(Planning with) Dynamic Programming

DAVIDE BACCIU - BACCIU@DI.UNIPI.IT

Introduction

Outline

- ✓ Introduction
- ✓ Dynamic programming
- ✓ Policy Evaluation
- ✓ Policy Iteration
- ✓ Value Iteration
- ✓ Advanced topics
 - ✓ Asynchronous update
 - ✓ Approximated approaches

What is dynamic programming

Dynamic → problem with sequential or temporal component

Programming → optimising a program, i.e. a policy

- ✓ A method for solving complex problems by breaking them down into subproblems
 - ✓ Solve the subproblems
 - ✓ Combine solutions to subproblems
- ✓ It is not divide-et-impera
 - ✓ Differentiates by overlapping breakdown

Requirements for dynamic programming

- ✓ Optimal substructure
 - ✓ Principle of optimality applies
 - ✓ Optimal solution can be decomposed into subproblems
- ✓ Overlapping subproblems
 - ✓ Subproblems recur many times
 - ✓ Solutions can be cached and reused

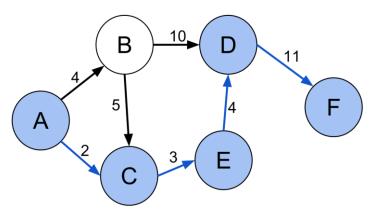
Markov decision processes satisfy both properties

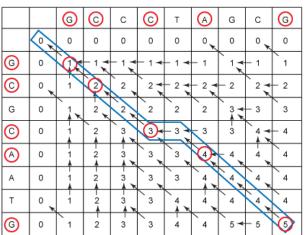
- ✓ Bellman equation gives recursive decomposition
- √ Value function stores and reuses solutions

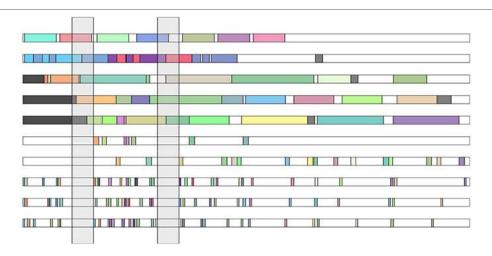
Planning by dynamic programming

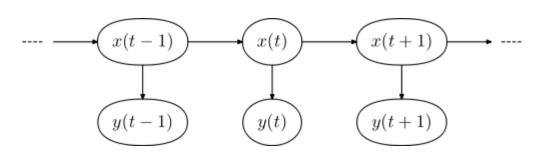
- ✓ Dynamic programming assumes full knowledge of the MDP
- ✓ Planning in RL (repetita)
 - ✓ A model of the environment is known
 - √The agent improves its policy
- ✓ Dynamic programming can be used for planning in RL
- ✓ Prediction
 - ✓ Input: MDP $\langle S, A, P, \mathcal{R}, \gamma \rangle$ and policy π or MRP $\langle S, P, \mathcal{R}, \gamma \rangle$
 - **Output:** value function v_{π}
- ✓ Control
 - ✓Input: MDP $\langle S, A, P, R, \gamma \rangle$
 - ✓ Output: optimal value function v_{π_*} and optimal policy π_*

Applications of Dynamic Programming









Policy Evaluation

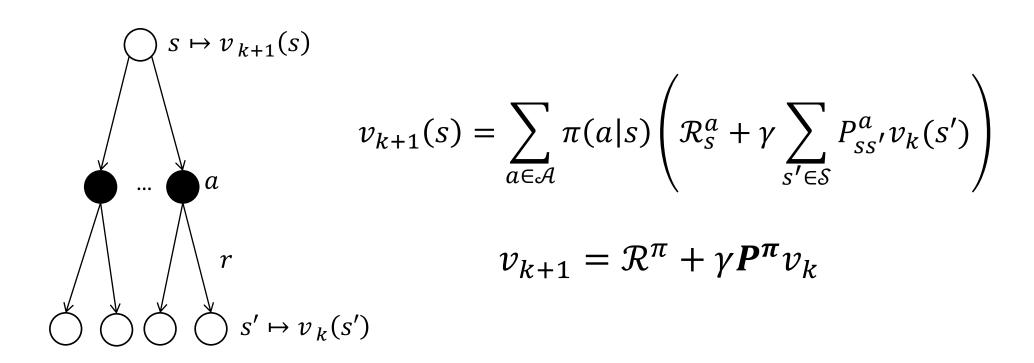
Iterative Policy Evaluation

- ✓ Problem: evaluate a given policy π
- ✓ Solution: iterative application of Bellman expectation backup

$$v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_{\pi}$$

- ✓ Using synchronous backups
 - i. At each iteration k+1
 - ii. For all states $s \in S$
 - iii. Update $v_{k+1}(s)$ from $v_k(s')$ where s' is a successor state of s

Iterative Policy Evaluation - Formally



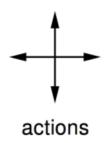
Evaluating a Random Policy in the Small Gridworld

- ✓ Undiscounted episodic MPD ($\gamma = 1$)
- ✓ Nonterminal states 1, ..., 14
- ✓ One terminal state (shown twice as shaded squares)
- ✓ Actions leading out of the grid leave state unchanged
- ✓ Reward is -1 until the terminal state is reached
- ✓ Agent follows uniform random policy

$$\pi(n|\cdot) = \pi(s|\cdot) = \pi(e|\cdot) = \pi(w|\cdot) = 0.25$$

r=1 on all transitions

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	



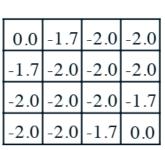
Iterative Policy Evaluation on Small Gridworld (I)

k = 0

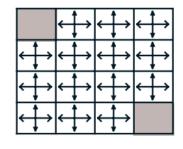
0.0 | -1.0 | -1.0 | -1.0

-1.0 -1.0 -1.0 -1.0

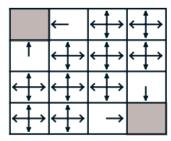
-1.0|-1.0|-1.0|-1.0

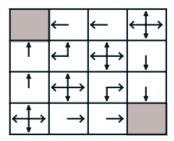


Greedy policy on v_k



 \leftarrow random policy





Iterative Policy Evaluation on Small Gridworld (I)

$$k = 3$$

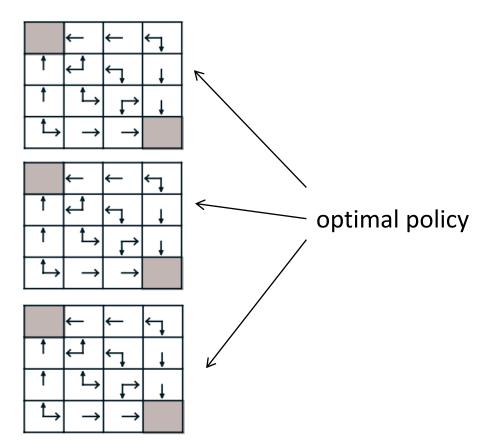
0.0	-2.4	-2.9	-3.0
-2.4	-2.9	-3.0	-2.9
-2.9	-3.0	-2.9	-2.4
-3.0	-2.9	-2.4	0.0

$$k = 10$$

0.0	-6.1	-8.4	-9.0
-6.1	-7.7	-8.4	-8.4
-8.4	-8.4	-7.7	-6.1
-9.0	-8.4	-6.1	0.0

$$k = \infty$$

0.0	-14.	-20.	-22.
-14.	-18.	-20.	-20.
-20.	-20.	-18.	-14.
-22.	-20.	-14.	0.0



Policy Iteration

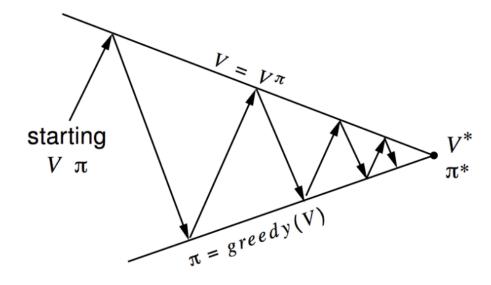
How to Improve a Policy

- \checkmark Given policy π
 - \checkmark Evaluate the policy π

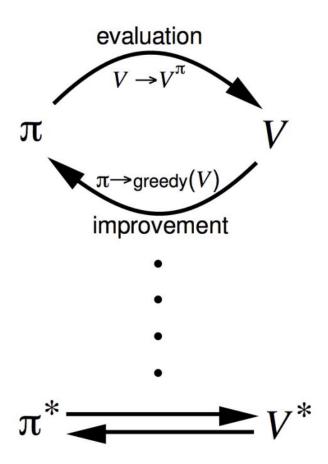
$$v_{\pi}(s) = \mathbb{E} [R_{t+1} + \gamma R_{t+2} + \dots | S_t = s]$$

- Improve the policy by acting greedily with respect to \mathbf{v}_π $\pi' = greedy(\pi)$
- ✓ In Small Gridworld improved policy was optimal, $\pi' = \pi_*$
- ✓ In general, need more iterations of improvement / evaluation
- ✓ But this process of policy iteration always converges to π_*

Policy Iteration

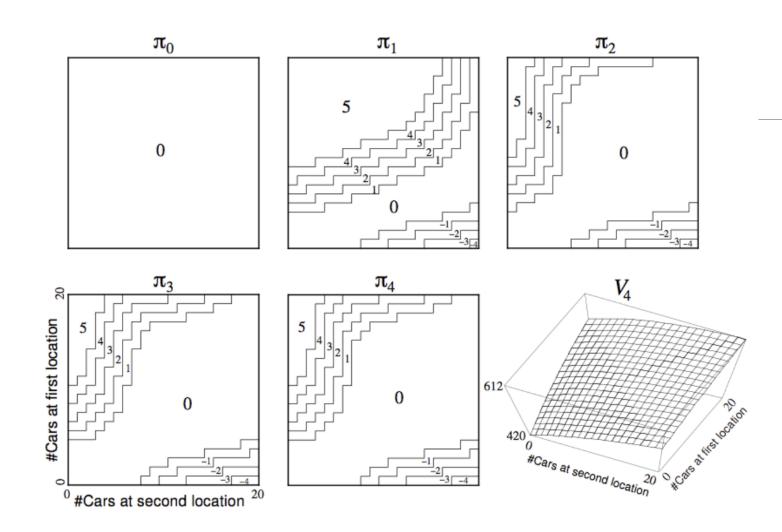


- ✓ Policy evaluation Estimate v_{π}
 - ✓ Iterative policy evaluation
- ✓ Policy improvement Generate $\pi' \geq \pi$
 - √ Greedy policy improvement



Jack's Car Rental

- ✓ States Two locations, maximum of 20 cars at each
- ✓ Actions Move up to 5 cars between locations overnight
- ✓ Reward \$10 for each car rented (must be available)
- √ Transitions Cars returned and requested randomly
 - ✓ Poisson distribution, n returns/requests $\sim \frac{\lambda^n}{n!} e^{-\lambda}$
 - √ 1st location: average requests = 3, average returns = 3
 - ✓ 2nd location: average requests = 4, average returns = 2



Policy Iteration in Jack's Car Rental

Policy Improvement (I)

Consider a deterministic policy $a = \pi(s)$

We can improve the policy by acting greedily

$$\pi'(s) = \arg \max_{a \in \mathcal{A}} q_{\pi}(s, a)$$

This improves the value from any state s over one step

$$q_{\pi}(s, \pi'(s)) = \max_{a \in \mathcal{A}} q_{\pi}(s, a) \ge q_{\pi}(s, \pi(s)) = v_{\pi}(s)$$

Therefore improving the value function $v_{\pi'}(s) \ge v_{\pi}(s)$

Policy Improvement (II)

If improvement stops

$$q_{\pi}(s, \pi'(s)) = \max_{a \in \mathcal{A}} q_{\pi}(s, a) = q_{\pi}(s, \pi(s)) = v_{\pi}(s)$$

We satisfy Bellman optimality

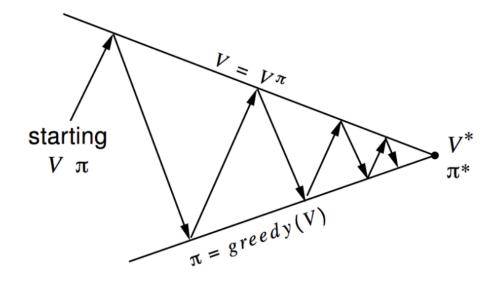
$$v_{\pi}(s) = \max_{a \in \mathcal{A}} q_{\pi}(s, a)$$

Therefore $v_{\pi}(s) = v_*(s)$, $\forall s \in \mathcal{S}$, and π is an optimal policy

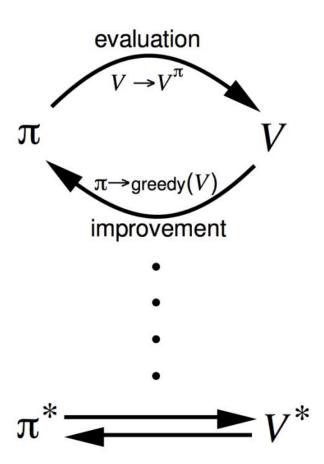
Modified Policy Improvement

- ✓ Does policy evaluation need to converge to v_{π^*} ?
 - ✓ Introduce a stopping condition, e.g. ϵ -convergence of value function
 - ✓ Stop after k iterations of iterative policy evaluation, e.g. k=3 was sufficient in small gridworld
- ✓ Why update policy every iteration?
 - ✓ Stop after k = 1
 - √ This is equivalent to value iteration (coming up)

Generalized Policy Iteration



- ✓ Policy evaluation Estimate v_{π}
 - ✓ Any policy evaluation
- ✓ Policy improvement Generate $\pi' \ge \pi$
 - ✓ Any policy improvement algorithm



23

Value Iteration

Optimality Principle

Any optimal policy can be subdivided into two components

- \checkmark An optimal first action a^*
- \checkmark Followed by an optimal policy from successor state s'

Theorem (Principle of Optimality)

A policy $\pi(a|s)$ achieves the optimal value from state s' (i.e. $v_{\pi}(s) = v_{*}(s)$) if and only if for any state s' reachable from s

• π achieves the optimal value from state s', $v_{\pi}(s') = v_{*}(s')$

Deterministic Value Iteration

- ✓ If we know the solution to subproblems $v_*(s')$
- ✓ Then solution $v_*(s)$ can be found by one-step lookahead

$$v_*(s) \leftarrow \max_{a \in \mathcal{A}} \mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} P_{ss'}^a v_*(s')$$

- ✓ Value iteration applies these updates iteratively
- ✓ Intuition: start with final rewards and work backwards
 - ✓ Still works with loopy, stochastic MDPs

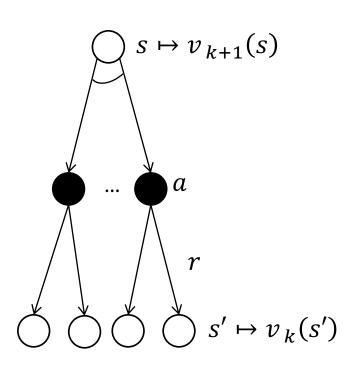
Value Iteration

- ✓ Problem: find optimal policy π
- ✓ Solution: iterative application of Bellman optimality backup

$$v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_{\pi}$$

- ✓ Using synchronous backups
 - i. At each iteration k+1
 - ii. For all states $s \in S$
 - iii. Update $v_{k+1}(s)$ from $v_k(s')$
- ✓ Unlike policy iteration, there is no explicit policy
- ✓ Intermediate value functions may not correspond to any policy

Value Iteration - Formally



$$v_{k+1}(s) = \max_{a \in \mathcal{A}} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} P_{ss'}^a v_k(s') \right)$$

$$v_{k+1} = \max_{a \in \mathcal{A}} (\mathbf{R}^a + \gamma \mathbf{P}^a v_k)$$

DP Example

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

Synchronous Dynamic Programming Wrap-up

Problem	Bellman Equation	Algorithm
Prediction	Bellman Expectation Equation	Iterative Policy Evaluation
Control	Bellman Expectation Equation + Greedy Policy Improvement	Policy Iteration
Control	Bellman Optimality Equation	Value Iteration

- ✓ Algorithms are based on state-value function $v_{\pi}(s)$ or $v_{*}(s)$
 - \checkmark Complexity is $O(mn^2)$ per iteration ($m=|\mathcal{A}|$ and $n=|\mathcal{S}|$)
- ✓ Could also apply to action-value function $q_{\pi}(s, a)$ or $q_{*}(s, a)$
 - ✓ Complexity is $O(m^2n^2)$) per iteration

Extensions

Asynchronous Backups

- ✓ DP methods described so far used synchronous backups
 - ✓ All states are backed up in parallel
- ✓ Asynchronous DP backs up states individually, in any order
 - ✓ For each selected state, apply the appropriate backup
 - ✓ Can significantly reduce computation
 - ✓ Guaranteed to converge if all states continue to be selected.

Asynchronous DP

- ▼Three simple approaches for asynchronous dynamic programming:
 - ✓In-place dynamic programming
 - ✓ Prioritised sweeping
 - ✓ Real-time dynamic programming

In-place dynamic programming

Synchronous value iteration stores two copies of value function For all $s \in S$

$$v_{new}(s) \leftarrow \max_{a \in \mathcal{A}} \mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} P_{ss'}^a v_{old}(s')$$
$$v_{old}(s) \leftarrow v_{new}(s)$$

In-place value iteration only stores one copy of value function For all $s \in S$

$$v(s) \leftarrow \max_{a \in \mathcal{A}} \mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} P_{ss'}^a v(s')$$

Prioritised sweeping

✓ Use magnitude of Bellman error to guide state selection

$$\left| \max_{a \in \mathcal{A}} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} P_{ss'}^a v(s') \right) - v(s) \right|$$

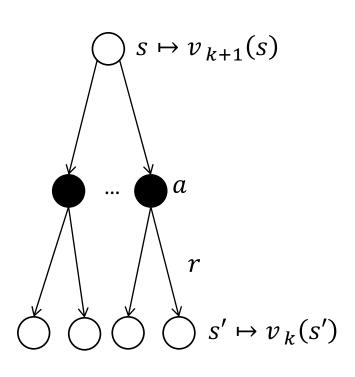
- ✓ Backup the state with the largest remaining Bellman error
- ✓ Update Bellman error of affected states after each backup
- ✓ Requires knowledge of reverse dynamics (predecessor states)
- ✓ Can be implemented efficiently by maintaining a priority queue

Real-time dynamic programming

- ✓ Intuition Only states that are relevant to agent
- ✓ Use agent's experience to guide the selection of states
 - ✓ After each time-step S_t , A_t , R_{t+1}
 - \checkmark Backup the state S_t

$$v(S_t) \leftarrow \max_{a \in \mathcal{A}} \left(\mathcal{R}_{S_t}^a + \gamma \sum_{s' \in \mathcal{S}} P_{S_t s'}^a v(s') \right)$$

Full-Width Backup



- ✓ DP uses full-width backups
- √ For each backup (sync or async)
 - ✓ Every successor state and action is considered
 - ✓ Using knowledge of the MDP transitions and reward function
- ✓ DP is effective for medium-sized problems (millions of states)
- ✓ For large problems DP suffers Bellman's curse of dimensionality
 - ✓ Number of states n = |S| grows exponentially with number of state variables
- ✓ Even one backup can be too expensive

Sample Backup

- ✓ From now onwards we consider sample backups
 - ✓ Using sample rewards and sample transitions $\langle S, A, R, S' \rangle$
 - ✓ Instead of reward function \mathcal{R} and transition function P
- ✓ Pros
 - ✓ Model-free no advance knowledge of MDP required
 - ✓ Breaks the curse of dimensionality through sampling
 - ✓ Cost of backup is constant, independent of n = |S|

Approximate Dynamic Programming

- ✓ Approximate the value function
 - ✓ Using a function approximator $\hat{v}(s; w)$
 - \checkmark Apply dynamic programming to $\hat{v}(\cdot; w)$
- ✓ Fitted Value Iteration For each iteration *k*
 - ✓ Sample states $\tilde{S} \subseteq S$
 - \checkmark For each state $s \in \tilde{S}$ estimate target value using Bellman optimality equation

$$\hat{v}_k(s) = \max_{a \in \mathcal{A}} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} P_{ss'}^a \hat{v}(s'; \boldsymbol{w}_k) \right)$$

✓ Train next value function $\hat{v}(\cdot; \mathbf{w}_{k+1})$ using targets $\{(s, \hat{v}_k(s))\}$

Wrap-up

Take (stay) home messages

- ✓ Dynamic Programming Method for solving complex problems by breaking them down into subproblems
 - ✓ Use recursive formulation founded in return nested definition
- ✓ Policy iteration Re-define the policy at each step and compute the value according to this new policy until the policy converges
- ✓ Value iteration Computes the optimal state value function by iteratively improving the estimate of V(s)
- ✓ Policy vs Value iteration
 - ✓ Policy can converge quicker (agent is interested in optimal policy)
 - ✓ Value iteration is computationally cheaper (per iteration)

Next Lecture

Model-Free Prediction

- ✓ Estimate the value function of an unknown MDP
- ✓ Monte-Carlo approaches
- ✓ Temporal-Difference learning
- ✓TD(λ)