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Signals = Time series

○ Medicine 
○ Financial 
○ Meteorology 
○ Geology 
○ Biometrics 
○ Robotics 
○ IoT 
○ Biometrics 
○ ... 
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A sequence of measurements in time 



○ Time series analysis assumes weakly stationary (or second-order stationary) 

data 

● 𝔼 𝑥𝑡 = 𝜇 for all 𝑡

● 𝐶𝑜𝑣 𝑥𝑡+𝜏, 𝑥𝑡 = 𝛾𝑡 for all 𝑡 ( 𝛾 does only depend on lag 𝜏 ) 

Formalization

A time series 𝒙 is a sequence of measurements in time 𝑡

𝒙 = 𝑥0, 𝑥1, … , 𝑥𝑡 , … , 𝑥𝑁

where 𝑥𝑡 (or 𝑥(𝑡)) is the measurement at time 𝑡. 
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○ Observations can be observable at irregular time intervals 



Goals

○ Description - Summary statistics, graphs 

○ Analysis - Identify and describe dependencies in data 

○ Prediction - Forecast the next values given information up to time t 

○ Control - Adjust the parameters of the generative process to make the time 

series fit a target 
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The goal of this lecture is providing knowledge on some basic techniques 
that can be useful as 
● Baseline 
● Preprocessing 
● Building blocks



Key Methods

○ Time domain analysis - Assesses how a signal changes over time 
● Correlation and Convolution 

● Autoregressive models
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○ Spectral domain analysis - Assesses the distribution of the signal 

over a range of frequencies 
● Fourier Analysis 

● Wavelets (in 2 lectures)



Some interesting estimators for time series statistics are 

Sample mean 

Ƹ𝜇 =
1

𝑁


𝑡=1

𝑁

𝑥𝑡

Mean and Autocovariance 
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(Sample) Autocovariance for lag −𝑁 ≤ 𝜏 ≤ 𝑁

ො𝛾𝒙 𝜏 =
1

𝑁


𝑡=1

𝑁−|𝜏|

(𝑥𝑡+ 𝜏 − Ƹ𝜇)(𝑥𝑡 − Ƹ𝜇)

Some interesting estimators for time series statistics are 

Sample mean

Ƹ𝜇 =
1

𝑁


𝑡=1

𝑁

𝑥𝑡

Mean and Autocovariance 
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Autocorrelation
Autocovariance serves to compute autocorrelation, i.e. the 

correlation of a signal with itself 

ො𝜌𝒙 𝜏 =
ො𝛾𝒙 𝜏

ො𝛾𝒙 0
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Autocorrelation analysis can reveal repeating patterns such as the 

presence of a periodic signal hidden by noise 



Autocorrelation Plot 
A revealing view on time series statistics 
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Autocorrelogram reveals a 
sine wave 

What do you see in this 
time series?



○ 𝜏 ∈ [− 𝑇1 − 1 ,… , 0, … , 𝑇1 − 1 ]

○ The maximum 𝜙𝒙1𝒙2 𝜏 w.r.t. 𝜏 identifies the displacement

of 𝒙1 vs 𝒙2

Cross-Correlation (Discrete) 
A measure of similarity of 𝒙1 and 𝒙2 as a function of a time lag 𝜏

𝜙𝒙1𝒙2 𝜏 = 

𝑡=max{0,𝜏}

min{ 𝑇1−1+𝜏 ,(𝑇2−1)}

𝑥1 𝑡 − 𝜏 ⋅ 𝑥2(𝑡)
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○ ത𝜙𝒙1𝒙2 𝜏 =0 ⇒ Completely uncorrelated signals 

○ ത𝜙𝒙1𝒙2 𝜏 = −1⇒ The two time-series have the exact same shape 
but opposite sign if aligned at time τ 

○ ത𝜙𝒙1𝒙2 𝜏 = +1 ⇒ The two time-series have the exact same shape if 
aligned at time τ 

Cross-Correlation (Discrete) 

Normalized cross-correlation returns an amplitude independent value 

ത𝜙𝒙1𝒙2 𝜏 =
𝜙𝒙1𝒙2

σ𝑡=0
𝑇1−1 𝑥1 𝑡

2
σ𝑡=0
𝑇2−1 𝑥2 𝑡

2
∈ [−1,+1]
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Cross-Correlation - Something already seen... 

What is this?

𝑓 ∗ 𝑔 𝜏 = 

𝑡=−𝑀

𝑀

𝑓 𝜏 − 𝑡 𝑔(𝑡)
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○ Discrete convolution on finite support [−𝑀,+𝑀]

○ Similar to cross-correlation but one of the signals is flipped on y-axis
(i.e. −𝑡 in place of 𝑡) 

○ Convolution can be seen as a smoothing operator (commutative!) 



Convolution - Graphically

DAVIDE BACCIU - ISPR COURSE 13

The area 

under 𝑓
when 

weighted 

by a 

displaced 

and flipped 

version of 𝑔



A timeseries Autoregressive process (AR) of order K is the linear system 

𝑥𝑡 = 

𝑘=1

𝐾

𝛼𝑘𝑥𝑡−𝑘 + 𝜖𝑡

○ autoregressive ⇒ 𝑥𝑡 regresses on itself 

○ 𝛼𝑘 ⇒ linear coefficients s.t. |𝛼| < 1

○ 𝜖𝑡 ⇒ sequence of i.i.d. values with mean 0 and fixed variance 

Autoregressive Process
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Autoregressive with Moving Average process (ARMA) 

𝑥𝑡 = 

𝑘=1

𝐾

𝛼𝑘𝑥𝑡−𝑘 +

𝑞=1

𝑄

𝛽𝑞𝜖𝑡−𝑞 + 𝜖𝑡

○ 𝜖𝑡 ⇒ Random white noise (again)

ARMA
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○ The current timeseries value is the result of a regression on its past 

values plus a term that depends on a combination of stochastically 

uncorrelated information 
○ Denotes new information or shocks at time 𝑡



○ Need to estimate 
● The values of the linear coefficients 𝛼𝑡 (and 𝛽𝑡) 
● The order of the autoregressor 𝐾 (and 𝑄) 

Estimating Autoregressive Models 
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The set of autoregressive parameters 𝛼1
𝑖 , … , 𝛼𝐾

𝑖 fitted to a specific 
timeseries 𝒙𝑖 is used to confront it with other timeseries 

statsmodels Spectrum

○ Estimation of the 𝛼 is performed with the Levinson-Durbin recursion
● Native Matlab: a = levinson(x,K)
● Included in several Python modules: statsmodels, Spectrum, …

○ The order is often estimated with a Bayesian model selection criterion, 
e.g. BIC, AIC, etc. 

https://www.statsmodels.org/dev/about.html#about-statsmodels
pyspectrum.readthedocs.io/en/latest/index.html


○ Novelty/anomaly detection 

𝑇𝑒𝑠𝑡 𝐸𝑟𝑟 𝑥𝑡 , ො𝑥𝑡 < 𝜉

where ො𝑥𝑡 is the AR predicted value

Comparing Timeseries by AR

○ Timeseries clustering 

d 𝒙1, 𝒙2 = 𝛼1 − 𝛼2 𝑀
2
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○ Encode time series as a set of 𝛼𝑖 vectors and feed them to a flat ML model 



Spectral Analysis

Analyzing time series in the frequency domain 
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Use the framework of Fourier Analysis 

Key Idea 

Decompose a time series into a linear combination of sinusoids (and 
cosines) with random and uncorrelated coefficients 

○ Time domain - Regression on past values of the time series 
○ Frequency domain - Regression on sinusoids 



Fourier Transform 
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○ Discrete Fourier transform (DFT) 

○ Transforms a time series from the time domain to the frequency 

domain 

○ Can be easily inverted (back to the time domain) 

○ Useful to handle periodicity in the time series 
● Seasonal trends 

● Cyclic processes 



the linear combination above becomes the Fourier Series 

𝑎0
2
+

𝑘=1

∞

[𝑎𝑘 cos 𝑘𝑥 + 𝑏𝑘 sin 𝑘𝑥 ]

with 𝑎𝑘, 𝑏𝑘 being coefficients resulting from integrating 𝑓(𝑥) with the sin and cos functions 

Representing Functions
We (should) know that, given an orthonormal system {𝒆1; 𝒆2, . . . } for 𝐸, we can represent any function 𝑓 ∈

𝐸 by a linear combination of the basis 



𝑘=1

∞

𝑓, 𝒆𝑘 𝒆𝑘
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Given the orthonormal system  

{
1

2
, sin 𝑥 , cos 𝑥 , sin 2𝑥 , cos 2𝑥 , … }



Representing Functions in Complex Space

Using cos 𝑘𝑥 − 𝑖 𝑠𝑖𝑛 𝑘𝑥 = 𝑒−𝑖𝑘𝑥 with 𝑖 = −1 we can rewrite the Fourier 
series as 



𝑘=−∞

∞

𝑋𝑘𝑒
−𝑖𝑘𝑥

on the orthonormal system 

{1, 𝑒𝑖𝑥 , 𝑒−𝑖𝑥 , 𝑒2𝑖𝑥 , 𝑒−2𝑖𝑥 , … }

and 𝑋𝑘 integrates 𝑓(𝑥) with 𝑒−𝑖𝑘𝑥 . 
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2. Using the exponential formulation, the orthonormal system is made of 

{𝒆0, 𝒆1, … , 𝒆𝑁−1} vectors 𝒆𝑘 ∈ ℂ𝑁

Representing Discrete Time series
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1. Consider a discrete time series 𝒙 = 𝑥0, 𝑥1, … , 𝑥𝑁−1 of length 𝑁 and 𝑥𝑛 ∈ ℝ

3. The n-th component of the k-th vector is 

𝒆𝑘 𝑛 = 𝑒
−2 𝜋 𝑖𝑛𝑘

𝑁



Graphically
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A basis 𝒆𝑘 at frequency 𝑘
has 𝑁 elements sampled 
from the roots of the 
unitary circle in imaginary-
real space 



The DFT has an inverse transform 

𝑥𝑛 =
1

𝑁


𝑘=1

𝑁−1

𝑋𝑘𝑒
2 𝜋 𝑖𝑛𝑘

𝑁

to go back to the time domain. 

Discreet Fourier Transform 
Given a time series 𝒙 = 𝑥0, 𝑥1, … , 𝑥𝑁−1 its Discrete Fourier Transform (DFT) is the 

sequence (in frequency domain) 

𝑋𝑘 = 

𝑛=1

𝑁−1

𝑥𝑛𝑒
−2 𝜋 𝑖𝑛𝑘

𝑁
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Basic Spectral Quantities in DFT
We would like to measure relevance/strength/contribution of a target frequency bin 𝑘

○ Amplitude

𝐴𝑘 = |𝑋𝑘| = 𝑅𝑒2 𝑋𝑘 + 𝐼𝑚2(𝑋𝑘)

○ Power 

𝑃𝑘 =
𝑋𝑘

2

𝑁
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(you can also compute phase)

(under some conditions this is a 

more-or-less reasonable estimate of 

the power spectral density)



DFT Power spectrum in use
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X = fft(x); % x - sample signal

n = length(x);

f = (0:n-1)*(fs/n);       % fs - sample frequency (Hz)  / f – frequency range

power = abs(X).^2/n; 



DFT Power spectrum in use

DAVIDE BACCIU - ISPR COURSE 30

Back to the time domain (keeping only relevant frequencies)



DFT in Action 

○ Use the DFT elements 𝑋1, . . . , 𝑋𝐾 as representation of the signal to train 

predictor/classifier 
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○ Representation in spectral domain can reveal patterns that are not clear in 

time domain



Some less basic spectral descriptors
○ Spectral Centroid

○ Spectral Spread

○ Spectral Skewness

○ Spectral Kurtosis

○ Spectral Entropy

○ Spectral flatness

○ Spectral crest

○ Spectral flux

○ Spectral slope

○ ….



Spectral Centroid

Spectral-weighted average frequency (between frequency bands 𝑏1
and 𝑏2)

𝜇 =
σ
𝑘=𝑏1

𝑏2 𝑓𝑘𝑠𝑘

σ
𝑘=𝑏1

𝑏2 𝑠𝑘

○ 𝑓𝑘 is the k-th frequency (in Hz) 

○ 𝑠𝑘 is the corresponding spectral weight (e.g. amplitude 𝐴𝑘 or 
power spectrum 𝑃𝑘)



Higher-order moments

○ Spread - Standard deviation around the spectral centroid 𝜇

𝜎 =
σ
𝑘=𝑏1

𝑏2 (𝑓𝑘−𝜇)
2𝑠𝑘

σ
𝑘=𝑏1

𝑏2 𝑠𝑘

○ Kurtosis – (4th order moment) Measures flatness or non-Gaussianity of 

the spectrum around the centroid 𝜇

𝐾 =
σ
𝑘=𝑏1

𝑏2 (𝑓𝑘−𝜇)
4𝑠𝑘

𝜎4 σ𝑘=𝑏1
𝑏2 𝑠𝑘 k = pkurtosis(x)

https://it.mathworks.com/help/signal/ref/pkurtosis.html#d123e124825


Kurtosis Example

Image from pkurtosis @ Matlab



Spectral Entropy

○ Represents peak-ness of the 

spectrum

𝐻 =
− σ

𝑘=𝑏1

𝑏2 𝑠𝑘log 𝑠𝑘

log (𝑏2−𝑏1)

○ e.g. discriminate between 

music and speech

H = pentropy(x)

https://it.mathworks.com/help/signal/ref/pkurtosis.html#d123e124825


Take Home Messages 
○ Old-school pattern recognition on timeseries is about learning coefficients 

that describe properties of the time series 

● Autoregressive coefficients (time domain) 

● Fourier coefficient (frequency domain) 

○ Often linear methods 

● Autocorrelation reveals similitude of a signal with delayed versions of itself 

● Cross-correlation provides hints on time series similarity and how to align them 

○ Fourier analysis allows to identify recurring patterns and key frequencies in 

the signal (and represent this information through spectral descriptors)
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Next Lecture

Introduction to image processing (I)
○ Representing images and visual content
○ Intensity gradients and histograms
○ Filters
○ Spatial descriptors: SIFT
○ Spectral analysis in 2D

DAVIDE BACCIU - ISPR COURSE 39


	Diapositiva 1:  Introduction to Signal Processing 
	Diapositiva 2: Signals = Time series
	Diapositiva 3: Formalization
	Diapositiva 4: Goals
	Diapositiva 5: Key Methods
	Diapositiva 6: Mean and Autocovariance 
	Diapositiva 7: Mean and Autocovariance 
	Diapositiva 8: Autocorrelation
	Diapositiva 9: Autocorrelation Plot 
	Diapositiva 10: Cross-Correlation (Discrete) 
	Diapositiva 11: Cross-Correlation (Discrete) 
	Diapositiva 12: Cross-Correlation - Something already seen... 
	Diapositiva 13: Convolution - Graphically
	Diapositiva 15: Autoregressive Process
	Diapositiva 16: ARMA
	Diapositiva 17: Estimating Autoregressive Models 
	Diapositiva 18: Comparing Timeseries by AR
	Diapositiva 20: Spectral Analysis
	Diapositiva 21: Fourier Transform 
	Diapositiva 23: Representing Functions
	Diapositiva 24: Representing Functions in Complex Space
	Diapositiva 25: Representing Discrete Time series
	Diapositiva 26: Graphically
	Diapositiva 27: Discreet Fourier Transform 
	Diapositiva 28: Basic Spectral Quantities in DFT
	Diapositiva 29: DFT Power spectrum in use
	Diapositiva 30: DFT Power spectrum in use
	Diapositiva 31: DFT in Action 
	Diapositiva 32: Some less basic spectral descriptors
	Diapositiva 33: Spectral Centroid
	Diapositiva 35: Higher-order moments
	Diapositiva 36: Kurtosis Example
	Diapositiva 37: Spectral Entropy
	Diapositiva 38: Take Home Messages 
	Diapositiva 39: Next Lecture

