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Markov Random Fields (MFRs)
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○ Undirected graph 𝒢 = (𝒱, ℰ) (a.k.a. Markov Networks) 

○ Nodes 𝑣 ∈ 𝒱 represent random variables 𝑋𝑣
● Shaded ⇒ observed 

● Empty ⇒ un-observed 

○ Edges 𝑒 ∈ ℰ describe bi-directional 

dependencies between variables (constraints)

Graph often coherent with data structure



Part I
Intro do MRFs: parameterization and inference



Likelihood Factorization
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Define 𝑿 = 𝑋1, . . . , 𝑋𝑁 as the RVs associated to the 𝑁 nodes in the undirected 
graph 𝒢

𝑃(𝑿) =
1

𝑍
ෑ

𝐶

𝜓𝐶(𝑿𝐶)

○ 𝑿𝐶 → RV associated with nodes in the maximal clique 𝐶

○ 𝜓𝐶(𝑿𝐶) → potential function for clique 𝐶

○ 𝑍 → partition function ensuring normalization 

𝑍 =෍

𝑿

ෑ

𝐶

𝜓𝐶(𝑿𝐶)



Potential Functions 
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○ Potential functions 𝜓𝐶(𝑿𝐶) are not probabilities! 

○ Express which configurations of the local variables are preferred 

○ If we restrict to strictly positive potential functions, the Hammersley-Clifford 
theorem provides guarantees on the distribution that can be represented by 
the clique factorization

Definition (Boltzmann distribution)

A convenient and widely used strictly positive representation of the potential 
functions is

𝜓𝐶(𝑿𝐶) = exp{−𝐸(𝑿𝐶)}

where 𝐸(𝑿𝐶) is the energy function



Factorizing Potential Functions 
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In general, we will assume to work with MRF where the partition functions factorize as 

𝜓𝐶(𝑿𝐶) = exp ෍

𝑘

𝜃𝐶𝑘𝑓𝐶𝑘 (𝑿𝐶)

where

○ 𝑓𝐶𝑘 (or 𝑓𝑘) are feature functions or sufficient statistics to compute the potential of 
clique 𝐶

○ 𝜃𝐶𝑘 ∈ ℝ are parameters 

○ 𝑘 indexes over the available feature functions 

Undirected graphical models do not express the factorization of potentials into feature 
functions ⇒ factor graphs 



Factor Graphs
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○ RV are again circular nodes
○ Factors 𝑓𝐶𝑘 are denoted as square nodes
○ Edges connect a factor to the RV

𝜓(𝑋1, 𝑋2, 𝑋3) = 𝑓(𝑋1, 𝑋2, 𝑋3)
𝜓(𝑋1, 𝑋2, 𝑋3) = 𝑓𝑎 𝑋1, 𝑋2, 𝑋3 𝑓𝑏(𝑋2, 𝑋3)



Sum-Product Inference
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○ A powerful class of exact inference algorithms (Belief Propagation)

○ Use factor graph representation to provide a unique algorithm for 
directed/undirected models

○ Inference is feasible for chain and tree structures
● Forward-backward algorithm in HMMs
● Computationally more impacting in MRF due to partition function

○ Inference in general MRF
● Restructure the graph to obtain a tree-like structure to perform message passing 

(junction tree algorithm, Chow-Liu)
● Approximated inference (variational, sampling)

Constrain the MRF to obtain tractable classes of undirected models



Restricting to Conditional Probabilities
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In ML a part of the random variables can be assumed to be always 
observable ⇒ input data 
○ 𝑿𝑘 - observable inputs in the factor 𝑘
○ 𝒀𝑘 - hidden (or partly observable) RV 
○ 𝑓𝑘(𝑿𝑘 , 𝒀𝑘 ) - factor feature function 

Under this assumption we can directly model the conditional distribution 

𝑃(𝒀|𝑿) =
1

𝑍(𝑿)
ෑ

𝑘

exp{𝜃𝑘𝑓𝑘(𝑿𝑘 , 𝒀𝑘)}

where 𝑿 is the joint input that is always available 

𝑍(𝑿) =෍

𝒚

ෑ

𝑘

exp{𝜃𝑘𝑓𝑘(𝑿𝑘 , 𝒀𝑘 = 𝒚𝑘)}



Conditional Random Field (CRF)
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Constrained MRF models representing input-conditional distributions

𝑃(𝒀|𝑿, 𝜃) =
1

𝑍 𝑿
exp(𝜃1𝑓1(𝑋𝑖 , 𝑌𝑖) + 𝜃2𝑓2(𝑌𝑖 , 𝑌𝑗) + 𝜃3𝑓(𝑋𝑗 , 𝑌𝑗)+. . . )



Feature functions

○ Make noisy binary pixel 𝑋𝑖 and its 
clean version 𝑌𝑖 have same sign 

𝑓𝑖(𝑋𝑖 , 𝑌𝑖) = 𝑋𝑖𝑌𝑖
○ Constrain nearby interpretations to 

be similar 

𝑓𝑖𝑗(𝑌𝑖 , 𝑌𝑗) = 𝑌𝑖𝑌𝑗
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What does a feature function 𝑓𝑘(𝑿𝑘 , 𝒀𝑘) do?

○ Represent couplings or constraints between random variables

○ Often very simple, such as linear functions



Discriminative Learning in Graphical Models
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𝑿 is always observable input while 𝒀 can be unobserved 

○ Let us simplify the problem by considering to have a single 𝑌 and multiple 𝑿

○ Let us assume that we can observe the 𝑌𝑛 corresponding to 𝑿𝑛 for some 
samples 𝑛

○ We can use this information to fit 𝜃 in 𝑃(𝑌|𝑿, 𝜃)

○ What does 𝑃(𝑌|𝑿′, 𝜃) do for a new 𝑿′ sample without observable 𝑌′? 

The model above describes the Logistic Regression/Classifier: a 
discriminative version of Naive Bayes

Performs a prediction (e.g. classification if 𝑌 is multinomial) 



A CRF for Sequences
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The undirected and discriminative equivalent of an HMM

Is this all about substituting emission probability with feature 𝑓𝑒 and 
transition distribution with 𝑓𝑡? 



A Generalization of HMM
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Modeling relative influence of suffix and prefix symbols

𝑃 𝒀 𝑿, 𝜃 =
1

𝑍 𝑿
ෑ

𝑡

exp{𝜃𝑝𝑓𝑝(𝑋𝑡−1, 𝑌𝑡) + 𝜃𝑐𝑓𝑐(𝑋𝑡, 𝑌𝑡) +

𝜃𝑠𝑓𝑠(𝑋𝑡+1, 𝑌𝑡) + 𝜃𝑡𝑓𝑡(𝑌𝑡−1, 𝑌𝑡)}



Generic LCRF Formulation
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Modeling explicitly input influence on transition

General Linear CRF Likelihood: 

𝑃(𝒀|𝑿, 𝜃) =
1

𝑍 𝑿
ෑ

𝑡

ෑ

𝑘

exp(𝜃𝑘𝑓𝑘(𝑌𝑡 , 𝑌𝑡−1, 𝑿𝑡))

Use indicator variables in 𝑓𝑘 definition to include or disregard the influence of 
specific RV, e.g.  1𝑌𝑡=𝑖 1𝑋𝑡=𝑜



Posterior Inference in LCRF

DAVIDE BACCIU - ISPR COURSE 16

Is there an equivalent of the smoothing problem in LCRF? 

○ Solved by (exact) forward-backward inference

○ Sum-product message passing on the LCRF factor graph
𝑃(𝑌𝑡 , 𝑌𝑡−1|𝑿) ∝ 𝛼𝑡−1 𝑌𝑡−1 𝜓𝑡 𝑌𝑡 , 𝑌𝑡−1, 𝑋𝑡 𝛽𝑡(𝑌𝑡)

Clique weighting
𝜓𝑡 𝑌𝑡 , 𝑌𝑡−1, 𝑋𝑡 =
exp{𝜃𝑒𝑓𝑒(𝑋𝑡 , 𝑌𝑡) + 𝜃𝑡𝑓𝑡(𝑌𝑡−1, 𝑌𝑡)}

Forward Message

𝛼𝑡(𝑖) =෍

𝑗

𝜓𝑡 𝑖, 𝑗, 𝑋𝑡 𝛼𝑡−1(𝑗)

Backward Message

𝛽𝑡(𝑗) =෍

𝑖

𝜓𝑡+1 𝑖, 𝑗, 𝑋𝑡+1 𝛽𝑡+1(𝑖)

Yes: 𝑃(𝑌𝑡 , 𝑌𝑡 − 1|𝑿)



Other Inference Problems
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○ Max-product inference can be performed as in the Viterbi algorithm for 
HMM

○ The computationally expensive part is the computation of exponential 
summation in 𝑍(𝑿) term

● The forward-backward algorithm computes it efficiently as normalization term of 
𝑃(𝑌𝑡 , 𝑌𝑡−1|𝑿)

○ Exact inference in CRF other than chain-like is likely to be computationally 
impractical

● Markov Chain Monte Carlo (sample 𝑦 rather than estimate 𝑃(𝑦))

● Variational Belief Propagation (reduce to message passing on trees)



Part II
Learning MRFs and Example Applications



Training LCRF
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Maximum (conditional) log-likelihood 

max
𝜃

ℒ(𝜃) = max
𝜃

෍

𝑛=1

𝑛

log 𝑃(𝒚𝑛|𝒙𝑛, 𝜃)

Substituting LCRF conditional formulation 

ℒ(𝜃) =෍

𝑛

෍

𝑡

෍

𝑘

𝜃𝑘𝑓𝑘(𝑌𝑡
𝑛, 𝑌𝑡−1

𝑛 , 𝑿𝑡
𝑛) −෍

𝑛

log 𝑍(𝑿𝑛)



Training LCRF
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Maximum (conditional) log-likelihood 

max
𝜃

ℒ(𝜃) = max
𝜃

෍

𝑛=1

𝑛

log 𝑃(𝒚𝑛|𝒙𝑛, 𝜃)

Substituting LCRF conditional formulation 

ℒ(𝜃) =෍

𝑛

෍

𝑡

෍

𝑘

𝜃𝑘𝑓𝑘(𝑌𝑡
𝑛, 𝑌𝑡−1

𝑛 , 𝑿𝑡
𝑛) −෍

𝑛

log 𝑍(𝑿𝑛) −෍

𝑘

𝜃𝑘
2

2𝜎2

Penalized with a regularization term, e.g. based on 𝜃 2



Optimizing the Likelihood

DAVIDE BACCIU - ISPR COURSE 21

○ Typically ℒ(𝜃) cannot be maximized in closed form

○ Use partial derivatives
𝜕ℒ(𝜃)

𝜕𝜃𝑘
=෍

𝑛,𝑡

𝑓𝑘(𝑌𝑡
𝑛, 𝑌𝑡−1

𝑛 , 𝑿𝑡
𝑛) −෍

𝑛, 𝑡

෍

𝑦,𝑦′

𝑓𝑘(𝑦, 𝑦′, 𝑿𝑡
𝑛)𝑃(𝑦, 𝑦′|𝑿𝑛) −

𝜃𝑘
𝜎2

○ First term is 𝔼[𝑓𝑘] under the empirical distribution (i.e. with 𝑦, 𝑦′ clamped)

○ Second term is the 𝔼[𝑓𝑘] under model distribution

○ When gradient is zero these are equal (apart for regularization)



Stochastic Gradient Descent
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In practice we can learn the 𝜃 parameters by SGD (or variants)

𝜃𝑚 = 𝜃𝑚−1 − 𝜈𝑚∇ℒ𝑛(𝜃
𝑚−1)

where

∇ℒ𝑛𝑘 𝜃 =෍

𝑡

𝑓𝑘(𝑌𝑡
𝑛, 𝑌𝑡−1

𝑛 , 𝑿𝑡
𝑛) −෍

𝑡

෍

𝑦,𝑦′

𝑓𝑘(𝑦, 𝑦′, 𝑿𝑡
𝑛)𝑃(𝑦, 𝑦′|𝑿𝑛) −

𝜃𝑘
𝑁𝜎2

and 𝑃(𝑦, 𝑦′|𝑿𝑛) is estimated by sum-product inference



Engineering Features
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Linear CRF have found wide applications

○ Text processing: POS-tagging, semantic role identification

○ Bioinformatics: sequence alignment, protein structure prediction

Feature functions have often the form 𝑓𝑘 𝑿𝑘 , 𝒀𝑘 = 1𝒚𝑘=ෝ𝒚𝑘𝑞(𝑿𝑐)

○ 𝑓𝑘 is non-zero only for a specific output configuration ෝ𝒚𝑘
○ 𝑓𝑘 then depends only on 𝑿𝑘 (i.e. features are not shared by classes)

Observation functions 𝑞(𝑿𝑐): word begins with capital, ends with -ing, ...



MRF/CRF in Vision 
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○ Define bi-dimensional lattice on the image 
● Regular grid, patches, superpixels, segments 

○ Background/Foreground segmentation 
● 𝑋𝑖 Observable label 

● 𝑌𝑖 Region annotation as background/foreground 

○ Impose constraints 
● 𝑓𝑆(𝑌𝑖 , 𝑋𝑖) ⇒ Cost of disregarding available annotation 

● 𝑓𝐻(𝑌𝑖 , 𝑌𝑗) ≈ 𝑦𝑖 ≠ 𝑦𝑗 𝑤𝑖𝑗 ⇒ Label affinity constraint 

weighted by region similarity 𝑤𝑖𝑗



Background Segmentation 
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Background Segmentation 
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Image Completion
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N. Komodakis. Image Completion Using Global Optimization. CVPR 2006 



Image Completion
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N. Komodakis. Image Completion Using Global Optimization. CVPR 2006 



Semantic Segmentation 
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J. Yao, S. Fidler and R. Urtasun, "Describing the scene as a whole: Joint object detection, scene classification and semantic

segmentation," ICCV 2012 



Semantic Segmentation 
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J. Yao, S. Fidler and R. Urtasun, "Describing the scene as a whole: Joint object detection, scene classification and semantic

segmentation," ICCV 2012 



Integrating Prior Information
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Roig et al "Conditional Random Fields for multi-camera object detection," ICCV 2011 



MRF Software

○ CRFsuite - Fast implementation of linear/chain CRFs for NLP applications 

(native C++; Scikit-like package python-crfsuite)

○ PyStruct - Python CRF package including 2D lattices, graph structures and 

several inference algorithms

○ pgmpy - Python library for graphical models (includes CRF, MRF and more)

○ Pyro - Ubers’ own PyTorch provide an implementation of Deep CRF

○ UGM - Matlab library for Markov Random Fields

○ CRF implementations (in particular linear) are present in major DL libraries 

(e.g. Tensorflow, PyTorch)

DAVIDE BACCIU - ISPR COURSE 32



A Python Example
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from pgmpy . models import MarkovModel 

from pgmpy . factors . discrete import DiscreteFactor 

import numpy as np 

from pgmpy . inference import BeliefPropagation 

. . . 

MM=MarkovModel ( ) ; 

# Add edges ( and nodes if not existent ) 

MM. add_edges_from ( [ ( ’f1’, ’f2’ ), ( ’f2’, ’f3’ ), ( ’o1’, ’f1’ ), ( ’o2’, ’f2’ ), ( ’o3’, ’f3’ ) ] ) 

#Generate transition feature 

transition =np . array ( [ 10, 90, 90, 10 ] ) ; 

#Generate corresponding factor 

factorH1 = DiscreteFactor ( [ ’f1’, ’f2’ ], cardinality = [ 2, 2 ], values = transition ) 

#Add it to the model 

MM. add _factors ( factorH1 ) 

#Solve smoothing by belief propagation ( i.e. estimate hidden RV) 

belief_propagation = BeliefPropagation (MM) 

ymax = belief_propagation . map_query ( variables = [ ’f1’, ’f2’, ’f3’ ] , \

evidence = { ’o1’ : toVal ( ’class1’ ), ’o2’ : toVal ( ’class1’ ), ’o3’ : toVal ( ’class2’ ) } ) 

...



Take Home Messages 

○ Markov Random Fields 
● Undirected graphical models 

● Allow to express constraints between RV without needing to use probabilities 

● Topology follows data structure/relations and allow embedding prior information 

○ Conditional Random Fields 
● Constrained MRF learning discriminative posteriors 

● Feature functions to model constraints (often simple hand-coded feature detectors) 

● Parameters allow to linearly combine features 

○ CRF/MRF are often used as final refinement (segmentation, POS tagging, ...) 
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Next 3 Lectures
Bayesian Learning and Approximated Inference

○ Bayesian latent variable models 

○ Variational inference

○ Latent Dirichlet Allocation 
● Possibly the simplest Bayesian latent variable model 

● Variational Expectation-Maximization 

● Applications to machine vision

○ Sampling-based approximations

● Sampling for Latent Dirichlet Allocation
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