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Abstract—As the first decentralized peer-to-peer (P2P) cryp-
tocurrency system allowing people to trade with pseudonymous
addresses, Bitcoin has become increasingly popular in recent
years. However, the P2P and pseudonymous nature of Bitcoin
make transactions on this platform very difficult to track, thus
triggering the emergence of various illegal activities in the Bitcoin
ecosystem. Particularly, mixing services in Bitcoin, originally
designed to enhance transaction anonymity, have been widely
employed for money laundering to complicate the process of
trailing illicit fund. In this article, we focus on the detection of
the addresses belonging to mixing services, which is an impor-
tant task for anti-money laundering in Bitcoin. Specifically, we
provide a feature-based network analysis framework to identify
statistical properties of mixing services from three levels, namely,
network level, account level, and transaction level. To better char-
acterize the transaction patterns of different types of addresses,
we propose the concept of attributed temporal heterogeneous
motifs (ATH motifs). Moreover, to deal with the issue of imper-
fect labeling, we tackle the mixing detection task as a positive
and unlabeled learning (PU learning) problem and build a detec-
tion model by leveraging the considered features. Experiments on
real Bitcoin datasets demonstrate the effectiveness of our detec-
tion model and the importance of hybrid motifs including ATH
motifs in mixing detection.

Index Terms—Anti-money laundering (AML), bitcoin, mixing
services, network mining, network motifs.

I. INTRODUCTION

ITCOIN, the world’s first peer-to-peer (P2P) cryptocur-
Brency system [1], has become one of the hottest buz-
zwords with a dominant share of the cryptocurrency market [2]
due to its pseudonymous nature in decentralized trading
process as well as its low transaction fees.

However, the P2P and pseudonymous nature of Bitcoin
make transactions on this platform very difficult to track,
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Fig. 1. Example of mixing services, which can conceal the identity of users
and complicate fund tracing by participating in a transaction with multiple
users.

thus triggering the emergence of various illegal activities
in the Bitcoin ecosystem [3]. For instance, about 7000
Bitcoins which worth $40.7 million were stolen from Binance
recently [4], one of the largest cryptocurrency exchanges
in the world. Then, the stolen Bitcoins can be cashed
out directly through exchanges. However, before conducting
the business, exchanges typically implement the know-your-
customer (KYC) process, which is widely adopted in tradi-
tional e-payment scenarios to verify the identities of the users,
review their financial activities, and ascertain what risks they
may pose. With the enforcement of the KYC process, the
identity of the thieves can be easily exposed via the identity
information provided by the exchanges, and the stolen Bitcoins
usually need to be laundered into “clean” Bitcoins by some
techniques before being cashed out. It has been demonstrated
that mixing services, such as BitLaundry, Helix Light, Bitcoin
Fog, etc., have involved in this process of money launder-
ing [5] and can be regarded as significant tools for concealing
illicit profits in Bitcoin.

Bitcoin mixing services are originally designed to enhance
the anonymity of transactions and make the sources of funds
more untraceable. Fig. 1 gives a simple illustration of Bitcoin
mixing. Three users represented as Al, A2, and A3 send one
Bitcoin (abbreviation BTC) to three addresses M1, M2, and
M3 of a mixing service M, respectively, and provide their
own new addresses A4, A5, and A6 to receive the Bitcoin
back. Then, M randomly selects an address from M1, M2,
and M3 to return money to A4, AS, and A6. In this way, the
relationships between sources and destinations are confused,
thus increasing the difficulty of tracing the source of funds
and analyzing the transaction behavior of users. Since Bitcoin
is designed with pseudonymous identities and the real identity
behind an address can be learned only when the user uses
this address to buy or sell Bitcoins with an exchange, it is
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unlikely to enforce the KYC process for regulation. Therefore,
the study on the identification of mixing services and tracing
illegal transactions in Bitcoin is of great value for building a
healthier Bitcoin ecosystem.

Fortunately, the public and irreversible transaction records
provide us an opportunity to detect irregular transaction pat-
terns in Bitcoin. To this end, in this article, we focus on
detecting addresses belonging to mixing services via mining
the transaction records and attempt to characterize their trans-
action patterns. Based on the detection results, we can further
chase up users involved in criminal activities by analyzing
users who take part in Bitcoin mixing.

In recent years, several studies have shed light on the
problem of detecting Bitcoin mixing services. It has been
reported that mixing services and exchanges are two key com-
ponents in laundering Bitcoins [5], [6] while mixing services
have a higher propensity to be used in laundering illicit
money [7]. To answer how mixing services work, the operation
model of several mixing services was studied by reverse-
engineering methods in [5]. Based on the observations given
by [5], Prado-Romero et al. [8] proposed the problem of
mixing detection and tackled this problem by exploiting the
method of community outlier detection. Yet till now, Bitcoin
mixing detection is still an extremely tricky task due to several
great challenges as follows.

1) Incomplete Label Information: Labeled addresses asso-
ciated with mixing services occupy only a small fraction
of all addresses, and the true identities of most other
addresses are unknown in Bitcoin.

2) Dynamic Process With Multiple Transactions: Some
mixing services use hubs to combine multiple transac-
tions or split a large amount of money into multiple
smaller transactions, thus making it more difficult to
identify the mixing processes as well as the addresses
involved in the processes.

3) Various Obfuscation Patterns: Mixing services are pro-
vided by different third-party platforms, and their obfus-
cation patterns vary a lot from each other.

In this work, to deal with the problem of incomplete label
information, we tackle the task of Bitcoin mixing detection as
a positive and unlabeled learning (PU learning) problem [9]
and then adopt a two-stage strategy to enhance the detect-
ing performance. In order to analyze the transaction records
more comprehensively, we construct two kinds of tempo-
ral directed transaction networks, including a homogeneous
address—address interaction network (AAIN) and a hetero-
geneous transaction—address interaction network (TAIN), to
depict the relationship between addresses and the relation-
ship between addresses and transactions, respectively. Network
motifs have been widely proven to be a powerful tool in
handling various network mining tasks [10]-[12]. To better
analyze the complicated dynamic processes in the Bitcoin
transaction network, we propose a novel concept called
attributed temporal heterogeneous motifs (ATH motifs) for
the TAIN. The hybrid motifs composed of temporal homo-
geneous motifs in AAIN and ATH motifs in TAIN, are
employed as the vital features for the detection of mixing
services.

(1) Data collection
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Fig. 2. Overview of the proposed Bitcoin mixing detection framework,
including four modules, namely, data collection, network construction, feature
extraction, and model training and application.

As shown in Fig. 2, the proposed mixing detection frame-
work mainly contains four modules: 1) data collection, which
gathers the Bitcoin transaction data from a Bitcoin client and
crawls the label information from WalletExplorer;1 2) network
construction, constructing AAIN and TAIN from the trans-
action records for feature extraction; 3) feature extraction,
whose purpose is to extract features from multiple levels; and
4) model training and application, which trains the model
using the training set, makes prediction for the unlabeled
addresses and finally outputs the detected mixing addresses.

In summary, the main contributions of this article can be
listed as follows.

1) To the best of our knowledge, we are the first to apply
network motifs on the problem of Bitcoin mixing detec-
tion. We propose the novel concept of ATH motifs and
demonstrate that both temporal and ATH motifs play an
important role in Bitcoin mixing detection.

2) We propose a feature-based transaction network analysis
framework and generalize the issue of Bitcoin mixing
detection as a PU learning problem, the purpose being
to make better use of the labeled addresses under the
precondition of imperfectly labeled datasets.

3) The proposed model achieves a high true positive rate
(TPR) and a low false positive rate (FPR) in Bitcoin mix-
ing detection, which facilitates fund tracing and crime
detection in the Bitcoin ecosystem.

The remaining sections of this article are organized as fol-
lows. Sections II-V introduce the details of the aforementioned
four modules of the proposed mixing detection framework one
by one. Then, we present experimental results in Section VI.
Finally, we provide some related work in Section VII and
conclude this article in Section VIII.

II. DATA COLLECTION

WalletExplorer is a smart Bitcoin block explorer providing
label information of addresses by making transactions with
some services and observing how the Bitcoin flows merge.
However, the name database of WalletExplorer no longer
updated since 2016, which means that WalletExplorer does
not include the new emerging services. The transaction data

1 https://www.walletexplorer.com
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TABLE I
STATISTICS OF THE DATASETS

Labeled address’
Dataset| Start ti Unlabeled add
atase art time fabeled address BitcoinFog|BitLaunder|HelixMixer
2014 |00:00, Nov. 1 2,507,872 6088 8 0
2015 |00:00, Jun. 1 2,525,038 3911 9 2
2016 |00:00, Jan. 1 2,502,738 198 2 3856

! Addresses of three mixing services including Bitcoin Fog, BitLaunder and
Helix Mixer crawled from WalletExplorer are as our labeled addresses.

of Bitcoin are contained in blocks orderly, and they are pub-
licly accessible by running a Bitcoin client. Considering the
sufficiency of labeled addresses for training and the huge
volume of Bitcoin transaction records, we extract three snap-
shots of Bitcoin transaction data between November 2014 and
January 2016 with six months being the sampling interval.
Each snapshot contains 1500000 transaction records. And we
crawl the labeled addresses belonging to mixing services from
WalletExplorer. The three snapshots with label information are
referred to as the 2014, 2015, and 2016 datasets.

The labeled addresses obtained from WalletExplorer are

mainly belonging to three mixing services as follows.

1) Bitcoin Fog? is one of the earliest mixing services and
can be accessed only via Tor. When using this service,
each withdrawal will be split into a random number of
transactions spreading out randomly over a specific time
period.

2) BitLaunder announced that it was “the best Bitcoin
laundry and Bitcoin laundering service.” However, it
has been reported as one of the weakest mixers of
all tested in the analysis conducted by de Balthasar
and Hernandez-Castro [13]. Unfortunately, the detailed
information of this service is not available anymore.

3) Helix (has been offline since 2017)3 offered two versions
of mixing services, including a standard version and a
light version. The standard version required their users
to register a wallet, and then the Bitcoins sent to the
wallet would be automatically mixed and finally sent
to a defined address. While for the light version, the
Bitcoins could be withdrawn to up to five addresses.

Table I shows the statistics of these three datasets. On the

average, the labeled addresses only account for about 0.19%
of all addresses appearing in the transaction data.

III. NETWORK CONSTRUCTION AND MOTIF DEFINITION

Transaction records of Bitcoin can be abstracted as a huge
complex network, where each node refers to a Bitcoin address
and each edge represents a transaction process between
addresses. Using this simple modeling method, we construct a
homogeneous AAIN to investigate the interaction patterns of
addresses. Since Bitcoin transactions usually involve multiple
inputs and multiple outputs, from this figure depicting the
transaction relationships between address pairs, it is difficult
to figure out how much an address has taken from another
address. To this end, we construct a heterogeneous TAIN

2https://bitcointalk.org/index.php?topic=50037.0
3https://bitcointalk.01rg/i11dex.php?topic:5238537.0
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Fig. 3. Example of a (a) motif and (b) its instances. Graph patterns in (c) are
not instances of M because of their out of order edge sequence or their out
of range edge occurring time (the constrained time window § is set as 15 s).

to represent the transaction amount information. This is an
attributed temporal heterogeneous information network (HIN)
where a node can be either a particular transaction or an
address. From TAIN, we can clearly find how much an address
has been sent to or received from a transaction. Therefore,
compared with AAIN, TAIN can display the strength of money
transfer more clearly. Network motifs, which can be regarded
as the recurrent small subgraph patterns in networks, have
been demonstrated as an important tool for characterizing
higher-order interactions and understanding various properties
of complex systems [10], [11]. In the following, we present
the definition of AAIN, TAIN, and their motifs in detail.

A. AAIN and Temporal Motifs

Definition 1 (AAIN): An AAIN is a temporal direct multi-
graph G = (V, E), where V is the set of nodes and E is the
set of edges carrying temporal information. Each node v € V
denotes a Bitcoin address and each edge e € E standing for
a transaction is defined as a tuple (u, v, tx, f), denoting that
address u is a source and address v is a destination for a
transaction #x happening at time .

Definition 2 (Temporal Motifs): Temporal  motifs  are
defined as recurring interconnection patterns occurring
in temporal networks [11]. Particularly, a k-node, l-edge,
S-temporal motif instance Mg"l(G) of a temporal network
G = (V, E) can be represented as

MY G) = (VE, ELY, 8)

where V}f,l (V}f,, C V) is a set of k nodes, EIIVI (Ezlvl CE)isa
set of [ edges, and § is a time window indicating that all of
edges in the motif occur within a § duration, i.e., an increased
sequence f1, 2, ..., #; which records the timestamp of each
edge in the motif instance satisfies t; < , < --- < t; and
t1—1H <.

Different from static network motifs, temporal motifs well
preserve the time-ordered sequence of contacts in a time
window, being effective in analyzing the temporal structure
of complex networks. Fig. 3(a) and (b) illustrates a 3-node,
3-edge, §-temporal motif M and its instances, while graph pat-
terns in Fig. 3(c) are not instances of M because their edge
order or occurring time window does not satisfy the condition.
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Fig. 4. (b)—(e) Four instances of the (a) ATH motif in the transaction network.
The edge vector 'y, which maps the amount value attribute to the first bit and
the time information to the second bit, can differentiate varieties of transaction
patterns with the same topology. In this case, the first bit of I'y is set as 0 if
the amount of #x1 is higher than #x2, and as 1 otherwise; and the second bit
of I'y is set as O if the time of #x1 is later than 2, and as 1 otherwise.

B. TAIN and ATH Motifs

Definition 3 (TAIN): A TAIN is an attributed temporal
HIN G = (V,E, £2) with gy:V — {address,transaction}
for node-type mapping, ¢r:E — {transaction-address,
address-transaction} for edge-type mapping, and §2 denoting
the set of attributes attached to edges in the graph, includ-
ing transaction amount and transaction time. A transaction—
address edge (u, txin, a, t1) denotes that an input transaction
txin happens at time #; and transfers a Bitcoins into an address
u, while an address—transaction edge (v, txyu, b, t2) denotes
that an output transaction tx,,, happens at time f, and transfers
b Bitcoins out of an address v.

Definition 4 Attributed Temporal Heterogeneous (ATH)
Motifs: ATH motifs are local recurring subgraphs of attributed
temporal HINs, described by a set of nodes, a set of edges,
attributes, and a time window. A §-ATH motif instance of an
attributed temporal HIN G = (V, E, §2) can be defined as

Mo (G) = (Vath, Eatn, I'e, 8)

where Vatg (Vatn € V) represents the set of nodes, and
Extn (Eatu € E) represents the set of edges, also satisfying
node types |{¢y(v)|v € Varu}l > 1 or edge types [{gr(e)le €
Eatn}| > 1. I'p denotes a mapped vector of edge attributes,
and § is a time window that constrains min(yg(e)) + § <
max(yg(e)) for e € Earh, where g is a time mapping which
maps each edge e € E to its occurring time.

Though some subgraphs in the TAIN may share the same
topology, the attribute information can make them different.
Taking the ATH motif shown in Fig. 4 and its four instances
as an example, the instance in Fig. 4(c) represents the trans-
action pattern of receiving money first and sending out less
money later, while the instance in Fig. 4(d) stands for send-
ing money out first and receiving less money later, which
has an opposite transaction order and leads to a negative
balance.
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IV. FEATURE-BASED ANALYSIS

Due to the specific function of mixing Bitcoins, addresses
associated with mixing services may have several unique fea-
tures different from normal addresses. In the following, we
aim to extract features of the addresses from three levels and
conduct descriptive statistics on them.

A. Network Features

Different types of objects have different interaction ways in
complex systems, which would affect the topological structure
of the whole network. In this part, we extract network features
from both AAIN and TAIN. To characterize the interaction
patterns and reveal the functional properties in the network,
we propose to take some higher-order network features (i.e.,
network motifs) into account.

Network motifs are small subgraph patterns in a network
that occurring with significantly higher frequency than those
in randomized networks [10]. The statistical significance of a
pattern can be measured by z-score, calculated as

7—score — Nreal — Mrandom (1
std(72random)
where n, denotes the frequency of the pattern occurring
in the real network, and 7;andom and std(#random) denote the
mean and variance of the pattern occurring frequencies in a
set of random networks. A pattern is usually regarded as a
statistically significant motif if its z-score > 2.0 [14].

We consider six simplest transaction patterns [Fig. 5(a)]
with two edges in AAIN, which illustrate how an address
interacts with other addresses for a § duration. For example,
pattern al represents that an address first receives money from
a neighbor and then transfers money to another neighbor while
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TABLE 11
AVERAGE FRACTION OF §-TEMPORAL MOTIFS (§ = 3 H)

TABLE III
AVERAGE FRACTION OF §-ATH MOTIFS (§ = 3 H)

al a2 a3 a4 ab ab
Temporal motif 1. 152 1A 1'/‘O>\z 1@2 1@2

Labeled address  0.2552 0.0051 0.5902 0.1465 0.0000 0.0030
Unlabeled address 0.2320 0.0576 0.4016 0.2395 0.0003 0.0690

pattern a2 represents an opposite transaction order. Moreover,
we abstract the transactions of an address occurring within a §
time window as three kinds of topological structures in TAIN:
all in, all out, and in and out, which illustrate only input trans-
actions, only output transactions, and both input and output
transactions occurring within the time window, respectively.
By taking the amount information and temporal information
into account, the direction and strength of Bitcoin transfer can
be better reflected in these substructures. In our scenario, the
relative size between the attribute information of input and
output transactions is more important than their actual abso-
lute value. Therefore, the in and out structure can be further
divided into four patterns, and all these six patterns [Fig. 5(b)]
can be represented as candidate §-ATH motifs with a binary
value function defining each bit of I, as

0 fin > four
1 tin = fout

0 vin > Vout

Iol0] = { Lon 2. Telll= { )
where I'[0] and I'[1] denote the first and the second bit of
the mapped vector, respectively, viy and Vo, denote the average
amount value of input transactions and output transactions,
respectively, and 7, and 7oy denote the average time of input
transactions and output transactions, respectively. Particularly,
for the all in patterns which has no value of Voy and 7oy, the
corresponding I is defined as [0, 0]. Contrarily, I of all
out patterns are given as [1, 1].

The z-score value of these patterns (Fig. 5) are calculated
with 100 random networks for each real network. To preserve
the same degree sequence and attribute distribution as the real
network, these random networks are generalized by the con-
figuration model [15] with a rearrangement of the attribute
information. As displayed in Fig. 5, the occurring frequency of
a pattern is similar in different networks since these networks
are from the same domain. Patterns al-a6 and patterns b2
and b4-b6 are statistically significant motifs in the Bitcoin
transaction network with a much greater number of occurring
times in a random network. We then make use of these hybrid
motifs, including temporal motifs al-a6 and ATH motifs b2
and b4-b6 to characterize the network features in the Bitcoin
transaction network. Besides, we extract some basic network
features from AAIN, such as in-degree, out-degree, and so on.
All the network features are described as follows.

NFI-NF6: The occurring frequency proportion of each tem-
poral motif in all considered temporal motifs in the first-order
AAIN for each address.

NF7-NF10: The frequency proportion of an address being
a part of each ATH motif in all considered ATH motifs.

NF11: The value of the in-degree in AAIN.

NFI12: The value of the out-degree in AAIN.

b2 b4 b5 b6
ATH motif
pady i?é\‘i o Egi % K
0.4957 0.4916 0.0057 0.0069
0.6557 0.3148 0.0069 0.0225

Labeled address
Unlabeled address

NF13: The ratio of the in-degree to the out-degree in AAIN.

NF14: The number of unique successor addresses in AAIN.

NF15: The number of unique predecessor addresses in
AAIN.

NF16: The ratio of the in-degree to the number of unique
successor addresses in AAIN.

NF17: The ratio of the out-degree to the number of unique
predecessor addresses in AAIN.

Tables II and III describe the average value for NF1-NF10
in labeled addresses and unlabeled addresses with § = 3 h,
respectively. The selected time window will be explained
in Section IV-C. And by combining with the statistics of
NF11-NF17 in Table IV, we can summarize several findings
from network features as follows.

Finding 1: The average fraction of al pattern is much
higher than the fraction of a2 pattern, and
the fraction of b4 pattern far outstrips the
other kinds of in and out motifs bS5 and b6.
Besides, this kind of difference is more sig-
nificant for labeled addresses. In other words,
mixing services are more in line with the trans-
action pattern of receiving money first and
sending money out later with a balance not less
than 0.

Based on the results of a5 and a6 patterns, we
can conclude that nonmixing service entity may
reuse some addresses in a short time while this
situation seldom happens for mixing services.
Besides, the statistics of NF16 and NF17 also
indicates the same finding.

The prevalence of a3 pattern is due to the
change addresses generated to receive the
change. Besides, from the fraction of a3 as
well as the statistics of NF11-NF13, we can
see that mixing services prefer dispersing the
tainted Bitcoins to others, which is a usu-
ally adopted strategy for Bitcoin mixing. Some
analytic companies apply some taint analysis
techniques [16], which can predict a risk score
for addresses and blacklist the high-risk tainted
coin possessors, to track these patterns and
avoid buying these tainted coins.

Finding 2:

Finding 3:

B. Account Features

The state and activeness of an address, in many cases, may
reflect which category the address belongs to and, thus, we
introduce account features to describe the state and activeness
of an address. For example, addresses belonging to Bitcoin
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TABLE IV
STATISTICS OF FEATURES (EXCEPT MOTIF FEATURES)
NF11 NF12 NF13 NF14 NF15 NF16 NF17 AFl1 AF2 AF3 AF4 AF5 AF6  TF1 TF2 TF3 TF4 TF5 TF6
Labeled address
Mean 590 9.02 085 586 871 101 1.02 128 128 1.00 148 1.48 1.00  0.00 5.59¢+3 10.20 534 1194 6.22
StdDev 2531 23.52 252 25.11 1527 0.18 0.13 256 254 0.03 7.22 7.21 045 027 2.55e+4 7.83 2546 13.89 32.80
Median 2.00 10.00 048 2.00 10.00 1.00 1.00 1.00 1.00 1.00 0.32 0.32 1.00  0.00 1.36e+3 7.00 2.00 8.00 2.00
Unlabeled address
Mean 6.86 828 130 6.23 6.63 1.12 129 179 1.87 1.02 6.79 6.80 57.50 0.10 3.80e+4 31.65 59.65 38.68 132.39
StdDev 91.47 22259 5.21 43.54 7523 5.15 5.45 4293 43.07 0.56 1.23e+3 1.23e+3 6.88e+4 15.63 1.10e+5 95.78 375.36 129.82 833.56
Median 2.00 2.00 0.76 2.00 2.00 1.00 1.00 1.00 1.00 1.00 0.11 0.11 1.00 0.00 3.3le+4 3.00 2.00 3.00 2.00
exchanges usually have a higher trade frequency for a great 17 . teceived *
many of businesses, while the trade frequency of many ordi- Cos - Cycles
nary users is relatively much lower. The extracted account E;;’ Cycle1
features for each address, referred to as AFs, are detailed as go's
follows. 5041 w Cycle2
AF1: The number of input transactions in the snapshot. 5 o x
. . 0.2
AF2: The number of output transactions in the snapshot. ox i
AF3: The number ratio of the input transactions to the T e mestamp
output transactions.
AF4: The total amount of input transactions in the snapshot. ~Fig. 6. Transaction cycle is composed of a continuous input stream and

AFS5: The total amount of output transactions in the snap-
shot.

AF6: The amount ratio of the total input transactions to the
total output transactions.

From the statistics of AF1-AF6 in Table IV, some notable
results can be obtained as follows.

Finding 4: There exists a large variety among the unla-

beled addresses in terms of account features
because there exist multiple types of unlabeled
addresses. However, the difference of account
features between labeled addresses is relatively
smaller, as illustrated by a relatively low value
of standard deviation.
According to the results in terms of AF6, the
amount value of output transactions usually
equals to that of input transactions for labeled
addresses, while the unlabeled addresses keep
a positive net income on average, which can
fully illustrate that addresses belonging to mix-
ing services act like intermediaries by sending
out what they have received.

Finding 5:

C. Transaction Features

Next, the transaction behaviors of addresses in the mixing
process are measured by transaction features. Since the rela-
tionship between senders and recipients of a mixing process
would be obviously detected if the mixing service directly
sends out an approximate equal amount to its recipients in the
following blocks, mixing services may use many addresses
acting like “intermediary” addresses (e.g., hubs) to participate
in the process of fund splitting and integrating [5]. After spread
by a large number of intermediary addresses over a period of
time, Bitcoins from the transaction sources are finally sent to
the corresponding recipients.

a continuous output stream. Three transaction cycles of labeled address
“INsNkSxyYjB903QkPT2RjTXST4nGRttMzS” are shown in this figure.

Here, we introduce the concept of transaction cycle, consist-
ing of an ordered pair of continuous input and output streams,
to describe the process of money flowing through an interme-
diary address for Bitcoins enrolled in mixing services. Fig. 6
displays ten continuous transactions of an address belonging to
Bitcoin Fog. The x-axis in this figure represents the time line,
while the y-axis represents how much the address received
and sent. These ten transactions are distributed in three trans-
action cycles, and during each cycle, the address finally sent
out what it had received with an increased balance value 0. We
observe that many labeled addresses have similar transaction
behavior like this, and suppose that this behavior is associated
with the nature of being an intermediary. Several transaction
features (referred as TFs) extracted to describe the transaction
behaviors of an address are as follows.

TFI: The standard deviation of the increased balance
in every transaction cycle (the expected value of increased
balance for an intermediary address is 0).

TF2: The average time interval T between the first input
transaction and the last output transaction in each cycle.

TF3: The average number of addresses that jointly partici-
pate as the inputs of a transaction.

TF4: The average number of addresses that jointly partici-
pate as the outputs of a transaction.

TF5: The total number of unique addresses that jointly
participate as the inputs.

TF6: The total number of unique addresses that jointly
participate as the outputs.

We obtain some observations based on the statistics of TF1—
TF6 in Table IV.

Finding 6: Combining with the cumulative proportion line

chart of 7 shown in Fig. 7, we can observe
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that the average time interval of transaction
cycles of mixing services is mostly within 3 h,
while the transaction cycle duration of an unla-
beled address does not have such an obvious
pattern. One possible explanation of this phe-
nomenon is that mixing services are designed
to process Bitcoins within a specific time as
they are user-oriented services. As a result, we
preliminarily set § = 3 h as the time window
of motifs when conducting descriptive statistics
and mixing detection.

The TF1 results of addresses belonging to mix-
ing services are closer to 0, indicating that the
balance of these addresses over each transac-
tion cycle is closer to 0. Besides, according
to the statistics of TF3-TF6, these addresses
have more co-input addresses than co-output
addresses, which may be explained by that the
coins of an address belonging to a mixing ser-
vice are often obfuscated with coins of other
addresses.

Finding 7:

V. DETECTION MODEL

In the mixing detection task considered here, we only access
a small number of verified labeled addresses belonging to
mixing services while the rest addresses are unlabeled. This
problem of extreme class imbalance may greatly hinder the
performance of supervised classification. To deal with this
problem, we develop a positive and unlabeled (PU) learn-
ing model with a two-stage strategy. The first stage is to
select out the reliable negative instances from the unlabeled
instances (unlabeled addresses) in the training set, and the sec-
ond stage is to train a classifier with the positive instances
(labeled addresses) as well as the reliable negative instances
in the training set.

In stage ome, according to the spy technique proposed
in [9], we sample a set of spy instances from the positive
instances with a default sample rate 15%. The rest of the pos-
itive instances is set with label 1, while the spy instances as
well as the unlabeled instances are set with label —1, and
then they are used to train a classifier for selecting out the
reliable negative instances. Here, we employ the widely con-
sidered logistic regression (LR) as the classifier. Since the spy
instances are actually positive instances, the probability of a
spy being predicted as a positive instance would be usually

higher than that of a negative instance. Therefore, we can
select a threshold 6 based on the prediction probabilities of the
spy instances, and the reliable negative instances are selected
out from the unlabeled instances if their probability of being
predicted as a positive instance is lower than 6. The threshold 6
is selected as the value that can maximize the increment differ-
ence between the cumulative proportion of unlabeled instances
and spy instances under a minute increment Ap, and it can be
calculated by

6 = arg max,c(o4 ap, 11 (AFU(p) — AFs(p)). 3)

For each instance i in the instance set, its probability of being
predicted as a positive instance is denoted as x; and stored in a
set X, namely, x; € X. For the set X, its cuamulative distribution
function F(-) is given by Fx(p) = P{X < p}, where P{X < p}
represents the probability that a value in X is lower than or
equal to a value p. Then, the increment of Fy(p) under a
minute increment Ap (Ap = 0.005 in our model) is denoted
as AFx(p) = Fx(p) —Fx(p— Ap). We use S and U to denote
a set storing the prediction probabilities of spy instances and
unlabeled instances, respectively, so that AFgs(p) and AFy(p)
represent the increment of Fs(p) and the increment of Fy (p)
under the increment Ap, respectively.

In stage two, with the consideration that the number of
positive instances and that of reliable negative instances may
be imbalanced, we set different penalty weights for different
kinds of instances in the loss function. The following objective
function should be minimized:

Cy D I0nfG)) +Co Y 10 f() + ARW)  (4)

yi=1 yi=—1

where C; and C_ denote the penalty coefficients of posi-
tive and reliable negative instances, respectively, I(y;, f(x;)) is
the loss term, R(w) is the regularization term, and A is the
regularization coefficient. In this work, we apply a biased LR
classifier so that the loss term is set to be log loss and the reg-
ularization term is set to be L2-norm. Besides, C; and C_ are
inversely proportional to the number of positive and reliable
negative instances in our settings.

Finally, we choose a probability threshold ¢ and make a
decision according to the prediction probability of each unla-
beled address. An unlabeled address is detected as an address
associated with mixing services when its probability of being
predicted as a positive instance is greater than €.

VI. EXPERIMENTAL RESULTS

In this section, we conduct a comprehensive evaluation of
the proposed detection framework for Bitcoin mixing services.
First, we describe our experimental settings. Second, we
present the experimental results of the proposed method in
comparison with several baseline methods. After that, the
effects of motif-based features and other basic features are
compared and summarized. Next, we demonstrate the robust-
ness of our framework via a parameter sensitivity analysis.
Finally, since our experiments are conducted on three transac-
tion snapshots during 2014-2016, we discuss about how these
data are relevant for current transactions and addresses.
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TABLE V
PERFORMANCE COMPARISON OF DIFFERENT METHODS (WITH STANDARD DEVIATION)
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Dataset | Metric OCSVM IF LR DT \ IS1! \ 1522 Our method

TPR [ 0.89864-0.0080 [ 0.89913:0.0084 [ 0.16812:0.0107 | 0.7052:£0.0162 | 0.8265::0.0061 | 0.8265 +0.0061 | 0.9165-:0.0060

2014 | FPR | 0.2026+0.0064 | 0.1285+0.0139 [  0.040.0* 0.0£0.0* 0.0406+0.0003 | 0.0363£0.0003 | 0.0334-0.0010
G-Mean | 0.8465::0.0033 | 0.8851:£0.0068 | 0.4098-0.0130 | 0.839740.0097 | 0.890540.0033 | 0.8924::0.0033 | 0.94120.0029

TPR [ 0.897240.0105 | 0.899620.0106 | 0.0598::0.0096 | 0.6210::0.0245 | 0.7832:£0.0112 | 0.783240.0112 | 0.9149-:0.0081

2015 FPR | 0.1900+0.0124 | 0.1598+0.0147 [ 0.0+0.0* 0.0£0.0* 0.04380.0003 | 0.0448+0.0003 | 0.0379-£0.0016
G-Mean | 0.8524:£0.0047 | 0.8693:£0.0075 | 0.2437+£0.0197 | 0.7879£0.0156 | 0.865420.0062 | 0.8650::0.0062 | 0.9382+0.0038

TPR [ 0.895320.0105 | 0.9005+0.0105 | 0.0004::0.0005 | 0.3916::0.0388 | 0.9388-:0.0061 | 0.93882-0.0061 | 0.9318-:0.0066

2016 | FPR | 0.1652£0.0106 | 02224+0.0273 [ 0.0+0.0* 0.0£0.0* 0.0591£0.0004 | 0.058640.0003 | 0.0356::0.0010
G-Mean | 0.8645:£0.0051 | 0.83660.0135 | 0.0115£0.0150 | 0.62504:0.0314 | 0.9398::0.0031 | 0.9400+0.0031 | 0.9479+:0.0031

12181 and IS2 use two different inter links counting function, namely relative inter links and total inter links respectively [8].
* The marked FPRs imply that there exist overfitting problems in LR and DT as the positive instances are more likely to be predicted as negative instances.

A. Experimental Settings

We initialize the time window 6 = 3 h and the probability
threshold ¢ = 0.6. All the reported results are averaged over
100 independent experiments with the standardized features as
the model inputs.

Datasets: As mentioned in Section II, we obtain three
datasets with transaction data from a Bitcoin client as well
as labels from WalletExplorer. Before training the model, we
filter out the addresses with either only input transactions or
output transactions. By applying this simple rule, 131 labeled
addresses and 1635904 unlabeled addresses are filtered from
the three datasets, occupying 0.9% and 22.2% of their cor-
responding class, respectively. This operation is based on the
following considerations. On the one hand, mixing services
serve as intermediaries in obfuscating the transactions so that
addresses with either only input transactions or output trans-
actions do not satisfy this obvious feature. On the other hand,
96.2% of the filtered labeled addresses have only one trans-
action record, which are not suitable for feature learning.
Besides, the timestamp of all the transactions related to the
filtered labeled addresses included in our datasets are close to
the time boundaries of the snapshot datasets. Thus, there may
be some extra transactions not being captured in our three
snapshots. We then divide each dataset into the training set
and the testing set as follows, and for each dataset, we train
a model with the training set and verify the model with the
testing set.

1) Training Set: For stage one, we select 70% unlabeled
addresses and 70% labeled addresses to form the train-
ing set, and then we can obtain some reliable negative
instances. For stage two, the training set is made up of
70% reliable negative instances as well as the labeled
addresses used in stage one.

2) Testing Set: The testing set is formed by the remain-
ing 30% reliable negative instances and 30% labeled
addresses to evaluate our model.

Evaluation Metrics: In this work, we evaluate the
performance of our model in terms of TPR, FPR, and the
geometric mean (G-Mean). G-Mean was suggested in [17] and
has been widely used as a comprehensive metric in evaluating
classification performances on imbalanced datasets [18], [19].
Taking both the accuracy of positive instances and negative

instances into account, G-Mean is defined as follows:

G-Mean = /TPR x (1 — FPR). (5)

B. Method Comparison

Our model is based on PU learning with a two-stage strat-
egy, which is actually a semisupervised learning method. To
evaluate the effectiveness of PU learning in our scenario, we
compare our model with several baseline methods, including
one-class support vector machine (OCSVM), isolation forest
(IF) [20], LR, decision tree (DT), and InterScore (IS) [8].
Among them, OCSVM and IF are two unsupervised anomaly
detection method, LR and DT are two widely used supervised
classifiers. IS is a Bitcoin mixing detection method which can
detect mixing service entities containing multiple addresses
with community anomaly detection, as addresses belonging to
these entities usually have more intercommunity connections
than other addresses. Since here we focus on the problem
of detecting addresses of mixing services, we consider the
label of an address is equal to the label of its entity when
implementing IS.

Table V compares the performance of our method with
the baseline methods. Specifically, the proportion of out-
liers in the datasets is set to be 10% when fitting OCSVM
and IF. According to Table V, we have the following
observations.

1) The unsupervised anomaly detection methods (i.e.,
OCSVM, IF, and IS) can discover most of the posi-
tive instances, however, they have a higher FPR than
other methods. In particular, since IS only captures one
important topology feature of being an intermediary in
user transactions, it is in lack of generalization so that
its performance is significantly differentiated in different
datasets.

2) The two supervised methods, including LR and DT,
lead to the problem of overfitting and relatively poor
performance. There exist two possible reasons for this
result, one reason is that the extreme class imbalance
hinders the performance of supervised classification, and
the other reason is that these two methods treat all unla-
beled addresses as negative instances, which may induce
noises to the datasets.
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TABLE VI
PERFORMANCE COMPARISON OF DIFFERENT FEATURES (WITH STANDARD DEVIATION)

Basic features & | Basic features & | Basic features &

Datas Metri Basic f s | T 1 if ATH if Hybri ifs*
ataset etric asic features emporal motifs motifs ybrid motifs Temporal motifs ATH motifs Hybrid motifs*
TPR 0.87444+0.0145 | 0.8728+0.0070 | 0.705940.0111 | 0.8912+0.0064 | 0.9032+0.0064 | 0.8797+0.0089 | 0.9165+0.0060
2014 FPR 0.1779+0.0128 | 0.0455+0.0009 | 0.150840.0013 | 0.0318+0.0007 | 0.0362+0.0014 | 0.1350+0.0091 0.0334+0.0010
G-Mean | 0.847940.0120 | 0.9127+0.0036 | 0.774240.0059 | 0.9289+0.0032 | 0.9330+0.0033 | 0.8723+0.0075 | 0.9412+0.0029
TPR 0.81461+0.0115 | 0.845340.0098 | 0.8426+0.0100 | 0.882340.0088 | 0.886440.0092 | 0.854340.0095 | 0.9149+0.0081
2015 FPR 0.13884+0.0038 | 0.142340.0024 | 0.0716+0.0009 | 0.066740.0020 | 0.08784+0.0079 | 0.08524+0.0018 | 0.0379+0.0016
G-Mean | 0.83761+0.0064 | 0.851540.0043 | 0.8845+0.0051 | 0.907440.0041 | 0.89924+0.0065 | 0.8840+0.0048 | 0.9382+0.0038
TPR 0.6442+0.0317 | 0.9271£0.0073 | 0.663940.0145 | 0.9123+0.0071 | 0.9335+0.0067 | 0.8150+0.0112 | 0.9318+0.0066
2016 FPR 0.3812+0.0077 | 0.0584+0.0012 | 0.315440.0043 | 0.0356+0.0011 | 0.0508+0.0011 | 0.1995+0.0047 | 0.0356+0.0010
G-Mean | 0.631140.0129 | 0.9343+0.0035 | 0.674140.0061 | 0.9380+0.0034 | 0.9413+0.0031 | 0.8077+0.0047 | 0.9479+0.0031

* Hybrid motifs are a combination of Temporal and ATH motifs.
TABLE VII

3) By selecting reliable negative instances from unlabeled
instances first and then apply a supervised method,
the proposed strategy can improve the detection rate
of positive instances compared with directly applying
supervised approaches, and obtain the best results in
terms of G-Mean.

These observations show that the PU learning framework
performs better on Bitcoin mixing detection with a high TPR
exceeding 91% and a low FPR below 4% on extremely
imbalanced datasets.

C. Feature Performance Comparison

To verify the effectiveness of the proposed motif features,
we divide all the features given in Section IV into basic fea-
tures (features except motifs) and motifs (including temporal
and ATH motifs) to train the classifier and further evaluate the
importance of motifs in the detection. A detailed comparison
is given in Table VI and can be summarized as follows.

1) The detection performance is relatively poor when we

only use the basic features. While network motifs,
which can reveal the higher-order features in a com-
plex network, achieve decent performance in mixing
detection.
Each evaluation metric can be significantly improved for
almost all cases when combining hybrid motifs with
basic features, which demonstrates that hybrid motifs
play an indispensable role in the task of Bitcoin mixing
detection.

Additionally, since LR has a good explainability in its model
weights, which can reflect the influence degree of different
features to the detection result, we analyze the impact of the
features according to their absolute value of weight averaged
over the three datasets in the 100 independent experiments.
We find that the top ten important features are TF3, AFS,
AF4, NF17, NF11, NF16, NF12, NF14, TF6, and TF1, illus-
trating that the basic features also play an important role in
the detection process.

2)

D. Parameter Sensitivity Analysis

Next, we provide a sensitivity analysis for the time window
parameter § and the probability threshold ¢ to understand their
impacts on the performance of the proposed model.

PARAMETER ANALYSIS OF PROBABILITY THRESHOLD &

Dataset | Metric 0.5 0.6 0.7 0.8 0.9
2014 TPR | 0.9318 | 0.9165 | 0.8962 | 0.8653 | 0.8016
FPR 0.0535 | 0.0334 | 0.0191 | 0.0093 | 0.0028
2015 TPR | 0.9339 | 0.9149 | 0.8863 | 0.8420 | 0.7652
FPR 0.0686 | 0.0379 | 0.0182 | 0.0083 | 0.0032
2016 TPR | 0.9438 | 0.9318 | 0.9184 | 0.8990 | 0.8510
FPR 0.0502 | 0.0356 | 0.0221 | 0.0114 | 0.0037
TABLE VIII

PERFORMANCE COMPARISON OF DIFFERENT METHODS ON CURRENT
TRANSACTION DATA (WITH STANDARD DEVIATION)

Dataset Method [ TPR [ FPR [ G-Mean
OCSVM | 0.6474+0.0974 | 0.057210.0162 | 0.778840.0567
IF 0.853740.0774 | 0.5431+0.0539 | 0.622040.0350

LR 0.0+0.0 0.0+0.0* 0.040.0
20201 DT 0.06854-0.0599 0.0+0.0* 0.2236+0.1368
IS1 0.818940.0629 | 0.4121£0.0007 | 0.6933+0.0268
1S2 0.818940.0629 | 0.4006=0.0008 | 0.7001+0.0270
Our method | 0.787440.0671 | 0.099140.0104 | 0.8413+0.0327

! This dataset contains 1,500,000 consecutive transactions since Mar. 25,
2020.

* The marked FPRs imply that there exist overfitting problems in LR and
DT as the positive instances are more likely to be predicted as negative
instances.

Fig. 8 shows the results in terms of TPR, FPR, and G-Mean
of our model versus time window § € {0.25,0.5,1,2,...,6}
h. We can observe that the curves of the metrics are generally
stable, which illustrates that our model can steadily obtain
relatively good results under different settings of parameter &
in the testing domain.

We also provide the TPR and FPR results of our model
under different probability threshold & for voting in Table VII.
We can observe that the lower ¢ is, the higher TPR is. While
for FPR, it becomes lower with a larger €. For practical appli-
cations, we can choose an appropriate threshold according to
our specific requirement of pursuing a higher TPR or ensuring
a lower FPR.

E. Discussion

In recent years, some new techniques, such as segregated
witness (SegWit) [21] and lightning network (LN) [22], have
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Fig. 8.

been developed in the Bitcoin community, bringing some new
changes to Bitcoin transactions and addresses. The SegWit
soft-fork accepted in August 2017 is a solution for the trans-
action malleability problem [23] by redesigning the transaction
structure and segregating the witness data so that modifications
to the witness would not change the transaction hash. In addi-
tion, the use of SegWit can reduce the size of a transaction and
increase the number of transactions contained in a block. LN
is an off-chain solution to improve the scalability of Bitcoin.
For two Bitcoin users, they can open an LN channel by lock-
ing some Bitcoins in a 2-of-2 multisignature address through
an on-chain transaction, and then they can trade with each
other via this channel without recording in Bitcoin. Once they
broadcast a commitment transaction onto the blockchain to get
their respective balance from the multisignature address, the
LN channel will be closed. Different from traditional transac-
tions in Bitcoin, the use of LN only results in two transaction
records each time for the opening and closing of a channel.
Besides, almost all the LN transactions are based on 2-of-2
multisignature addresses in witness scripts after the activation
of SegWit, and these addresses are native Segwit addresses
started with “bc.”

Since WalletExplorer does not include the new emerging
services after 2016, we have conducted experiments with
three snapshots during 2014-2016. To justify how the data
in our experiments are relevant for current transactions and
addresses, we collect 1500000 consecutive transactions on
Bitcoin since March 25, 2020 and examine the performance
of our model on the dataset which is referred to as the 2020
dataset in Table VIII. The active labeled addresses of mix-
ing services crawled from WalletExplorer in this snapshot are
89 addresses belonging to Bitcoin Fog, and the number of
unlabeled addresses is 1654 175 after filtering. We also con-
duct a method comparison experiment on this new dataset
under the same experimental settings as Section VI-B. The
performance comparison results displayed in Table VIII show
that our model still performs best in terms of G-mean. Yet its
performance in terms TPR and FPR is slightly worse than the
best method. These results may be due to two possible rea-
sons. One is the small amount of labels in the 2020 dataset,
and the other is the introduction of some new techniques like
LN. To further enhance the detection effectiveness on current
transactions and addresses, the most direct method is to collect
more labels via using some mixing services and then conduct
analysis on them for better capturing their features. Another
feasible solution is to utilize link prediction to enrich the link

Parameter analysis of time window §. (a)—(c) Results of TPR, FPR, and G-Mean measured against different §, respectively.

information of native Segwit addresses, which can help us
better identify their ownership.

VII. RELATED WORK

As a new technology, blockchain has attracted intensive
interests of researchers from various fields. Since the transac-
tion data of blockchain systems are publicly accessible, they
have been extensively studied to mine some network proper-
ties for transaction networks [24]-[26], to cluster addresses
sharing the same ownership [27], [28], and to discover some
specific activities, such as scams [29]-[31], attacks [32], dark
market trading [33], etc. Chen et al. [34] conducted a graph
analysis and abnormal contract detection on Ethereum with a
money flow graph, smart contract creation graph, and smart
contract invocation graph. Tam et al. [35] proposed a graph
convolution network (GCN)-based embedding method to iden-
tify illicit accounts within the e-payment networks including
the Ethereum transaction network. In [36], typical abnormal
transaction patterns for Bitcoin market manipulation were
mined by inspecting the base networks with singular value
decomposition metrics.

For the issue of money laundering detection in Bitcoin,
Moser et al. [5] provided an inquiry into the operation models
of three mixing services and tried to trace the anonymous
transactions. Weber er al. [37] emphasized the importance
of anti-money laundering (AML) regulations in the financial
system, and contributed the Elliptic dataset for illicit activity
detection in Bitcoin. Ranshous et al. [38] introduced the idea
of motifs in directed hypergraphs and recognized some spe-
cific laundering patterns for Bitcoin exchanges. Bitconeview,
a visualization tool for Bitcoin, was proposed to visualize
how and when an address mixes its money [39]. Recently,
a cryptocurrency exchange platform called ShapeShift* was
reported to be involved in money laundering activities by
moving Bitcoins to other privacy-enhancing cryptocurrencies,
such as Zcash [40] and Monero [41]. To address this problem,
Yousaf et al. [42] proposed recognition methods for tracing
cross-ledger transaction behaviors. Yet these techniques do not
focus on identifying addresses enrolling in mixing. Another
work shed light on the problem of Bitcoin mixing detection
and tackled it as a community outlier detection problem [8].
However, this work is in lack of generalization for different
mixing services and it only utilizes the topology information
of the transaction network. Inspired by a related study about

4https://classic.shapeshift.com/

Authorized licensed use limited to: University of Pisa. Downloaded on March 22,2021 at 11:30:13 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WU et al.: DETECTING MIXING SERVICES VIA MINING BITCOIN TRANSACTION NETWORK WITH HYBRID MOTIFS 11

detecting Ponzi schemes on Ethereum [30], in this article, we
propose features from multilevel, trying to discover the trans-
action patterns of mixing services for the enhancement of the
generalization ability.

It is worth mentioning that the network motifs we used,
which are defined as the recurrent subgraph patterns of com-
plex networks [10], play an important role in characterizing
the behavior of mixing services. As the simple building blocks
in complex systems, motifs have been demonstrated as a
powerful tool for revealing higher-order organizations [43]
and functional properties. Since many interactions between
objects are intermittent rather than persistent, network motifs
combined with temporal information were proposed to char-
acterize dynamic homogeneous network [11], and also had an
extensive version in HIN [44]. Recently, there are many stud-
ies utilized network motifs in blockchain transaction network
mining tasks, such as price prediction [45], [46], network prop-
erty analysis [47], exchange pattern mining [38], and so on.
Network attributes play important roles in network mining
tasks [12], nevertheless, most of these network mining stud-
ies fail to consider the rich information of network attributes
when characterizing the interaction patterns with motifs.

VIII. CONCLUSION AND FUTURE WORK

In this work, we studied the Bitcoin mixing detection
problem and conducted a systematic analysis to character-
ize how addresses belonging to mixing services behave in
the Bitcoin transaction network. To mine the dynamic process
and transaction patterns in Bitcoin more comprehensively, we
employed the Bitcoin transaction records to build two tem-
poral directed graphs, including a homogeneous AAIN and a
heterogeneous TAIN. For TAIN, we proposed a novel concept
of ATH motifs to integrate edge attribute information with
higher-order structures. We developed hybrid motifs, includ-
ing temporal motifs in AAIN and ATH motifs in TAIN, as the
key features for mixing detection. With several designed fea-
tures, we built a PU learning-based detection model to handle
the issue of extremely label imbalance of the mixing detection
problem. Extensive experimental results on three real Bitcoin
datasets demonstrated the effectiveness of our detection model.

This work revealed some critical transaction behaviors
which can distinguish the addresses belonging to mixing
services, and then designed an effective method to detect these
addresses. One concern is that the mixing service providers
may update their mechanisms to eliminate these typical behav-
iors and avoid being detected. For example, they can inject
extra Bitcoins from external addresses and those injected
tainted Bitcoins may sit in their addresses for a long time to
fake the flow of Bitcoins, or they may increase and randomize
the interval between the arrival and departure of Bitcoins, to
avoid creating the discussed motifs within a specific time win-
dow. Since the available data are intrinsically mostly unlabeled
and our detection model is based on the prior information,
these unknown complex mixing strategies may exist and may
not be detected. For future work, we will look for more
adaptive strategies to defense these updated privacy-enhancing

techniques, such as applying link prediction to enrich the
money flow information.
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