Markov Decision Processes

DAVIDE BACCIU - BACCIU@DI.UNIPI.IT

Introduction

Outline

- ✓ Formalizing reinforcement learning with fully observable environment
 - Markov Processes
 - ✓ Markov Rewards
 - ✓ Markov Decision Processes
- ✓ A recursive formulation for value functions
- Extensions of the Markov decision process

Introduction to MDPs

- ✓ Markov decision processes formally describe an environment for reinforcement learning
 - Environment is fully observable
 - ✓ i.e. The current state completely characterises the process
- ✓ Almost all RL problems can be formalised as MDPs, e.g.
 - ✓ Optimal control primarily deals with continuous MDPs
 - ✓ Partially observable problems can be converted into MDPs
 - ✓ Bandits are MDPs with one state

Markov Process

Markov Property

"The future is independent of the past given the present"

Definition (Markov State)

A state S_t is Markov if and only if $P(S_{t+1}|S_1,...,S_t) = P(S_{t+1}|S_t)$

- √ The state captures all relevant information from the history
- ✓ Once the state is known, the history may be thrown away
- ✓ The state is a sufficient statistics for the future

State Transition Matrix

✓ For a starting state s and successor state s', the state transition probability is defined by

$$P_{ss'} = P(S_{t+1} = s' | S_t = s)$$

✓ The state transition matrix **P** defines the transition probabilities from all states s to all successor states s'

$$\mathbf{P} = \begin{bmatrix} P_{11} & \cdots & P_{1n} \\ \vdots & \ddots & \vdots \\ P_{n1} & \cdots & P_{nn} \end{bmatrix}$$

where each row of the matrix sums to 1 (marginalization)

Markov Process

A Markov process is a memoryless random process, i.e. a sequence of random states $S_1, S_2, ...$ with the Markov property

Definition (Markov Process)

A Markov Process (or Markov Chain) is a tuple $\langle S, P \rangle$

- \circ S is a finite set of states
- **P** is a state transition matrix, such that. $P_{SS'} = P(S_{t+1} = s' | S_t = s)$

Example – Student Markov Chain

Example – Student Markov Chain Episodes

Sample episodes for Student Markov Chain starting from $S_1 = "Class\ 1"\ (C1)$ $S_1, S_2, ..., S_t$

- ✓ C1 C2 C3 Pass Sleep
- ✓ C1 FB FB C1 C2 Sleep
- ✓ C1 C2 C3 Pub C2 C3 Pass Sleep
- ✓ C1 FB FB C1 C2 C3 Pub C1 FB FB FB C1 C2 C3 Pub C2 Sleep

Example – Student Markov Chain Transition Matrix

Future

$$P_{SS'} = P(S_{t+1} = s' | S_t = s)$$

Markov Rewards

Markov Reward Process

A Markov Reward Process (MRP) is a Markov chain with reward values

Definition (Markov Reward Process)

A Markov Reward Process is a tuple $\langle \mathcal{S}, P, \mathcal{R}, \gamma \rangle$

- \circ $\mathcal S$ is a finite set of states
- **P** is a state transition matrix, s.t. $P_{ss'} = P(S_{t+1} = s' | S_t = s)$
- \mathcal{R} is a reward function, s.t. $\mathcal{R}_s = \mathbb{E}[R_{t+1}|S_t = s]$
- \circ γ is a discount factor, $\gamma \in [0,1]$

Example – Student MRP

Return

Definition (Return)

The return G_t is the total discounted reward from time-step t

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

- ✓ The value of receiving reward R after k+1 timesteps is $\gamma^k R$
- $\checkmark \gamma$ values immediate reward Vs delayed reward
 - $\checkmark \gamma \approx 0$ leads to "myopic" evaluation
 - $\checkmark \gamma \approx 1$ leads to "far-sighted" evaluation

On the discount term

- ✓ Mathematically convenient to discount rewards
- ✓ Avoids infinite returns in cyclic Markov processes
- ✓ Uncertainty about the future may not be fully represented
- ✓ Application dependent
 - ✓ If the reward is financial, immediate rewards may earn more interest than delayed rewards
 - ✓ Biological plausibility (animal behaviour shows preference for immediate reward)
- ✓ It is sometimes possible to use undiscounted Markov reward processes (i.e. $\gamma = 1$), e.g. if all sequences terminate

Value Function

Measures the long-term value of being in a certain state s

Definition (Value Function)

The state-value function v(s) of a Markov Reward Process is the expected return starting from state s

$$v(s) = \mathbb{E}[G_t | S_t = s]$$

Example – Student MRP Returns

Sample returns for student Markov Reward Process

✓ Starting from $S_1 = C1$

✓ C1 C2 C3 Pass Sleep

$$\checkmark$$
v(C1) = -2 - 2 * $\frac{1}{2}$ - 2 * $\frac{1}{4}$ + 10 * $\frac{1}{8}$ = -2.25

✓ C1 FB FB C1 C2 Sleep

Example – Student MRP State-Value Function ($\gamma = 0$)

Example –
Student MRP
State-Value
Function (γ = 0.9)

Example – Student MRP State-Value Function ($\gamma = 1$)

Bellman Equation for MRPs

- \checkmark The value function $v(S_t)$ can be decomposed into two parts
 - ✓Immediate reward R_{t+1}
 - ✓ Discounted value of successor state $\gamma v(S_{t+1})$

$$v(s) = \mathbb{E}[G_t | S_t = s] = \mathbb{E}\left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} | S_t\right]$$

$$= \mathbb{E}[R_{t+1} + \sum_{k=1}^{\infty} \gamma^k R_{t+k+1} | S_t]$$

$$= \mathbb{E}[R_{t+1} + \gamma (R_{t+2} + \sum_{k=2}^{\infty} \gamma^k R_{t+k+1}) | S_t]$$

$$= \mathbb{E}[R_{t+1} + \gamma G_{t+1} | S_t]$$

$$= \mathbb{E}[R_{t+1} + \gamma v(S_{t+1}) | S_t]$$

Bellman Equation for MRPs — Which future state?

$$v(s) = \mathbb{E}[R_{t+1} + \gamma v(S_{t+1})|S_t = s]$$

Reward function \mathcal{R}_s

$$v(s) = \mathbb{E}[R_{t+1}|S_t = s] + \gamma \mathbb{E}[v(S_{t+1})|S_t = s] \longrightarrow \text{The expected state-value of being in any state reachable from } s$$

$$v(s) = \mathcal{R}_s + \gamma \sum_{s'} P_{ss'} v(s')$$

Example – Bellman Equation for Student MRP $(\gamma=1)$

Bellman Equation – Matrix Form

Considering n available states

$$v = \mathcal{R} + \gamma \mathbf{P} v$$

$$v = \begin{bmatrix} v(1) \\ \vdots \\ v(n) \end{bmatrix} \qquad \mathcal{R} = \begin{bmatrix} \mathcal{R}_1 \\ \vdots \\ \mathcal{R}_n \end{bmatrix} \qquad \boldsymbol{P} = \begin{bmatrix} P_{11} & \cdots & P_{1n} \\ \vdots & \ddots & \vdots \\ P_{n1} & \cdots & P_{nn} \end{bmatrix}$$

Provides us with a nice linear system

Solving the linear Bellman Equation

$$v = \mathcal{R} + \gamma \mathbf{P} v = (\mathbf{I} - \gamma \mathbf{P})^{-1} \mathcal{R}$$

- \checkmark Computational complexity is $O(n^3)$
 - ✓ Direct solution only feasible for small MRPs
- ✓ Iterative methods for large MRPs
 - ✓ Dynamic programming
 - ✓ Monte-Carlo evaluation
 - ✓ Temporal-Difference learning

Markov Decision Processes

Markov Decision Process

A Markov Decision Process (MDP) is a Markov reward process with actions. It is an environment in which all states are Markov

Definition (Markov Decision Process)

A Markov Reward Process is a tuple $\langle \mathcal{S}, \mathcal{A}, P, \mathcal{R}, \gamma \rangle$

- \circ S is a finite set of states
- \circ \mathcal{A} is a finite set of actions a
- P is a state transition matrix, s.t. $P_{ss'}^a = P(S_{t+1} = s' | S_t = s, A_t = a)$
- \mathcal{R} is a reward function, s.t. $\mathcal{R}_s^a = \mathbb{E}[R_{t+1}|S_t = s, A_t = a]$
- γ is a discount factor, $\gamma \in [0,1]$

Example – Student Markov Decision Process

Policy - Definition

Definition (Policy)

A policy π is a distribution over actions α given states s

$$\pi(a|s) = P(A_t = a|S_t = s)$$

- ✓ Define the behavior of an agent
- ✓ MDP policies depend only on the current state (Markovian)
- ✓ Policies are stationary (time-independent): $A_t \sim \pi(\cdot | s)$, $\forall t > 0$

Under Policy

Given an MDP $\langle S, A, P, \mathcal{R}, \gamma \rangle$ and a policy π

- ✓ The state sequence $S_1, S_2, ...$ is a Markov process $\langle S, P^{\pi} \rangle$ (under policy)
- ✓ The state and reward sequence S_1 , R_2 , S_2 ... is a Markov reward process $\langle S, \boldsymbol{P}^{\pi}, \mathcal{R}^{\pi} \rangle$ (under policy), such that

$$P_{ss'}^{\pi} = \sum_{a \in \mathcal{A}} \pi(a|s) P_{ss'}^{a}$$

$$\mathcal{R}_{s}^{\pi} = \sum_{a \in \mathcal{A}} \pi(a|s) \mathcal{R}_{s}^{a}$$

Value Function (with policy)

Definition (Value Function)

The state-value function $v_{\pi}(s)$ of an MDP is the expected return starting from state s and following policy π

$$v_{\pi}(s) = \mathbb{E}_{\pi}[G_t|S_t = s]$$

Definition (Action-Value Function)

The action-value function $q_{\pi}(s, a)$ is the expected return starting from state s, taking action a, and then following policy π

$$q_{\pi}(s, a) = \mathbb{E}_{\pi}[G_t | S_t = s, A_t = a]$$

Example – Student State-Value Function

Bellman Expectation Equation — Value and Action-Value Functions

The state-value function can again be decomposed into immediate reward plus discounted value of successor state

$$v_{\pi}(s) = \mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) | S_t = s]$$

Similarly, we can decompose the action-value function

$$q_{\pi}(s, a) = \mathbb{E}_{\pi}[R_{t+1} + \gamma q_{\pi}(S_{t+1}, A_{t+1}) | S_t = s, A_t = a]$$

Both come from the recursive nature of return G_t

Bellman Expectation for v_{π} (I)

$$v_{\pi}(s) = \mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1})|S_t = s]$$

Expectation with respect to the actions that can be taken starting from *s*

$$v_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) q_{\pi}(s,a)$$

Bellman Expectation for q_{π} (I)

Bellman Expectation for v_{π} (II)

$$v_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) q_{\pi}(s,a)$$

The expected return of being in a state reachable from s through action a and then continue following policy

$$v_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} P_{ss'}^a v_{\pi}(s') \right)$$

Bellman Expectation for q_{π} (II)

$$q_{\pi}(s,a) = \mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} P_{ss'}^a v_{\pi}(s')$$

The expected return of any action a' taken from states reachable from s through action a (and then follow policy)

$$q_{\pi}(s,a) = \mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} P_{ss'}^a \sum_{\alpha' \in \mathcal{A}} \pi(\alpha'|s') q_{\pi}(s',\alpha')$$

Bellman Expectation Equation – Matrix Form

Again a linear system

$$v_{\pi} = \mathcal{R}^{\pi} + \gamma \mathbf{P}^{\pi} v_{\pi}$$

With direct solution

$$v_{\pi} = (\boldsymbol{I} - \gamma \boldsymbol{P}^{\pi})^{-1} \mathcal{R}^{\pi}$$

Example –
Bellman
Expectation in
Student MDP

Optimal Value Function

Definition (Optimal State/Action Functions)

The optimal state-value function $v_*(s)$ is the maximum value function over all policies

$$v_*(s) = \max_{\pi} v_{\pi}(s)$$

The optimal action-value function $q_{\ast}(s,a)$ is the maximum action-value function over all policies

$$q_*(s,a) = \max_{\pi} q_{\pi}(s,a)$$

- ✓ The optimal value function determines the best possible performance in the MDP
- ✓ An MDP is solved when we know the optimal value function

Example – Optimal Value Function for Student MDP

Example – Optimal Action-Value Function for Student MDP

Optimal Policy

Define a partial ordering over policies

$$\pi \ge \pi' if \ v_{\pi}(s) \ge v_{\pi'}(s), \forall s$$

Theorem

For any Markov Decision Process

- ✓ There exist an optimal policy π_* that is better than or equal than all other: $\pi_* \geq \pi$, $\forall \pi$
- ✓ All optimal polices achieve the optimal value function: $v_{\pi_*}(s) = v_*(s)$
- ✓ All optimal polices achieve the optimal action-value function: $q_{\pi_*}(s,a) = q_*(s,a)$

Finding an Optimal Policy

An optimal policy can be found by maximising over $q_*(s,a)$

$$\pi_*(a|s) = \begin{cases} 1 & \text{if } a = \arg\max_{a \in \mathcal{A}} q_*(s, a) \\ 0 & \text{otherwise} \end{cases}$$

- √ There is always a deterministic optimal policy for any MDP
- ✓ If we know $q_*(s,a)$, we straightforwardly find the optimal policy

Example – Optimal Policy for Student MDP

Bellman Optimality Equations

Optimal value functions are recursively related Bellman-style

$$v_*(s) = \max_{a \in \mathcal{A}} q_*(s, a)$$

$$q_*(s,a) = \mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} P_{ss'}^a v_*(s')$$

Bellman Optimality Equations - v_* , q_*

Example – Bellman Optimality Equation

Solving the Bellman Optimality Equation

- ✓ Bellman Optimality Equation is non-linear
- ✓ No closed form solution (in general)
- ✓ Many iterative solution methods
 - ✓ Value Iteration
 - ✓ Policy Iteration
 - ✓ Q-learning
 - **✓** SARSA

MDP Extensions

Partially Observable MDP (POMDP)

- ✓ A Partially Observable Markov Decision Process is an MDP with hidden states
- ✓ A Hidden Markov Model with actions

Definition (POMDP)

A POMDP is a tuple $\langle \mathcal{S}, \mathcal{A}, \mathcal{O}, P, \mathcal{R}, \mathcal{Z}, \gamma \rangle$

- \circ \mathcal{S} is a finite set of states
- \mathcal{A} is a finite set of actions a
- O is a finite set of observations
- P is a state transition matrix, s.t. $P_{ss'}^a = P(S_{t+1} = s' | S_t = s, A_t = a)$
- \mathcal{R} is a reward function, s.t. $\mathcal{R}_s^a = \mathbb{E}[R_{t+1}|S_t = s, A_t = a]$
- \circ \mathcal{Z} is an observation function
- γ is a discount factor, $\gamma \in [0,1]$

Belief States

Definition (History)

A history H_t is a sequence of actions, observations and rewards

$$H_t = A_0 O_1 R_1, \dots, A_{t-1} O_t R_t$$

Definition (Belief State)

A belief state b(h) is a distribution over states conditioned on the history h

$$b(h) = [P(S_t = s_1 | H_t = h), ..., P(S_t = s_n | H_t = h)]$$

Wrap-up

Take home messages

- ✓ Markov decision processes are a formalism to describe a fully-observable environment for reinforcement learning
 - ✓ A state-transition system enriched with actions and reward
 - ✓ Leverage Markov assumption to separate future from the past
- ✓ A recursive formulation for value functions
 - ✓ Using Bellman equations
- ✓ Any MDP allows for an optimal policy
 - ✓ Maximisation process on the state-value function
 - ✓ Recursive and nonlinear (no closed form)
- ✓ MPD can be relaxed to infinite and continuous actions/state and partially observable environments (through belief instead of deterministic states)

Next Lecture

Planning by Dynamic Programming

- ✓ A.K.A. solving a known MDP
- ✓ Dynamic programming
 - ✓ A method for solving complex problems by breaking them down into subproblems
- ✓ Policy Evaluation & Iteration
- ✓ Value Evaluation