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Lecture Plan (Part I, II, I1l)

o A probabilistic model for sequences: Hidden Markov Models (HMM:s)

o Exact inference on a chain with observed and unobserved variables

e Sum-product message passing example
e Max-product message passing example

o Using inference to learn: the Expectation-Maximization algorithm for
HMMs

o Graphical models with varying structure: Dynamic Bayesian Networks
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Part |

Introduction to HMM



Sequences

P(Yel Yea)

O @ D@ @

o Asequence y is a collection of observations y; where t represent the
position of the element according to a (complete) order (e.g. time)

o Reference population is a set of i.i.d sequences yl, . ..,yN

o Different sequences yi,...,y" generally have different lengths
TL,..., TN

I ———————————————————
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Markov Chain

First-Order Markov Chain

Directed graphical model for sequences s.t. element X; only depends on its predecessor in the
sequence

P(X¢[ Xt.1)

®- @

o Joint probability factorizes as

T
POX) = P(Xy,. Xr) = PO | [ POXe 1%eo0)
t=2
o P(X;|X;_1) is the transition distribution; P(X;) is the prior distribution

o General form: an L-th order Markov chain is such that X; depends on L predecessors
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Observed Markov Chains

Can we use a Markov chain to model the relationship between
observed elements in a sequence?

P(YeYes)

O DD B O

Of course yes, but..

OO

Does it make sense to represent P(is|cat)?
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Hidden Markov Model (HMM) (1)

Stochastic process where transition dynamics is disentangled from observations

generated by the process

| |

State transition is an unobserved (hidden/latent) process characterized by the

hidden state variables S;
e S; are often discrete with valuein {1,...,C}

e Multinomial state transition and prior probability (stationarity assumption)
Ajj = P(S¢ = i[St—1 =J) and m; = P(5; = Q)
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Hidden Markov Model (HMM) (1)

Stochastic process where transition dynamics is disentangled from observations

generated by the process

| |

Observations are generated by the emission distribution
bi(ye) = P(Yy =y [Se = 1)
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HMM Joint Probability Factorization

Discrete-state HMMs are parameterized

by & = (m, A, B) and the finite number
of hidden states C > > QY>>
o State transition and prior distribution A

and i

o Emission distribution B (or its
parameters)

P(Y = y) =ZP(Y=y,S=s)

T
= 2 {P(Sl = s1)P(Y1 = 1151 = 51) HP(St = S¢|Se—1 = Se—1)P(Ye = Y| Se = St)}

S1,-oST t=2
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HMMs as a Recursive Model

A graphical framework describing how contextual information is recursively
encoded by both probabilistic and neural models

o Indicates that the hidden state S; at time t is

dependent on context information from

e The previous timestep s 1

2

e Two timesteps earlier s~

1 © When applying the recursive model to a sequence
(unfolding), it generates the corresponding
directed graphical model
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HMMs as Automata

[b 0.8] [b0.1]

Can be generalized to transducers
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3 Notable Inference Problems

Definition (Smoothing)

Given a model 6 and an observed sequence y, determine the distribution of the hidden state
attimet P(S;|Y =y,0)

Definition (Learning)

Given a dataset of N observed sequences D = {yl, . .,yN} and the number of hidden states C,
find the parameters 7, A and B that maximize the probability of model 8 = {m, A, B} having
generated the sequences in D

Definition (Optimal State Assignment)

L2 T =5 L g o N

Given a model 8 and an observed sequence y, find an optimal state assignment
s = Sq,..., St for the hidden Markov chain
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Part ||

Forward-Backward Algorithm and parameter estimation



Forward-Backward Algorithm

Smoothing - How do we determine the posterior P(S; = i|y)?

Exploit factorization

P(St — lly) X P(St — l:y) — P(St — ir Yl:t' Yt+1:T)
=P(S: =5L,Y1.0)P(Yeqr.r|Se =10) = “t(i)ﬁt(i)

a-term computed as part of forward recursion (a4 (i) = b;(y;)m;)

C
@c(i) = P(Se = Y1) = bi() ) A1 ()
=1

f-term computed as part of backward recursion (87 (i) = 1, Vi)

C
Bt(J) = P(Yey17|Se =J) = z bi(}’t+1),3t+1(i)‘4ij
i=1
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Sum-Product Message Passing

The Forward-Backward algorithm is an example of a sum-product message
passing algorithm

#Q(Xn—l) ﬂa(Xn) 1“,8 (Xn #B(Xn+1)

O —O—O—O——@

A general approach to efficiently perform exact inference in graphical models
e ;= l,(X;,) — forward message

.ua(Xn) — Z !(Xnil»xnlﬁa(){n—ll
ae (i) Xn-1 bi (Ve)Aij ae—1(J)

C
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Sum-Product Message Passing

The Forward-Backward algorithm is an example of a sum-product message
passing algorithm

A general approach to efficiently perform exact inference in graphical models
e ;= U,(X;,) — forward message
e B =pg(X,) — backward message
B () = D 0 Xr) 15 (Knen)
Be)  Xna1, DiOe)Aij  Brya(D)
Tict
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Learning in HMM

Learning HMM parameters 8 = (m, A, B) by maximum likelihood

N N [ Ty, )
@ =tog| [Parmioy=10g| [4 > pesmpgisy | [Pestiseoperisy |
n=1 n=1 \SIL,N,STT}" t=2 )

o How can we deal with the unobserved random variables S{* and the nasty
summation in the log ?

o Expectation-Maximization algorithm
e Maximization of the complete likelihood L.(8)

e Completed with indicator variables

n =1 if n—th chain is in state i at time ¢
“ 0 otherwise
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Complete HMM Likelihood

Introduce indicator variables in L(0) together with model parameters 8 = (1, A, B)
N (cC

£.(6) =1ogP(Y,210) =log| [{| [[P(s: = DP(rIs; = 17

n=1\i=1

l l l lp(St = 0S¢ =J')Z?"Za‘1>fP(Yt"|St = {)%ti
t=2 1i,j=

N
- z ZlelogT[l +2 2 ZtlZ(t 1)j lOgAL] +Ezzu logb (yt
n=1

=1 =21,j=1

DAVIDE BACCIU - ISPR COURSE 18




Expectation-Maximization

A 2-step iterative algorithm for the maximization of complete likelihood L.(0)
w.r.t. model parameters 6

E-Step: Given the current estimate of the model parameters 89,
compute

Q¥*V(6]0W)) = E,, oo [log P(Y, 216)]

M-Step: Find the new estimate of the model parameters
(k+1) — (k+1) (k)
7, arg max Q (616Y)

lterate 2 steps until | £.(8)**1 — L.(6)¥| < € (or stop if maximum number of
iterations is reached)
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EM Graphically

|
' g

Ql(k) Q(k—l—l)




E-Step (I)

Compute the expectation of the complete log-likelihood w.r.t indicator variables z/}
assuming (estimated) parameters 8% = (%, A¥, B¥) fixed at iteration k (i.e. constants)

Q(k+1)(9|9(k)) - EZ|Y,9<’<) [log P(Y, Z|0)]

Expectation w.r.t a (discrete) random variable z is

E.[Z] = ZZ -P(Z = 2)

VA

To compute the conditional expectation Q(t+1)(9|8(t)) for the complete HMM log-
likelihood we need to estimate

Eqyowlzel = P(Se = i]y)
EZ|Y,9(’<) [ZtiZ(t—l)j] = P(S¢ = 1,51 =Jl|Y)
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E-Step (II)

We know how to compute the posteriors by the forward-backward algorithm!
a; (i) p: (1)
]C':1 a:()B:()

C N iy T ae—1(J)Aijbi(ye) B (V)
il T PN e Y AT

ve(i) = P(Se = ilY) =
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M-Step (I)

Solve the optimization problem
6k+1) = arg max Qk+1) (9|6
6

using the information computed at the E-Step (the posteriors).
How?

As usual
Q" (9169)
00

where 8 = (m, A, B) are now variables.

Attention

LVa T R

Parameters can be distributions = need to preserve sum-to-one constraints
(Lagrange Multipliers) ]
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M-Step (I1)

State distributions

Y= 12 zm 1) C Yn=vr (@
dan TT;

A;i =
! Z —2Yee1() N

Emission distribution (multinomial)

g=1 anlyp(i)5(yt = h)
1Zt 1}/15 (l)

where 6 (-) is the indicator function for emission symbols h

Byi =
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HMM in PR - Regime Detection

2-State HMM (SPX2.r) vs Realized Vol (SPX2.rv)
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HMM in PR - Regime Detection

3-State HMM (SPX2.r) vs Realized Vol (SPX2.rv)
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HMM in PR - Regime Detection

5-State HMM (SPX2.r) vs Realized Vol (SPX2.rv)
[ ]
o ®

0.0-

V (Volatility)
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Viterbi Algorithm and advanced models



Decoding Problem

o Find the optimal hidden state assignment s = s7,..., sy for an observed
sequence y given a trained HMM

o No unique interpretation of the problem

e Identify the single hidden states s; that maximize the posterior

S = argiga?(CP(St = i|Y)

e Find the most likely joint hidden state assignment

s*=argmaxP(Y,S =s)
S

o The last problem is addressed by the Viterbi algorithm
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Viterbi Algorithm

An efficient dynamic programming algorithm based on a backward-forward recursion

An example of a max-product message passing algorithm

Recursive backward term

€(S¢—1) = n}?XP(YHSt = 5¢) P(S¢ = 5¢1Se—1 = s¢—1)€(S¢e),

Root optimal state

s; = argmax P(Y;|S; = s) P(5; = s)e(s).
S

Recursive forward optimal state

s; = argmax P(Y;|S; = s) P(S; = s|S;_1 = s{_1)€e(s).
S
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Input-Output Hidden Markov Models

SRS 554

o Translate an input sequence into an output sequence (transduction)

o State transition and emissions depend on input observations (input-driven)

o Recursive model highlights analogy with recurrent neural networks
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Bidirectional Input-driven Models

Remove causality assumption that current observation does not depend on the

future and homogeneity assumption that an state transition is not dependent on
the position in the sequence

o Structure and function of a region of DNA and

protein sequences may depend on upstream and
downstream information

o Hidden state transition distribution changes with
the amino-acid sequence being fed in input
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Coupled HMM

Describing interacting processes whose observations follow different dynamics
while the underlying generative processes are interlaced
'I||.||| | ||l|| |‘||' 'I‘IH

i
ol k. e e e

1 L R
" ||| | |U|\I|1' ”\" L | "

respiratory signal
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Dynamic Bayesian Networks

HMMs are a specific case of a class of directed models that represent dynamic
processes and data with changing connectivity template

4 =1 )\ =2 )

O O, ()
3T >
@\ <\

N A J
Hierarchical HMM Structure changing information

Dynamic Bayesian Networks (DBN) s

Graphical models whose structure changes to represent evolution across time and/or |
between different samples

@,@
o

=3 g o

F
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HMM in Matlab

An official implementation by Mathworks available as a set of inference and

learning functions

Estimate distributions (based on initial guess)

tg = rand (N,N);
tg=tg./repmat (sum(tg,2),[1N]);

[ test, eest ] = hmmtrain (seq, tg, eg);
Estimate posterior states

pstates = hmmdecode( seq, test, eest )

Estimate Viterbi states

vstates = hmmviterbi ( seq, test, eest)

Sample a sequence from the model

[seq, states]=hmmgenerate (len,test, eest)
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HMM in Python

o hmmlearn - The official scikit-like implementation of HMM
e 3 classes depending on emission type: MultinomialHMM, GaussianHMM, and GMMHMM

from hmmlearn . hmm import GaussianHMM

# Create an HMM and fit it to data X

model = GaussianHMM ( n_components = 4 , covariance_type = , N_iter =1000 ) . fit (X)
# Decode the optimal sequence of internal hidden state ( Viterbi )

hidden_states = model . predict ( X )

# Generate new samples ( visible, hidden)

X1, Z1 = model . sample (500)

o hmms 0.1 - A scalable implementation for both discrete and continuous-time
HMMs
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Take Home Messages

o Hidden Markov Models

® Hidden states used to realize an unobserved generative process for sequential data
® A mixture model where selection of the next component is regulated by the transition distribution

® Hidden states summarize (cluster) information on subsequences in the data

O Inference in HMMS
® Forward-backward - Hidden state posterior estimation
® Expectation-Maximization - HMM parameter learning
® Viterbi - Most likely hidden state sequence

O Dynamic Bayesian Networks
® A graphical model whose structure changes to reflect information with variable size and

connectivity patterns
® Suitable for modeling structured data (sequences, tree, ...)
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Next Lecture/Lectures

Markov Random Fields

O

O
O
O

Learning in undirected graphical models
Introduction to message passing algorithms
Conditional random fields

Pattern recognition applications
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