
(Planning with) Dynamic
Programming
DAVIDE BACCIU – BACCIU@DI.UNIPI. IT

Introduction

DAVIDE BACCIU - UNIVERSITÀ DI PISA 2

Outline
✓Introduction

✓Dynamic programming

✓ Policy Evaluation

✓ Policy Iteration

✓ Value Iteration

✓ Advanced topics
✓Asynchronous update
✓Approximated approaches

DAVIDE BACCIU - UNIVERSITÀ DI PISA 3

What is dynamic programming
Dynamic ↦ problem with sequential or temporal component

Programming ↦ optimising a program, i.e. a policy

DAVIDE BACCIU - UNIVERSITÀ DI PISA 4

✓A method for solving complex problems by breaking them down into
subproblems
✓Solve the subproblems

✓Combine solutions to subproblems

✓It is not divide-et-impera
✓Differentiates by overlapping breakdown

Requirements for dynamic programming
✓Optimal substructure
✓Principle of optimality applies
✓Optimal solution can be decomposed into subproblems

✓Overlapping subproblems
✓Subproblems recur many times
✓Solutions can be cached and reused

DAVIDE BACCIU - UNIVERSITÀ DI PISA 5

Markov decision processes satisfy both properties
✓Bellman equation gives recursive decomposition

✓Value function stores and reuses solutions

Planning by dynamic programming
✓Dynamic programming assumes full knowledge of the MDP

✓ Planning in RL (repetita)
✓A model of the environment is known

✓The agent improves its policy

DAVIDE BACCIU - UNIVERSITÀ DI PISA 6

✓Dynamic programming can be used for planning in RL

✓Prediction
✓Input: MDP 𝒮,𝒜,𝑷,ℛ, 𝛾 and policy 𝜋 or MRP 𝒮, 𝑷,ℛ, 𝛾
✓Output: value function v𝜋

✓Control
✓Input: MDP 𝒮,𝒜,𝑷,ℛ, 𝛾
✓Output: optimal value function v𝜋∗ and optimal policy 𝜋∗

Applications of Dynamic Programming

DAVIDE BACCIU - UNIVERSITÀ DI PISA 7

Policy Evaluation

DAVIDE BACCIU - UNIVERSITÀ DI PISA 8

Iterative Policy Evaluation
✓Problem: evaluate a given policy 𝜋

✓Solution: iterative application of Bellman expectation backup
𝑣1 → 𝑣2 → ⋯ → 𝑣𝜋

✓Using synchronous backups
i. At each iteration 𝑘 + 1

ii. For all states 𝑠 ∈ 𝒮

iii. Update 𝑣𝑘+1(𝑠) from 𝑣𝑘(𝑠′) where 𝑠′ is a successor state of 𝑠

DAVIDE BACCIU - UNIVERSITÀ DI PISA 9

Iterative Policy Evaluation - Formally

DAVIDE BACCIU - UNIVERSITÀ DI PISA 10

𝑎…
𝑠 ↦ 𝑣 𝑘+1 𝑠

𝑠′ ↦ 𝑣 𝑘 𝑠′

𝑟

𝑣𝑘+1 𝑠 = ෍

𝑎∈𝒜

𝜋 𝑎 𝑠 ℛ𝑠
𝑎 + 𝛾 ෍

𝑠′∈𝒮

𝑃𝑠𝑠′
𝑎 𝑣𝑘(𝑠′)

𝑣𝑘+1 = ℛ𝜋 + 𝛾𝑷𝝅𝑣𝑘

Evaluating a Random Policy in the Small
Gridworld

✓Undiscounted episodic MPD (𝛾 = 1)

✓Nonterminal states 1,… , 14

✓One terminal state (shown twice as shaded squares)

✓Actions leading out of the grid leave state unchanged

✓Reward is −1 until the terminal state is reached

✓Agent follows uniform random policy
𝜋 𝑛 ⋅ = 𝜋 𝑠 ⋅ = 𝜋 𝑒 ⋅ = 𝜋 𝑤 ⋅ = 0.25

DAVIDE BACCIU - UNIVERSITÀ DI PISA 11

r=1 on all transitions

Iterative Policy Evaluation on Small
Gridworld (I)

DAVIDE BACCIU - UNIVERSITÀ DI PISA 12

𝑘 = 0

𝑘 = 1

𝑘 = 2

random policy

𝑣𝑘 Greedy policy on 𝑣𝑘

Iterative Policy Evaluation on Small
Gridworld (I)

DAVIDE BACCIU - UNIVERSITÀ DI PISA 13

𝑘 = 3

𝑘 = 10

𝑘 = ∞

optimal policy

Policy Iteration

DAVIDE BACCIU - UNIVERSITÀ DI PISA 14

How to Improve a Policy
✓Given policy 𝜋
✓Evaluate the policy 𝜋

𝑣𝜋 𝑠 = 𝔼 [𝑅𝑡+1 + 𝛾𝑅𝑡+2 +⋯|𝑆𝑡 = 𝑠]

✓Improve the policy by acting greedily with respect to v𝜋
𝜋′ = 𝑔𝑟𝑒𝑒𝑑𝑦(𝜋)

✓In Small Gridworld improved policy was optimal, 𝜋′ = 𝜋∗

✓In general, need more iterations of improvement / evaluation

✓But this process of policy iteration always converges to 𝜋∗

DAVIDE BACCIU - UNIVERSITÀ DI PISA 15

Policy Iteration

DAVIDE BACCIU - UNIVERSITÀ DI PISA 16

✓Policy evaluation - Estimate v𝜋
✓Iterative policy evaluation

✓Policy improvement - Generate 𝜋′ ≥ 𝜋
✓Greedy policy improvement

Jack’s Car Rental
✓States - Two locations, maximum of 20 cars at each

✓Actions - Move up to 5 cars between locations overnight

✓Reward - $10 for each car rented (must be available)

✓Transitions - Cars returned and requested randomly

✓Poisson distribution, n returns/requests ~ 𝜆𝑛

𝑛!
𝑒
−𝜆

✓1st location: average requests = 3, average returns = 3

✓2nd location: average requests = 4, average returns = 2

DAVIDE BACCIU - UNIVERSITÀ DI PISA 17

Policy
Iteration
in Jack’s
Car Rental

DAVIDE BACCIU - UNIVERSITÀ DI PISA 18

Policy Improvement (I)
Consider a deterministic policy a = 𝜋(𝑠)

We can improve the policy by acting greedily
𝜋′ 𝑠 = argmax

𝑎∈𝒜
𝑞𝜋(𝑠, 𝑎)

This improves the value from any state 𝑠 over one step
𝑞𝜋 𝑠, 𝜋′(𝑠) = max

a∈𝒜
𝑞𝜋(𝑠, 𝑎) ≥ 𝑞𝜋 𝑠, 𝜋 𝑠 = 𝑣𝜋(𝑠)

Therefore improving the value function 𝑣𝜋′(𝑠) ≥ 𝑣𝜋(𝑠)

DAVIDE BACCIU - UNIVERSITÀ DI PISA 19

Policy Improvement (II)
If improvement stops

𝑞𝜋 𝑠, 𝜋′(𝑠) = max
a∈𝒜

𝑞𝜋(𝑠, 𝑎) = 𝑞𝜋 𝑠, 𝜋 𝑠 = 𝑣𝜋(𝑠)

We satisfy Bellman optimality
𝑣𝜋 𝑠 = max

a∈𝒜
𝑞𝜋(𝑠, 𝑎)

Therefore 𝑣𝜋 𝑠 = 𝑣∗ 𝑠 , ∀𝑠 ∈ 𝒮, and 𝜋 is an optimal policy

DAVIDE BACCIU - UNIVERSITÀ DI PISA 21

Modified Policy Improvement
✓Does policy evaluation need to converge to 𝑣𝜋∗?
✓Introduce a stopping condition, e.g. 𝜖-convergence of value function

✓Stop after k iterations of iterative policy evaluation, e.g. k=3 was sufficient in
small gridworld

✓Why update policy every iteration?
✓Stop after k = 1

✓This is equivalent to value iteration (coming up)

DAVIDE BACCIU - UNIVERSITÀ DI PISA 22

Generalized Policy Iteration

DAVIDE BACCIU - UNIVERSITÀ DI PISA 23

✓Policy evaluation - Estimate v𝜋
✓Any policy evaluation

✓Policy improvement - Generate 𝜋′ ≥ 𝜋
✓Any policy improvement algorithm

Value Iteration

DAVIDE BACCIU - UNIVERSITÀ DI PISA 24

Optimality Principle
Any optimal policy can be subdivided into two components
✓An optimal first action 𝑎∗

✓Followed by an optimal policy from successor state 𝑠′

DAVIDE BACCIU - UNIVERSITÀ DI PISA 25

A policy 𝜋(𝑎|𝑠) achieves the optimal value from state 𝑠′ (i.e. 𝑣𝜋 𝑠 = 𝑣∗ s)
if and only if for any state 𝑠′ reachable from 𝑠

◦ 𝜋 achieves the optimal value from state s′, 𝑣𝜋 𝑠′ = 𝑣∗ 𝑠
′

Theorem (Principle of Optimality)

Deterministic Value Iteration
✓If we know the solution to subproblems 𝑣∗(𝑠′)

✓Then solution 𝑣∗(𝑠) can be found by one-step lookahead

𝑣∗ 𝑠 ← max
𝑎∈𝒜

ℛ𝑠
𝑎 + 𝛾 ෍

𝑠′∈𝒮

𝑃𝑠𝑠′
𝑎 𝑣∗(𝑠′)

✓Value iteration applies these updates iteratively

✓Intuition: start with final rewards and work backwards
✓Still works with loopy, stochastic MDPs

DAVIDE BACCIU - UNIVERSITÀ DI PISA 26

Value Iteration
✓Problem: find optimal policy 𝜋

✓Solution: iterative application of Bellman optimality backup
𝑣1 → 𝑣2 → ⋯ → 𝑣𝜋

✓Using synchronous backups
i. At each iteration 𝑘 + 1
ii. For all states 𝑠 ∈ 𝒮
iii. Update 𝑣𝑘+1(𝑠) from 𝑣𝑘(𝑠′)

✓ Unlike policy iteration, there is no explicit policy

✓Intermediate value functions may not correspond to any policy

DAVIDE BACCIU - UNIVERSITÀ DI PISA 28

Value Iteration - Formally

DAVIDE BACCIU - UNIVERSITÀ DI PISA 29

𝑎…
𝑠 ↦ 𝑣 𝑘+1 𝑠

𝑠′ ↦ 𝑣 𝑘 𝑠′

𝑟

𝑣𝑘+1 𝑠 = max
𝑎∈𝒜

ℛ𝑠
𝑎 + 𝛾 ෍

𝑠′∈𝒮

𝑃𝑠𝑠′
𝑎 𝑣𝑘(𝑠′)

𝑣𝑘+1 = max
𝑎∈𝒜

𝓡𝑎 + 𝛾𝑷𝑎𝑣𝑘

DP Example

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

DAVIDE BACCIU - UNIVERSITÀ DI PISA 30

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

Synchronous Dynamic Programming
Wrap-up

✓Algorithms are based on state-value function v𝜋(s) or v∗(s)
✓Complexity is 𝑂(𝑚𝑛2) per iteration (𝑚 = 𝒜 and 𝑛 = 𝒮)

✓Could also apply to action-value function q𝜋(s, a) or q∗(s, a)
✓Complexity is 𝑂(𝑚2𝑛2)) per iteration

DAVIDE BACCIU - UNIVERSITÀ DI PISA 31

Problem Bellman Equation Algorithm

Prediction Bellman Expectation Equation Iterative Policy Evaluation

Control Bellman Expectation Equation + Greedy Policy
Improvement

Policy Iteration

Control Bellman Optimality Equation Value Iteration

Extensions

DAVIDE BACCIU - UNIVERSITÀ DI PISA 32

Asynchronous Backups
✓DP methods described so far used synchronous backups
✓All states are backed up in parallel

✓Asynchronous DP backs up states individually, in any order
✓For each selected state, apply the appropriate backup

✓Can significantly reduce computation

✓Guaranteed to converge if all states continue to be selected

DAVIDE BACCIU - UNIVERSITÀ DI PISA 33

Asynchronous DP
✓Three simple approaches for asynchronous dynamic programming:
✓In-place dynamic programming

✓Prioritised sweeping

✓Real-time dynamic programming

DAVIDE BACCIU - UNIVERSITÀ DI PISA 34

In-place dynamic programming
Synchronous value iteration stores two copies of value function

For all 𝑠 ∈ 𝒮

𝑣𝑛𝑒𝑤 𝑠 ← max
𝑎∈𝒜

ℛ𝑠
𝑎 + 𝛾 ෍

𝑠′∈𝒮

𝑃𝑠𝑠′
𝑎 𝑣𝑜𝑙𝑑(𝑠′)

𝑣𝑜𝑙𝑑 𝑠 ← 𝑣𝑛𝑒𝑤 𝑠

In-place value iteration only stores one copy of value function
For all 𝑠 ∈ 𝒮

𝑣 𝑠 ← max
𝑎∈𝒜

ℛ𝑠
𝑎 + 𝛾 ෍

𝑠′∈𝒮

𝑃𝑠𝑠′
𝑎 𝑣(𝑠′)

DAVIDE BACCIU - UNIVERSITÀ DI PISA 35

Prioritised sweeping
✓Use magnitude of Bellman error to guide state selection

max
𝑎∈𝒜

ℛ𝑠
𝑎 + 𝛾 ෍

𝑠′∈𝒮

𝑃𝑠𝑠′
𝑎 𝑣(𝑠′) − 𝑣(𝑠)

✓Backup the state with the largest remaining Bellman error

✓Update Bellman error of affected states after each backup

✓Requires knowledge of reverse dynamics (predecessor states)

✓Can be implemented efficiently by maintaining a priority queue

DAVIDE BACCIU - UNIVERSITÀ DI PISA 36

Real-time dynamic programming
✓Intuition - Only states that are relevant to agent

✓Use agent’s experience to guide the selection of states
✓After each time-step 𝑆𝑡 , 𝐴𝑡 , 𝑅𝑡+1
✓Backup the state 𝑆𝑡

𝑣 𝑆𝑡 ← max
𝑎∈𝒜

ℛ𝑆𝑡
𝑎 + 𝛾 ෍

𝑠′∈𝒮

𝑃𝑆𝑡𝑠′
𝑎 𝑣(𝑠′)

DAVIDE BACCIU - UNIVERSITÀ DI PISA 37

Full-Width Backup
✓DP uses full-width backups

✓For each backup (sync or async)
✓Every successor state and action is considered

✓Using knowledge of the MDP transitions and reward function

✓DP is effective for medium-sized problems (millions
of states)

✓For large problems DP suffers Bellman’s curse of
dimensionality
✓Number of states 𝑛 = |𝒮| grows exponentially with number

of state variables

✓Even one backup can be too expensive

DAVIDE BACCIU - UNIVERSITÀ DI PISA 38

𝑎…
𝑠 ↦ 𝑣 𝑘+1 𝑠

𝑠′ ↦ 𝑣 𝑘 𝑠′

𝑟

Sample Backup
✓From now onwards we consider sample backups
✓Using sample rewards and sample transitions
𝑆, 𝐴, 𝑅, 𝑆′

✓Instead of reward function ℛ and transition function 𝑃

✓Pros
✓Model-free - no advance knowledge of MDP required

✓Breaks the curse of dimensionality through sampling

✓Cost of backup is constant, independent of 𝑛 = |𝒮|

DAVIDE BACCIU - UNIVERSITÀ DI PISA 39

Approximate Dynamic Programming
✓Approximate the value function
✓Using a function approximator ො𝑣(𝑠;𝒘)
✓Apply dynamic programming to ො𝑣(⋅ ; 𝒘)

✓Fitted Value Iteration - For each iteration k
✓Sample states ሚ𝒮 ⊆ 𝒮
✓For each state s ∈ ሚ𝒮 estimate target value using Bellman optimality equation

ො𝑣𝑘 𝑠 = max
𝑎∈𝒜

ℛ𝑠
𝑎 + 𝛾 ෍

𝑠′∈𝒮

𝑃𝑠𝑠′
𝑎 ො𝑣(𝑠′; 𝒘𝑘)

✓Train next value function ො𝑣(⋅ ; 𝒘𝑘+1) using targets 𝑠, ො𝑣𝑘 𝑠

DAVIDE BACCIU - UNIVERSITÀ DI PISA 40

Wrap-up

DAVIDE BACCIU - UNIVERSITÀ DI PISA 41

Take (stay) home messages
✓ Dynamic Programming - Method for solving complex problems by
breaking them down into subproblems
✓ Use recursive formulation founded in return nested definition

✓Policy iteration - Re-define the policy at each step and compute the value
according to this new policy until the policy converges

✓ Value iteration - Computes the optimal state value function by
iteratively improving the estimate of V(s)

✓ Policy vs Value iteration
✓ Policy can converge quicker (agent is interested in optimal policy)
✓ Value iteration is computationally cheaper (per iteration)

DAVIDE BACCIU - UNIVERSITÀ DI PISA 42

Next Lecture
Model-Free Prediction

✓Estimate the value function of an unknown MDP

✓Monte-Carlo approaches

✓Temporal-Difference learning

✓TD(𝜆)

DAVIDE BACCIU - UNIVERSITÀ DI PISA 43

