
A finite state model of individual
to study the spreading

S I R

Model states

•susceptible  = Host that may be 
infected

•Infected = Infected host

•Recovered = Host that cannot 
be infected

Typical transition sequences (red arrows)

The host runs the software that is vulnerable 
(potential).

The worm has exploited the vuln and 
successfully attacked the node (infected).

The infection is detected and the system 
reconfigured (recovered).



A set of diff equations

Classic epidemiology

● [Kermack and McKendrick, 1927]

● Alll the nodes follows the red paths in the 
automata (P to I, I to R)

s = potentially infected

i = infected

r =  recovered

Beta = infection rate

Gamma = recovery rate

Gamma may be neglected 
in the case of worms 
because the time to spread 
is very litte

s = potentially infected

i = infected

r =  recovered

Beta = infection rate

Gamma = recovery rate

Gamma may be neglected 
in the case of worms 
because the time to spread 
is very litte



 Kermack and McKendrick model

  is a function of
 The function to generate the IP addresses

 The number of the systems affected by the vulns

 It increases with the virulence

 The model assumes that a node can infected any 

other node = complete connection and no defence

  should not be neglected anytime
 The spreading is rather slow 

 There are some automatic components to detect 

and remove the infected nodes



Epidemiological threshold

R0= s /    (a TV star for more than a year  :-(  ) 

 s=  percentage of nodes that may be  

infected

 It is the average number of nodes infected 

by an infected node

 If R0  1 the worm spreads, otherwise it will 

be defeated



The naugthy R (Covid-19)



Solution of the system of diff 

equations

An exact solution has been computed



Solution = logistic function

Time

Number of
Infected nodes

Epidemic

Slow-Finish

 
Slow-Start

A worm should be
detected and
removed in the
slow start phase

A worm should be
detected and
removed in the
slow start phase



A model that consider patching

dS(t)/dt = - S(t)I(t) - dP(t)/dt

dR(t)/dt = I(t)   

dP(t)/dt = S(t)I(t)    patched

dI(t)/dt = + S(t)I(t)

S(t) + I(t) + R(t) + P(t) = N

There are two reasons why a node is no longer susceptible

1.It has been infected
2.It has been patched

The number of patched nodes increases with numbers of susceptible 
and of infected ones



A more complex model



A more complex model - II



Further interesting models
 Let suppose that there is a partial connection among 

nodes (scale free, small world, …)

 Initially some nodes are infected

 We would like to know
    How the connection structure influences the spreading and 

the parameter R0


    How patching (=vaccination) influences the 

spreading

 Alternative vaccination strategies

 Alternative topologies may be be considered to discover 

how they influence the spreading



Scale free

● Scale free  

●   When a connection is created, nodes with a 
larger number of connections are preferred

●   The rich becomes richer

●   A few hubs with a huge number of connections 
and a huge number of nodes with  few 
connections

● Very robust with respect to random node attacks, 

highly fragile with respect to targeted attacks



Interconnection Topology

RG=random, SF=scale free, 2D= two dimensions lattice,
1D=  one dimension lattice 2DR=  two dimensions lattice rewired ,
1DR= one dimension rewired
 



Other interesting values

Average time
to max
infected

Max infection
rate

Number of
infected



Computing a worm   

Alpha

Tau

C = 1 (a random machine is selected)

C= N (an infected machine is always selected)

N = 232 (size of IP address)

Alpha = number of nodes tested in parallel

Tau =average time for testing a machine

C = 1 (a random machine is selected)

C= N (an infected machine is always selected)

N = 232 (size of IP address)

Alpha = number of nodes tested in parallel

Tau =average time for testing a machine



Code red

Tau = 19 seconds

Alpha = 100

Good approximation



Spreading - I

10 parallel threads and conflicts on nodes to
be infected are neglected



Spreading - II

Optimization of the time out to detect that no node
exists with the random IP address that has been generated



Spreading - III

Local bias in the generation



Spreading - IV

Local bias + multithreading + short timeouts



Spreading - V

prescan to find better subspaces to generate IP addresses
+ with a large number of susceptible nodes
+ Infected nodes are remembered and neglected
+  multithread



Local vs global

Fig. 5. Comparison of Code Red, a /8 routing worm, a local 
preference worm with different preference probabilities p.
(a) Local preference scan on “/8” network level (K=256, m=116). 
(b) Local preference scan on “/16” network level (K=65,536,  

m=29,696).



Extreme optimization

The time scale has changed



Which address space?

 Some worms consider IP addresses
 Any node can infect any other nodes

 The addresses that are generated depend 
upon the adopted function and not upon 
the interconnection

 Highly effective but high error rate

 Some worms consider logical addresses, ie  email   
  addresses  

 A node can infect only nodes it already 
knowns

 The interconnection structure that has to 
be considered is the logical one



Trojan horse

 A program that has a different goal from the 

expected one

 Its main goal is to implement a backdoor to 

enable illegal accesses to the system  

(persistence in the MITRE Att&ck Matrix 

 Governmental to acquire information and 

defeat encryption

 Malware



Trojan horse defence (wikipedia)

 This defense (SODDI, some other dude did it) typically involves 

defendant denial of responsibility for
 (i) the presence of cyber contraband on the defendant's 

computer system;

  (ii) commission of a cybercrime via the defendant's 
computer, on the basis that a malware or on some other 
perpetrator using such malware, was responsible for the 
offence in question.

 A modified use of the defense involves a defendant charged 

with a non-cyber crime admitting that whilst technically speaking 

the defendant may be responsible for the commission of the 

offence, he or she lacked the necessary criminal intent or 

knowledge on account of malware involvement.



slide 141

“Reflections on Trusting Trust”

Ken Thompson’s 1983 Turing Award lecture

1. Added a backdoor-opening Trojan to login program

2. Anyone looking at source code would see this, so changed the 
compiler to add backdoor at compile-time

3. Anyone looking at compiler source code would see this, so 
changed the compiler to recognize when it’s compiling a 
new compiler and to insert Trojan into it

“   The moral is obvious. You can’t trust code 
you did not totally create yourself. 
(Especially code from companies that 
employ people like me).”



slide 142

Rootkits

Rootkit is a set of trojan system binaries

Main characteristic: stealthiness

• Create a hidden directory
• /dev/.lib, /usr/src/.poop and similar

• Often use invisible characters in directory name (why?)

• Install hacked binaries for system programs such as netstat, ps, ls, 
du, login

• Modified binaries have same checksum as originals
• What should be used instead of checksum?

Can’t detect attacker’s processes, 
files or network connections by 
running standard UNIX commands!



slide 143

Function Hooking

Rootkit may “re-route” a legitimate system function 

to the address of malicious code

Pointer hooking

•     Modify the pointer in OS’s Global Offset Table, where function 
addresses are stored 

“Detour” or “inline” hooking

•    Insert a jump in first few bytes of a legitimate function

•    This requires subverting memory protection

Modifications may be detectable by a clever rootkit 

detector



slide 144

Kernel Rootkits

Get loaded into OS kernel as an external module

•    For example, via compromised device driver or a badly 
implemented “digital rights” module (e.g., Sony XCP)

Replace addresses in system call table, idt

If kernel modules disabled, directly patch kernel 

memory through /dev/kmem (SucKIT rootkit)

Inject malicious code into a running process via 

PTRACE_ATTACH and PTRACE_DETACH

•    Security and antivirus software are often the first injection 
targets



slide 145

Mebroot (Windows)

● Replaces the host’s Master Boot Record (MBR)

• First physical sector of the hard drive

• Launches before Windows loads

● No registry changes, very little hooking

● Stores data in physical sectors, not files

• Invisible through the normal OS interface

● Uses its own version of network driver API to send and receive 

packets

• Invisible to “personal firewall” in Windows

● Used in Torpig botnet



slide 146

Detecting Rootkit’s Presence

Sad way to find out

• Run out of physical disk space because of sniffer logs

• Logs are invisible because du and ls have been hacked

Manual confirmation

• Reinstall clean ps and see what processes are running

Automatic detection

•     Rootkit does not alter the data structures normally used by 
netstat, ps, ls, du, ifconfig

•     Host-based intrusion detection can find rootkit files
• …assuming an updated version of rootkit did not disable the intrusion 

detection system!



slide 147

Remote Administration Tools

Legitimate tools are often abused

• Citrix MetaFrame, WinVNC, PC Anywhere
• Complete remote control over the machine

• Easily found by port scan (e.g., port 1494 – Citrix)

• Bad installations, crackable password authentication
• “The Art of Intrusion” – hijacking remote admin tools to break into a 

cash transfer company, a bank’s IBM AS/400 server 

Semi-legitimate tools

• Back Orifice, NetBus

• Rootkit-like behavior: hide themselves, log keystrokes

• Considered malicious by anti-virus software



slide 148

Communicating Via Backdoors

● All sorts of standard and non-standard tunnels

● SSH daemons on a high port

•    Communication encrypted  hard to recognize for a network-
based intrusion detector

•    Hide SSH activity from the host by patching netstat

● UDP listeners

● Passively sniffing the network for master’s 

commands



slide 149

RAT Capabilities

● “Dropper” program installs RAT DLL, launches it as 

persistent Windows service, deletes itself

● RAT notifies specified C&C server, waits for 

instructions

●    Attacker at C&C server 

has full control of the

infected machine, can

view files, desktop,

manipulate registry, 

launch command shell



Hybrid

 Most malware current integrates all the 

previous behavior

 Software with an opportunistic approach to 

spread to other nodes
 Usb
 Share
 Mail
 Attack
 ....



Autonomous Hybrid

 They can transmit themselves to other 

nodes without exploiting the node resources

 Even if the node does not exchange email, 

it can

 Trasmit email from the node
 Hide in the mail



Attack Analysis: the takeaways

● Complex vs elementary attacks

● The attack pyramid (target vs mass attacks)

● Attack surface

● Attack graph strengths and weakness

● Countermeasures as graph cuts 

● Automated Attack

● Worms and spreading

● MITRE ATT&CK matrix 


