, 
ICML 2016



GCL Demo
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https://youtu.be/hXxaepw0zAw

https://youtu.be/hXxaepw0zAw


Wrap-up
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Take home messages
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✓Effective imitation learning is much about managing distribution shift
and relaying less on human demonstration

✓Using a learnable model of reward can serve the purpose of reducing the 
extent of human labelling (inverse reinforcement learning)

✓Much left unsaid
✓Off-policy learning from imitation policy

✓Q-learning as natural off-policy imitation learner
✓Just drop demonstrations into the replay buffer

✓Inverse reinforcement learning Vs generative adversarial learning


