
Countermeasure Analysis

This step chooses how to change the
target system
-statically
-at run time (under attack)
to avoid or at least minimize the risk

Countermeasures
A first classification

 Proactive
 They are applied before an intrusion

eg a vulnerability is removed
 Dynamic

 They are applied as soon as an attack is detected
 eg a vulnerability is removed
 eg a connection is killed

 Reactive
 They are applied after a successful attack
 eg a vulnerability is removed
 eg a password is changed

Detection?

A more detailed taxonomy

Prevent Resist Detect Recovery React

Deception
Honeypot

Resiliency
Robustness

Intrusion Detection
Consistency Checks

Heterogeneity
Cold/Hot Redundancy

Change to
1. Configuration
2. Architecture
3. Application

Identification, authentication, right management

Implementation mechanisms
 Countermeasures are implemented through

a set of common mechanisms
 A set of shared mechanisms

 It can increase the cost effectiveness of
countermeaures

 It should be highly robust because a vuln may
affect several countermeasures

Base mechanisms

 The mechanisms are defined on top of a
security kernel (= TCB) that manages
 The user identities
 User authentication (identity checks)
 User rights

 The TCB should not be confused with
the minimal system that is discussed in
the following

Countermeasures Glossary- I
 Deception = no information about the system

design is available = S&S, no open design +
honeypot

 Honeypot = fake systems to
 increase the complexity of discovering target nodes
 detect attack

 Resiliency/Robustness = prevent a single
vulnerability from enabling a successful intrusion
(S&S, least privilege etc)

 Intrusion Detection/ Consistency Check = checks
to discover the current or previous attacks

Countermeasures Glossary - II
 Redundancy = spare components to replace the

attacked ones. The impact is reduced and control
on the system is not lost
 Cold = Stand by spare components
 Hot = Spare components are in use (oversize system)

The underlying problem is a proper evaluation of
expected performance

 Heterogeneous components = genetic diversity =
the vulns of spare components differs from those
of standard components

 A generalization of triple modular redundancy

Triple Modular Redundancy

Module M copy 1

Module M copy 2

Module M copy 3

Voter

Safety, not security
anytime the three copies
share the same vul

If the three versions have
a different implementation
some security is achieved

Countermeasures Glossary- III
 Minimal system

 A subset of components
 More robust
 Large number of severe checks

 Control of the minimal system should
never be lost

 It is a starting point to gain back control
on the whole system

 Strongly related to normal vs power law
impact we have discussed

Countermeasures Glossary- IV
 Reaction = Updates to

 The configuration of the OS and applications
 System architecture
 Enabled application
 Patch

 The reaction usually updates the target
system and it not involves the attacking one

 Offensive security = react by attacking the
attacking system = Huge set of problems

Attacking the attacking sys?
 Attack attribution, remember the difference

between a missile and a worm?
 Stepping stone = a chain of hosts that starts at

the one of the attacker and that are, illegally,
controlled by the attacker =botnet + com&contr

 The attacker uses the chain to hide his/her node
 The last node in the chain implements the attack

to hide the first one
 Any node connected to the internet has a value

as it can be used as a stepping stone =hygene
 How can we discover a stepping stone?

Stepping stones = botnet

Attacker node

Target nodeStepping stones

Encrypted

Botnet that may be built or rented

Stepping stone detection - 1

 An analysis of input/output node channel to evaluate
their correlation

 If there are an input channel and an output one (i/o
port) that are correlated as far as concerns
 Time = when a communication occurs
 Data = size of exchanged data

 then the node may act as a stepping stone
 By repeating the analysis for the sender/receiver of the

two channeld, the whole chain of stepping stones (=
the whole botnet) may be discovered

Stepping stone detection- 2

 The proposed analysis is a traffic analysis
that can be applied even to encrypted flows
because it does not consider the information
content of the two flows

 No serious attacker uses stepping stone
chains that communicate in clear

Stepping stone

Attacker node

Target node

Stepping stones Correlation among these connections
can be discovered even if they are encrypted

Deception = Honeypot
 Both diffusion and adoption has increased because of

virtualization technologies that minimizes its cost
 It increases the complexity of attacks that use a vulnerability

scanner to discover nodes in a network that can be attacked
 For each address the scanner generates, the defender

creates a new fake virtual node the attacker has to analyze
 These virtual nodes are useless but as far as the scanning is

concerned, they behave like real nodes
 The fake nodes

 reply to the fingerprinting messages with frequency that
becomes slower and slower to slow down the scanning

 raise an alarm

Honeypot - Definition

An ICT resource whose value lies in
unauthorized or illicit use of that resource.

 Has no production value; anything going
to/from a honeypot is likely a probe, attack or
compromise

 Used for monitoring, detecting and analyzing
attacks

 Does not solve a specific problem. Instead,
they are a highly flexible tool with different
applications to security.

Classification

 By level of interaction
 High
 Low
 Middle

 By Implementation
 Virtual
 Physical

 By purpose
 Production
 Research

Level of Interaction

 Low interaction—A simple port listener is
considered extremely low interaction because,
after the connection, the attacker cannot do
anything else.

 Medium interaction—An emulated service that
analyzes communications and returns
simulated responses to replicate a real service

 High interaction—This involves the use of real,
but deceptive services, fully operational hosts
or complete deceptive networks.

Level of Interaction

 As the level of interaction increases, the attacker
ability to “play” with the resources also goes up.

 Higher interaction gives the attacker a more
realistic experience and also provides significantly
opportunities to analyze attacker activity.

 A better understanding of attacker activity allow
security teams
 to respond more effectively,
 to enhance their ability to design improved

deception scenarios.

Physical vs Virtual Honeypots

 Two types
 Physical

 Real machines
 Own IP Addresses
 Often highly-interactive

 Virtual
 Simulated by other machines that:

 respond to the traffic sent to the honeypots
 may simulate distinct virtual honeypots at the same

time

Production HPs: Protect the systems

 Prevention
 Keeping the bad guys out
 not effective prevention mechanisms.
 Deception, Deterence, Decoys do NOT work against

untargeted attacks: worms, auto-rooters, mass-rooters

 Detection
 Detecting the burglar when he breaks in.
 Great work

 Response
 Can easily be pulled offline
 Little or no data pollution

Research HPs: gathering information

 Threat Intelligence
 Collect compact amounts of high value

information
 Discover new ttps and tools
 Understand Motives, Behavior, and

Organization
 Develop Analysis and Forensic Skills
 Discover new worms/viruses and signatures

Sensor network for threat intelligence

Sensor network for threat intelligence

A sensor

 9 different honeypot types
 Each focused on observing distinct attacks against

SSH/telnet services, web services, remote management
protocols, databases, mail relays, ICS devices, including
exploits, scans, brute force attacks.

 Each sensor is a VM with at least:
 1 core
 512MB RAM
 5 GB hard drive
 2 or more static IPv4 addresses

Building your HoneyPots

 Specifying Goals
 Selecting the implementation strategies

 Types, Number, Locations and Deployment

 Implementing data capture
 Logging and managing data
 Mitigating risk
 Mitigating fingerprint

Just an anticipation …
 Firewall

 A system that connects two networks with distinct
security requirements

 It filters the information flowing across the two networks
and the services each network can access in the other
one

 It hides some components in the most critical networks
so that they cannot be accessed from the less critical
network

 It defends the most critical network from attacks
originating in the less critical and less protected one at
the expence of the bandwidth between the two networks

Location of Honeypots

 In front of the firewall
 Demilitarized

Zone
 Behind the

firewall (Intranet)
 Understand the depth

an attacker can reach

Capturing Information

 Host based:
 Keystrokes
 Syslog

 Network based:
 Firewall
 Sniffer
 IP not resolved name

Logging and Managing Data

 Logging
architecture

 Managing data

What is Honeyd?

 HoneydHoneyd: A virtual honeypot application,
which allows us to create thousands of IP
addresses with virtual machines and
corresponding network services.

 Written by Neil Provos available at
http://www.honeyd.org/

What can honeyd do?

 Simulates operating systems at TCP/IP stack
level, supporting TCP/UDP/ICMP;

 Support arbitrary services;

 Simulate arbitrary network topologies;

 Support tunneling and redirecting net traffic;

Illustration Simple

How it works?

routing

routing

Packet Dispatcher

TCP UDP ICMP

Services

Personality
EngineConfiguration

DataBase

Network

 Configuration

Why Personality Engine?

 To fool fingerprinting tools

 Uses fingerprint databases by
 Nmap, for TCP, UDP
 Xprobe, for ICMP

 It changes to the headers of every outgoing
packet before it is sent to the network

Why Routing topology?
 Simulates virtual network topologies;

 Some honeypots are also configured as routers
 Latency and loss rate for each edge is configured;

 Support network tunneling and traffic
redirection;

Current version

 Can implement passive fingerprinting to
discover some features of the remote
host that is attacking (the final stepping
stone)

 Can run actual OS to better mimic their
behavior

 To be run in a sandbox with ptrace

Passive fingerprinting

 This style of fingerprinting does not send any
packets, but relies on sniffing to analyze the
information sent in normal network traffic.

 If a target is running publicly available services,
passive fingerprinting may be a good way to start
off fingerprinting.

 It is less accurate than active fingerprinting and it
relies on an existing traffic stream

 It can also take much longer depending on the
activity level of the target system

p0f—a Passive Fingerprinting Tool

 p0f looks at the following IP and TCP fields:
 Initial Time To Live – IP header
 Don’t Fragment – IP header
 Overall SYN packet size – TCP header
 TCP Options like windows scaling or maximum

segment size – TCP header
 TCP window size –TCP header
 TCP session startups -the SYN segment.

 The program uses a fingerprint database to
identify the hosts that opens a connection

p0f—a Passive Fingerprinting Tool

-----------------MacOS-------------------
S2:255:1:48:M*,W0,E:.:MacOS:8.6 classic

16616:255:1:48:M*,W0,E:.:MacOS:7.3-8.6 (OTTCP)

16616:255:1:48:M*,N,N,N,E:.:MacOS:8.1-8.6 (OTTCP)

32768:255:1:48:M*,W0,N:.:MacOS:9.0-9.2

32768:255:1:48:M1380,N,N,N,N:.:MacOS:9.1 (1) (OT 2.7.4)

65535:255:1:48:M*,N,N,N,N:.:MacOS:9.1 (2) (OT 2.7.4)
 9.0-9.2 the initial window size is 32768 bytes, the initial time to

live is 255, the don’t fragment bit is on, the total length of the
SYN packet is 48 bytes, the maximum segment size option is
bolted on —as is the window scaling option, there is a no-
operation (NOP) in the option list

What is a Honeynet <> Honeypot

 A network with nodes and honeypots to
design a high-interaction honeypot able to:
 capture in-depth information
 learn who would like to use your system without

your permission for their own ends
 Its an architecture, not a product or

software.
 Populate with live systems.
 Can look like an actual production system

What is a Honeynet

 Once nodes are compromised, data is
collected to learn the tools, tactics, and
motives of the blackhat community.

 Information has different value to
different organizations.
 Learn vulnerabilities
 Develop response plans

What’s The Difference?

 Honeypots use known vulnerabilities to lure
attack.
 Configure a single system with special software or

system emulations
 Want to find out actively who is attacking the system

 Honeynets are networks open to attack
 often use default installations of system software
 behind a firewall
 hope attackers mess up the honeynet instead than

your production system

How a honeynet works

 A highly controlled network where every
packet entering or leaving is monitored,
captured, and analyzed.

 Any traffic entering or leaving the
Honeynet is suspect by nature.

Countermeasures - Deception
 Cryptography algorithms
 Information is coded so that only who knows

a further info, the key, can access it
 Already known

Just a reminder ...

 Cryptography does not solve the problems, it
only simplify the solution

 It is very difficult to safely store a 2 gb file
 It is simpler to encrypt the file through a 256

bit key and safely store the key
 The same problem has to be solved (safely

store an info) but now the solution is simpler
because the problem size has been reduced

Just a reminder ...
 Hiding and protecting

 Information at rest
 Exchanged information

 Integrity (hash function)
 Authentication (digital signature)

 Hash + Encrypt with private key
 Coprocessor (smartcard)

 Hardware root of trust
 Symmetric and Asymmetric

Resist – Robust (proactive) programming

 Validate program inputs aka input is evil
 Prevent buffer overflow
 Robust implementation
 Check the invocations to other resources
 Check returned results

Robust programming – Input validation

Input validation + default deny (S&S)
 Define the input legal structure
 Check that any input satisfy the defined

structure
Example: Strings

 A grammar that defines the structure
 Longest input string
 Define which special characters are legal
 Check that any input satisfies 1-2-3

Robust programming – Input validation

 The checks to validate the input should be specified
together with the program rather than after an attack

 In the correct approach, the specification may simplify
the design and the implementation of the checks
through a simple grammar, eg LR grammar, ie
controls implemented by finite state automaton

 A complex control may be useless if we are not
confident that it has been correctly implemented

 Several languages offer built in functions to check a
string against a regular expression or to filter out
dangerous characters

Robust programming – Input validation

 Parameters to be validated
 Environment variables
 File names (blanks , .., /,)
 Email addresses
 URL
 Html
 data

 Use built in function to match a string against a
predefined pattern, remove dangerous characters,
extract substring with the desidered length

Robust programming – no buffer overflow

 Do not use any library function that does not
check it input parameters

 Use only those functions that check the length
of their input strings

 Dynamic memory allocation of a data structure
according to its size rather than static allocation
of the largest amount of memory the structure
may require in some execution

Robust programming –
robust implementation - I

 Satisfy S&S
 Rigorous definition of the program interface
 Do not assume that input/output values are related

 If a function of a library returns a pointer and another
function of the same library has a pointer parameter, there
is no reason to assume that the second will receive only the
pointers the first function returns

 If an input parameter of a function should be the one
another function returns, the parameter type has to be
defined so that this relation can be checked

 Data and instruction should be different
 The data that each function needs to access should

be minimized

Pointer - I

Proci

Prock

punt

punt

Package that should
be robust

Procp

Prock

Pointer array

i

i

An index is transformed into a
pointer by accessing the

pointer array

A more robust version

A user data structure

Pointers - II
 By replacing an array of pointers with an array of

records where one field is a pointer we can
 Introduce fields in the records to discover whether

each element is properly initialized
 Check access to the array
 Define proper checks on the input output relation

of a pointer
 This is a simplified, redundant version of an access

control matrix for the pointers
 Built in in some programming languages

Pointers - III

 We can also return an encrypted index to one
position of the array of pointers rather than the
real one

realpositioin= m*returnedpos+cost

 It simplifies the detection of pointer manipulation
 Access control does not change

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Definition
	Classification
	Diapositiva 19
	Diapositiva 20
	Physical V.S. Virtual Honeypots
	Production HPs: Protect the systems
	Research HPs: gathering information
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Building your HoneyPots
	Diapositiva 28
	Location of Honeypots
	Capturing Information
	Logging and Managing Data
	What is Honeyd?
	What can honeyd do?
	Illustration Simple
	How it works?
	Diapositiva 36
	Why Personality Engine?
	Why Routing topology?
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	What is a Honeynet
	Diapositiva 44
	What’s The Difference?
	How it works
	Diapositiva 47
	Diapositiva 48
	Diapositiva 49
	Diapositiva 50
	Diapositiva 51
	Diapositiva 52
	Diapositiva 53
	Diapositiva 54
	Diapositiva 55
	Diapositiva 56
	Diapositiva 57
	Diapositiva 58

