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○ Bayesian Networks (Tuesday 4th, today!)
● Compact representation of joint probabilities

● Plate Notation

● Local Markov Property

● Ancestral Sampling

○ d-separation, Markov blankets (Thursday 6th)

○ Graphical Causal Models (Tuesday 11th)

○ Structure Learning and Causal Discovery (Wednesday 12th)

Probabilistic and Causal Learning
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○ The main goal of probabilistic modeling is to define models able 

to represent the joint distribution of a set of variables.

○ Probabilistic models enable
● Sampling new instances

● Inferencing values of hidden variables

● Estimating the likelihood of a configuration

● ...

Representing Joint Distributions
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○ Assume N discrete random variables with k distinct values.

○ How many parameters in the joint probability distribution?

Representing Joint Distributions
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○ What if we compute the probability one variable at the time?

○ We can exploit the chain rule to decompose the joint.

Representing Joint Distributions
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○ The order of the variables can be represented by directed graphs.

Representing Joint Distributions

...
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○ Decomposing the joint with the chain rule reduces 

the number of parameters?

○ No! 

Representing Joint Distributions

421
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○ Two random variables X and Y are independent if knowledge 

about X does not change the uncertainty about Y and vice versa

Marginal and Conditional Independence
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○ When variables are independent, we only need Nk parameters.

Representing Joint Distributions

1 1 1



DAVIDE BACCIU - ISPR COURSE 10

○ Two random variables X and Y are conditionally independent

given Z if knowledge about X does not change the uncertainty 

about Y and vice versa on the conditional distribution

Marginal and Conditional Independence
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○ Conditional independences reduce the number of parameters

○ Yes! 

Representing Joint Distributions

1 2 2



Bayesian Network
○ Directed Acyclic Graph (DAG) 𝒢 = (𝒱, ℰ)

○ Nodes 𝑣 ∈ 𝒱 represent random variables 

● Shaded ⇒ observed 

● Empty ⇒ un-observed 

○ Edges 𝑒 ∈ ℰ describe the conditional independence 
relationships
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Conditional Probability Tables (CPT) local to each node describe the probability 
distribution given its parents

𝑃(𝑌1, . . . , 𝑌𝑁) = ෑ

𝑖=1

𝑁

𝑃(𝑌𝑖 |𝑝𝑎(𝑌𝑖))

○ Directed Acyclic Graph (DAG) 𝒢 = (𝒱, ℰ)

○ Nodes 𝑣 ∈ 𝒱 represent random variables 

● Shaded ⇒ observed 

● Empty ⇒ un-observed 

○ Edges 𝑒 ∈ ℰ describe the conditional independence 
relationships
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○ Let L be the maximum number 

of ingoing edges in a Bayes Net.

○ Then, the number of parameters 

is at most N·(k-1)L

○ ⇒ The sparser the network, the 

less “complex” the parameters.

Bayesian Networks
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○ Are these relations causal?

○ In general no, a Bayesian 

Network represent statistical 

dependence relations.

○ However, they might coincide 

with causal dependence under 

further assumptions.

Bayesian Networks



Compact Representation of Bayes Nets
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If the same dependencies are replicated over different variables, we 
can compactly represent it by plate notation.

The Naive 
Bayes Classifier

Replication for 
𝐿 attributes

Replication for 
𝑁 data samples 

𝑃 𝐶, 𝑌1, … , 𝑌𝑁

= 𝑃(𝐶) ෑ

𝑖=1

𝑁

𝑃(𝑌𝑖|𝐶)



Full Plate Notation
○ Boxes denote replication for a number of times 

denoted by the letter in the corner 

○ Shaded nodes are observed variables 

○ Empty nodes denote un-observed latent variables 

○ Black seeds (optional) identify model parameters 

● 𝜋 → multinomial prior distribution 

● µ → means of the 𝐶 Gaussians 

● 𝜎 → std of the 𝐶 Gaussians 
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Gaussian Mixture Model 



Local Markov Property

𝑃𝑎𝑟𝑡𝑦 and 𝑆𝑡𝑢𝑑𝑦 are marginally independent 
○ 𝑃𝑎𝑟𝑡𝑦 ⊥ 𝑆𝑡𝑢𝑑𝑦
However, local Markov property does not support 
○ 𝑃𝑎𝑟𝑡𝑦 ⊥ 𝑆𝑡𝑢𝑑𝑦 | 𝐻𝑒𝑎𝑑𝑎𝑐ℎ𝑒
○ 𝑇𝑎𝑏𝑠 ⊥ 𝑃𝑎𝑟𝑡𝑦

But 𝑃𝑎𝑟𝑡𝑦 and 𝑇𝑎𝑏𝑠 are independent given 𝐻𝑒𝑎𝑑𝑎𝑐ℎ𝑒
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Definition (Local Markov property)

Each node / random variable is conditionally 
independent of all its non-descendants given a joint 
state of its parents 

𝑌𝑣 ⊥ 𝑌𝑉\ch 𝑣 |𝑌𝑝𝑎 𝑣 for all 𝑣 ∈ 𝑉



Joint Probability Factorization
An application of Chain rule and Local Markov Property
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𝑃 𝑃𝐴, 𝑆, 𝐻, 𝑇, 𝐶 =
𝑃 𝑃𝐴 · 𝑃 𝑆 𝑃𝐴 · 𝑃 𝐻 𝑆, 𝑃𝐴 · 𝑃 𝑇 𝐻, 𝑆, 𝑃𝐴 · 𝑃 𝐶 𝑇, 𝐻, 𝑆, 𝑃𝐴
= 𝑃 𝑃𝐴 · 𝑃 𝑆 · 𝑃 𝐻 𝑆, 𝑃𝐴 · 𝑃 𝑇 𝐻 · 𝑃 𝐶 𝐻

1. Pick a topological ordering of nodes 

2. Apply chain rule following the order 

3. Use the conditional independence 
assumptions



(Ancestral) Sampling of a BN
A BN describes a generative process for observations 
1. Pick a topological ordering of nodes 
2. Generate data by sampling from the local 

conditional probabilities following this order 
Generate 𝑖-th sample for each variable 𝑃𝐴, 𝑆, 𝐻, 𝑇, 𝐶
1. 𝑝𝑎𝑖 ∼ 𝑃 𝑃𝐴
2. 𝑠𝑖 ∼ 𝑃 𝑆
3. ℎ𝑖 ∼ 𝑃 𝐻 𝑆 = 𝑠𝑖 , 𝑃𝐴 = 𝑝𝑎𝑖

4. 𝑡𝑖 ∼ 𝑃 𝑇 𝐻 = ℎ𝑖

5. 𝑐𝑖 ∼ 𝑃 𝐶 𝐻 = ℎ𝑖
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There exist three fundamental substructures that determine the conditional 
independence relationships in a Bayesian Network.

○ Tail-to-Tail (Fork, “Common Cause”)

○ Head-to-Tail (Chain, “Causal Effect”)

○ Head-to-Head (Collider, “Common Effect”)

Fundamental BN structures
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Tail-to-Tail Connections
○ Corresponds to 

𝑃 𝑌1, 𝑌3 𝑌2 𝑃(𝑌2) = 𝑃 𝑌1 𝑌2 𝑃 𝑌3 𝑌2 𝑃(𝑌2)

○ If 𝑌2 is unobserved then 𝑌1 and 𝑌3 are marginally 
dependent 

𝑌1 𝑌3

○ If 𝑌2 is observed then 𝑌1 and 𝑌3 are conditionally 
independent 

𝑌1 ⊥ 𝑌3|𝑌2
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When 𝑌2 in observed is said to block the path from 𝑌1 to 𝑌3



Head-to-Tail Connections
○ Corresponds to 

P(Y1, Y2, Y3) = P Y1 𝑃 Y2 Y1 P Y3 Y2

= P Y1 Y2 P Y3 Y2 P(Y2)

○ If 𝑌2 is unobserved then 𝑌1 and 𝑌3 are marginally 
dependent Type equation here.

𝑌1 𝑌3

○ If 𝑌2 is observed then 𝑌1 and 𝑌3 are conditionally 
independent 

𝑌1 ⊥ 𝑌3|𝑌2
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Observed 𝑌2 blocks 

the path from 𝑌1 to 𝑌3



𝑌2

Head-to-Head Connections
○ Corresponds to 

𝑃 𝑌1, 𝑌2, 𝑌3 = 𝑃 𝑌1 𝑃 𝑌3 𝑃 𝑌2 𝑌1, 𝑌3

○ If 𝑌2 is observed then 𝑌1 and 𝑌3 are conditionally 
dependent 

𝑌1 ⊥ 𝑌3|𝑌2

○ If 𝑌2 is unobserved then 𝑌1 and 𝑌3 are marginally 
independent 

𝑌1 ⊥ 𝑌3
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If any 𝒀𝟐 descendants is observed it unlocks the path
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○ Bayesian Networks (Tuesday 4th)

○ Reminder: no lecture tomorrow!

○ Bayesian Networks (Thursday 6th, next!)
● d-separation
● Markov Property and Faithfulness
● Markov Blanket
● Introduction to Markov Random Fields

○ Graphical Causal Models (Tuesday 11th)

○ Structure Learning and Causal Discovery (Wednesday 12th)

Probabilistic and Causal Learning
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○ Bayesian Networks (Tuesday 4th)

○ Bayesian Networks (Thursday 6th, today!)
● d-separation

● Markov Property and Faithfulness

● Markov Blanket

● Introduction to Markov Random Fields

○ Graphical Causal Models (Tuesday 11th)

○ Structure Learning and Causal Discovery (Wednesday 12th)

Probabilistic and Causal Learning



Bayesian Network
○ Directed Acyclic Graph (DAG) 𝒢 = (𝒱, ℰ)

○ Nodes 𝑣 ∈ 𝒱 represent random variables 

● Shaded ⇒ observed 

● Empty ⇒ un-observed 

○ Edges 𝑒 ∈ ℰ describe the conditional independence 
relationships
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Conditional Probability Tables (CPT) local to each node describe the probability 
distribution given its parents

𝑃(𝑌1, . . . , 𝑌𝑁) = ෑ

𝑖=1

𝑁

𝑃(𝑌𝑖 |𝑝𝑎(𝑌𝑖))

○ Directed Acyclic Graph (DAG) 𝒢 = (𝒱, ℰ)

○ Nodes 𝑣 ∈ 𝒱 represent random variables 

● Shaded ⇒ observed 

● Empty ⇒ un-observed 

○ Edges 𝑒 ∈ ℰ describe the conditional independence 
relationships



There exist three fundamental substructures that determine the conditional 
independence relationships in a Bayesian Network.

○ Tail-to-Tail (Fork, “Common Cause”)

○ Head-to-Tail (Chain, “Causal Effect”)

○ Head-to-Head (Collider, “Common Effect”)

Fundamental BN structures
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Let r = (Y1 ⋯ Y2) be an undirected path between Y1 and Y2.

The path r is blocked by a set Z if one of the following holds:

○ r contains a fork (tail-to-tail) Yi ← Yc → Yj such that Yc ∈ Z, or

○ r contains a chain (head-to-tail) Yi → Yc → Yj such that Yc ∈ Z, or

○ r contains a collider (head-to-head) Yi → Yc ← Yj such that neither Yc nor its 
descendants are in Z.

Blocked Path
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d-Separation
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Definition (d-separated path)

Let 𝑟 = 𝑌1 · · · 𝑌2 be an undirected path between 𝑌1 and 𝑌2, then 𝑟 is d-
separated by 𝑍 if there exist at least one node 𝑌𝑐 ∈ 𝑍 for which path 𝑟 is 
blocked.



d-Separation
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Definition (d-separation)

Two nodes 𝑌𝑖 and 𝑌𝑗 in a BN 𝒢 are said to be d-separated by 𝑍 ⊂ 𝒱 (denoted by 
𝐷𝑠𝑒𝑝𝒢(𝑌𝑖 , 𝑌𝑗|𝑍) if and only if all undirected paths between 𝑌𝑖 and 𝑌𝑗 are d-
separated by 𝑍



Global Markov Property
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○ A Bayesian Network respects the Global Markov condition 

whenever d-separations in the graph imply conditional 

independence relations.

○ Global and local Markov properties are equivalent.



Markov Blanket
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○ The Markov Blanket Mb(Y) of a node Y is the 
minimal set of vertices that shield the node
from the rest of the Bayesian Network.

○ In a DAG, the Markov Blanket of Y contains
● Its parents Pa(Y)
● Its children Ch(Y)
● Its children's parents Pa(Ch(Y))

○ The behavior of a node can be completely 
determined and predicted from the knowledge 
of its Markov Blanket.



Faithfulness Property
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○ A Bayesian Network is faithful whenever conditional 

independence relations imply d-separations.

○ While the global Markov Condition requires the graph to 

represent only conditional independences, the Faithfulness 

condition requires to represent all conditional independences.



Faithfulness Property
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○ Faithfulness is fundamental to concisely represent joint 

distributions.

○ Intuitively, the more conditional independences we represent, 

the less parameters we need to store in the model.



Are Directed Models Enough?
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○ Bayesian Networks are used to model asymmetric dependencies

○ What if we want to model symmetric dependencies? 

● Bidirectional effects, e.g. spatial dependencies 

● Need undirected approaches 

Directed models cannot represent some (bidirectional) dependencies in the 
distributions

What if we want to represent 𝑌1 ⊥ 𝑌3|𝑌2, 𝑌4? 
What if we also want 𝑌2 ⊥ 𝑌4|𝑌1, 𝑌3? 

Cannot be done in BN! Need

undirected model



Markov Random Fields
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Again it is based on node separation, although it is way simpler! 
○ Node subsets 𝐴, 𝐵 ⊂ 𝒱 are conditionally independent given 𝐶 ⊂ 𝒱\{𝐴, 𝐵} if all 

paths between nodes in 𝐴 and 𝐵 pass through at least one of the nodes in 𝐶
○ The Markov Blanket of a node includes all and only its neighbors 

What is the undirected equivalent of d-separation in directed models?

𝐴 ⊥ 𝐵|𝐶



Joint Probability Factorization
What is the undirected equivalent of conditional probability factorization in 
directed models? 

○ We seek a product of functions defined over a set of nodes associated with 
some local property of the graph 

○ Markov blanket tells that nodes that are not neighbors are conditionally 
independent given the remainder of the nodes 

𝑃 𝑋𝑣 , 𝑋𝑖 𝑋𝒱\{𝑣,𝑖} = 𝑃 𝑋𝑣 𝑋𝒱\{𝑣,𝑖} 𝑃 𝑋𝑖 𝑋𝒱\{𝑣,𝑖}

○ Factorization should be chosen in such a way that nodes 𝑋𝑣 and 𝑋𝑖 are not in 
the same factor
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What is a well-known graph structure that includes only nodes

that are pairwise connected?



Cliques
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Definition (Clique)

A subset of nodes 𝐶 in graph 𝒢 such that 𝒢 contains an edge between all pair of nodes in 𝐶

Definition (Maximal Clique)

A clique 𝐶 that cannot include any further node from the graph without ceasing to be a clique



Maximal Clique Factorization
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Define 𝑿 = 𝑋1, . . . , 𝑋𝑁 as the RVs associated to the 𝑁 nodes in the undirected 
graph 𝒢

𝑃 𝑿 =
1

𝑍
ෑ

𝐶

𝜓 𝑿𝐶

○ 𝑿𝐶 → RV associated with nodes in the maximal clique 𝐶
○ 𝜓 𝑿𝐶 → potential function over the maximal cliques 𝐶
○ 𝑍 → partition function ensuring normalization 

𝑍 = ෍

𝑿

ෑ

𝐶

𝜓 𝑿𝐶

Partition function is the computational bottleneck of undirected modes: 

e.g. 𝑂 𝐾𝑁 for 𝑁 discrete RV with 𝐾 distinct values



From Directed To Undirected
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Straightforward in some cases

Requires a little bit of thinking for v-structures 

Moralization a.k.a. marrying of the parents 
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○ Graphical Causal Models (Tuesday 11th)
● Causation and Correlation

● Causal Bayesian Networks

● Structural Causal Models

● Causal Inference

○ Structure Learning and Causal Discovery (Wednesday 12th)
● Constraint-Based Methods (PC, FCI)

● Score-Based Methods (GES)

● Parametric Assumptions (LiNGAM)

Next Lectures: Causal Learning
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