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Probabilistic and Causal Learning

o Bayesian Networks (Tuesday 4th, today!)
e Compact representation of joint probabilities
e Plate Notation
e Local Markov Property
e Ancestral Sampling

o d-separation, Markov blankets (Thursday 6th)
o Graphical Causal Models (Tuesday 11th)

o Structure Learning and Causal Discovery (Wednesday 12th)

I ———————————————————
DAVIDE BACCIU - ISPR COURSE 2




Representing Joint Distributions

o The main goal of probabilistic modeling is to define models able
to represent the joint distribution of a set of variables.

o Probabilistic models enable

e Sampling new instances
e Inferencing values of hidden variables
e Estimating the likelihood of a configuration
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Representing Joint Distributions

o Assume N discrete random variables with k distinct values.

o How many parameters in the joint probability distribution?

Yl Y2 Y3 P(Yl ) st Y?))

0 0 0 0.03
0 0 1 0.12 N
S—
0 1 0 0.31 k™ —1

1 1 1 0.04
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Representing Joint Distributions

o What if we compute the probability one variable at the time?

o We can exploit the chain rule to decompose the joint.

P(Yl’ Y2, Y3) —

P(Y1)P(Y, | Y1)P(Ys
P(Y,)P(Y; | Yy)P(Y,

Y1, Y5)
Y1, Y5)

P(Y3)P(Y, | Y3)P(Y; | Yy, Ys).




Representing Joint Distributions

o The order of the variables can be represented by directed graphs.

P(Y,)P(Y, | Y))P(Y5 | Y;,Y,)  P(Y{)P(Ys | Y))P(Y, | Yq,Y3) P(Y3)P(Y, | Y3)P(Y; | Y,,Y3)
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Representing Joint Distributions

o Decomposing the joint with the chain rule reduces
the number of parameters?

o Nol (4
P(Y,.¥5.Y5) = POP(G, [ Y)P(Ys | 11,1y

Y J] \
|

|
1 2 4

YNk - DK = kN -1




Marginal and Conditional Independence

o Two random variables X and Y are independent if knowledge
about X does not change the uncertainty about Y and vice versa

I(X,Y) & X 1Y < P(X,Y)=P(X|Y)P®Y)
= P(Y | X)P(X) = P(X)P(Y).




Representing Joint Distributions

o When variables are independent, we only need Nk parameters.

P(Y,Y,,Y3) = P(Y))P(Y, | Y1)P(Y; | Y, Y5)
= P(Y;)P(Y,)P(Y3)

\ J \ J \ J
| | |




Marginal and Conditional Independence

o Two random variables X and Y are conditionally independent
given Z if knowledge about X does not change the uncertainty
about Y and vice versa on the conditional distribution

I(X,Y|Z) — X1Y|Z < PX,Y|Z)=P(X|Y|2)PY | Z)
=P(Y| X | 2)P(X|2)
= P(X | 2)P(Y | 2).




Representing Joint Distributions

o Conditional independences reduce the number of parameters
o Yes! &
Y, LY, |Y,
— P(Y;,Y,,Y5) = P(Y)P(Y, | Y)P(Ys | Yy, Ys)
= {3 (Y; ?I\) Yy | Yy ’){) (Y3 | Y3)

1 2 2




Bayesian Network

o Directed Acyclic Graph (DAG) G = (V, )

o Nodes v € V represent random variables

P(Yy|Y3,Y3)
e Shaded = observed
P(YiYy) P|Ys) e Empty = un-observed

o Edges e € &£ describe the conditional independence

children of Y3 rEIatiOnSh i pS

Conditional Probability Tables (CPT) local to each node describe the probability
distribution given its parents

N
P, i) = | [ POt Ipatr)
=1
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Bayesian Networks

o Let L be the maximum number
of ingoing edges in a Bayes Net.

o Then, the number of parameters
is at most N-(k-1)*

/. o = The sparser the network, the

less “complex” the parameters.

@..

DAVIDE BACCIU - ISPR COURSE 13




Bayesian Networks

o Are these relations causal?

o In general no, a Bayesian
Network represent statistical
dependence relations.

/. o However, they might coincide
with causal dependence under
further assumptions.

@..
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Compact Representation of Bayes Nets

If the same dependencies are replicated over different variables, we
can compactly represent it by plate notation.

© —
P(C, h, . .

AN e &

The Naive Replication for Replication for
Bayes Classifier L attributes N data samples
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Full Plate Notation

o Boxes denote replication for a number of times

(" @ ) CT-[) denoted by the letter in the corner
< o
o Shaded nodes are observed variables
) o Empty nodes denote un-observed latent variables
___/® o Black seeds (optional) identify model parameters
o e 1 —> multinomial prior distribution
L @ e U — means of the C Gaussians
N ’\._C/
\ J e 0 - std of the C Gaussians

Gaussian Mixture Model
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Local Markov Property

Each node / random variable is conditionally

independent of all its non-descendants given a joint
state of its parents

Yy L Yinchw) |Yoaw) forallv eV

Party and Study are marginally independent

o Party L1 Study

However, local Markov property does not support
o Party 1 Study | Headache

o Tabs 1 Party

But Party and Tabs are independent given Headache
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Joint Probability Factorization

An application of Chain rule and Local Markov Property 1
1. Pick a topological ordering of nodes

2. Apply chain rule following the order

3. Use the conditional independence
assumptions

P(PA,S,H,T,C) =
P(PA) - P(S|PA) - P(H|S,PA) - P(T|H,S,PA) - P(C|T,H, S, PA)
= P(PA) - P(S) - P(H|S, PA) - P(T|H) - P(C|H)




(Ancestral) Sampling of a BN

A BN describes a generative process for observations

1. Pick a topological ordering of nodes

2.  Generate data by sampling from the local
conditional probabilities following this order

Generate i-th sample for each variable PA, S, H, T, C

1. pa; ~ P(PA)

S; ~ P(S)

hi ~ P(HlS — Si,PA — pai)

ti ~ P(TlH — hl)

¢i ~ P(C|H = h;)

SR N




Fundamental BN structures

There exist three fundamental substructures that determine the conditional
independence relationships in a Bayesian Network.

o Tail-to-Tail (Fork, “Common Cause”) . . .
o Head-to-Tail (Chain, “Causal Effect”) . . .
o Head-to-Head (Collider, “Common Effect”) .—’.‘—.
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Tail-to-Tail Connections

o Corresponds to
o P(Yy, Y3IY)P(Yy) = P(Y1[Yo)P(Y3|Y2)P(Y2)
o ° o IfY, isunobserved then Y; and Y5 are marginally
dependent
(x o
o IfY, is observed then Y; and Y; are conditionally

o ° independent
Y, L Ys|Y,

When Y, in observed is said to block the path from Y; to Y3
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Head-to-Tail Connections

o Corresponds to
P(Yy, Y3, Y3) = P(Y1)P(Y2|Y)P(Y5]|Y3)

— P(Y1|Y2)P(Y3|Y2)P(Y2)

o IfY, is unobserved then Y; and Y; are marginally

dependent Type equation here.
Y; 7,[ Y3

o IfY, is observed then Y; and Y; are conditionally

Observed Y, blocks _
independent

the path from Y; to Y;

Y, L Y31,
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Head-to-Head Connections

o Corresponds to
P(Yl) Yz, YB) — P(Yl)P(Y?))P(YZlYlJ YB)
o IfY, is observed then Y; and Y3 are conditionally
dependent
o Y1 +Y3|Y;
o IfY; isunobserved then Y; and Y5 are marginally

o ° independent
Y, LY,

If any Y, descendants is observed it unlocks the path
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Probabilistic and Causal Learning

o Bayesian Networks (Tuesday 4th)
o Reminder: no lecture tomorrow!

o Bayesian Networks (Thursday 6th, next!)
e d-separation
e Markov Property and Faithfulness
e Markov Blanket
e Introduction to Markov Random Fields

o Graphical Causal Models (Tuesday 11th)

o Structure Learning and Causal Discovery (Wednesday 12th)
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Probabilistic and Causal Learning

o Bayesian Networks (Tuesday 4th)
o Bayesian Networks (Thursday 6th, today!)

e d-separation

e Markov Property and Faithfulness

e Markov Blanket

e Introduction to Markov Random Fields

o Graphical Causal Models (Tuesday 11th)

o Structure Learning and Causal Discovery (Wednesday 12th)
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Bayesian Network

o Directed Acyclic Graph (DAG) G = (V, )

o Nodes v € V represent random variables

P(Yy|Y3,Y3)
e Shaded = observed
P(YiYy) P|Ys) e Empty = un-observed

o Edges e € &£ describe the conditional independence

children of Y3 rEIatiOnSh i pS

Conditional Probability Tables (CPT) local to each node describe the probability
distribution given its parents

N
P, i) = | [ POt Ipatr)
=1
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Fundamental BN structures

There exist three fundamental substructures that determine the conditional
independence relationships in a Bayesian Network.

o Tail-to-Tail (Fork, “Common Cause”) . . .
o Head-to-Tail (Chain, “Causal Effect”) . . .
o Head-to-Head (Collider, “Common Effect”) .—’.‘—.
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Blocked Path

Letr = (Y, © - > Y,) be an undirected path between Y, and Y,.
The path r is blocked by a set Z if one of the following holds:

o rcontains a fork (tail-to-tail) Y; < Y. — Y, such that Y € Z, or
o rcontains a chain (head-to-tail) Y; = Y. = Y, such that Y_€ Z, or

o rcontains a collider (head-to-head) Y; = Y, < Y| such that neither Y_nor its
descendants are in Z.
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d-Separation

Definition (d-separated path)

Letr =Y; .-+ <Y, beanundirected path between Y; and Y,, then r is d-
separated by Z if there exist at least one node Y. € Z for which path r is
blocked.
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d-Separation

Definition (d-separation)

Two nodes Y; and Y; in a BN G are said to be d-separated by Z c V (denoted by
Dsepg(Y;,Y;|Z) if and only if all undirected paths between Y; and Y; are d-

separated by Z

31
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Global Markov Property

o A Bayesian Network respects the Global Markov condition
whenever d-separations in the graph imply conditional
independence relations.

o Global and local Markov properties are equivalent.
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Markov Blanket

o The Markov Blanket Mb(Y) of a node Y is the
minimal set of vertices that shield the node
from the rest of the Bayesian Network.

o In a DAG, the Markov Blanket of Y contains
® |[ts parents Pa(Y)
® |ts children Ch(Y)

® Its children's parents Pa(Ch(Y))

o The behavior of a node can be completely

determined and predicted from the knowledge
of its Markov Blanket.

P(Y | Mb(Y),Z) = P(Y | Mb(Y)) vZ ¢ Mb(Y)
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Faithfulness Property

o A Bayesian Network is faithful whenever conditional
independence relations imply d-separations.

o While the global Markov Condition requires the graph to
represent only conditional independences, the Faithfulness
condition requires to represent all conditional independences.
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Faithfulness Property

o Faithfulness is fundamental to concisely represent joint
distributions.

o Intuitively, the more conditional independences we represent,
the less parameters we need to store in the model.
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Are Directed Models Enough?

o Bayesian Networks are used to model asymmetric dependencies

o What if we want to model symmetric dependencies?

e Bidirectional effects, e.g. spatial dependencies

e Need undirected approaches

Directed models cannot represent some (bidirectional) dependencies in the
distributions
What if we want to represent Y; 1 Y3|Y,,Y,?
What if we alsowant Y, L Y,|Y;,Y3?

°.° Cannot be done in BN! Need

undirected model
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Markov Random Fields

What is the undirected equivalent of d-separation in directed models?

/ hS

\ /
WA N N B A BIe

Again it is based on node sepa}étion, although it is_v;ay simpler!
o Node subsets A, B c V are conditionally independent given C c V\{4, B} if all
paths between nodes in A and B pass through at least one of the nodes in C

o The Markov Blanket of a node includes all and only its neighbors
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Joint Probability Factorization

What is the undirected equivalent of conditional probability factorization in
directed models?

o We seek a product of functions defined over a set of nodes associated with
some local property of the graph

o Markov blanket tells that nodes that are not neighbors are conditionally
independent given the remainder of the nodes

P(Xu, Xi|X\gwiy) = P(Xo| Xinw,) P (Xi [ X\ ,y)
o Factorization should be chosen in such a way that nodes X, and X; are not in
the same factor

What is a well-known graph structure that includes only nodes
that are pairwise connected?
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Cliques

Definition (Clique)

A subset of nodes C in graph G such that G contains an edge between all pair of nodes in C

Definition (Maximal Clique)

A clique C that cannot include any further node from the graph without ceasing to be a clique
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Maximal Cliqgue Factorization

Define X = X4,..., Xy as the RVs associated to the N nodes in the undirected
graph §

1
PX) = | w0
C

o X = RV associated with nodes in the maximal clique C
o YP(X,) - potential function over the maximal cliques C
o Z = partition function ensuring normalization

Z = ZHIP(XC)
X ¢

Partition function is the computational bottleneck of undirected modes:
e.g. O0(K") for N discrete RV with K distinct values
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From Directed To Undirected

Straightforward in some cases

B=0—=© - O = B——® - O

Requires a little bit of thinking for v-structures

e/ -

Moralization a.k.a. marrying of the parents




Next Lectures: Causal Learning

o Graphical Causal Models (Tuesday 11th)
e Causation and Correlation
e Causal Bayesian Networks
e Structural Causal Models
e Causal Inference

o Structure Learning and Causal Discovery (Wednesday 12th)
e Constraint-Based Methods (PC, FCI)
e Score-Based Methods (GES)
e Parametric Assumptions (LINGAM)
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