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Markov Random Fields (MFRs)

o Undirected graph G = (V, £) (a.k.a. Markov Networks)

o Nodes v € V represent random variables X,

e Shaded = observed
e Empty = un-observed

o Edges e € &€ describe bi-directional
dependencies between variables (constraints)

Graph often coherent with data structure
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Intro do MRFs: parameterization and inference



Likelihood Factorization

Define X = X{,..., Xy as the RVs associated to the N nodes in the undirected
graph §

1
P(X) = El_[lpC(XC)
C

o X — RV associated with nodes in the maximal clique C
o Wc-(Xc) — potential function for clique C

o Z — partition function ensuring normalization

2= | [wetxo)
X C




Potential Functions

o Potential functions ¥ .(X,) are not probabilities!
o Express which configurations of the local variables are preferred

o If we restrict to strictly positive potential functions, the Hammersley-Clifford
theorem provides guarantees on the distribution that can be represented by

the clique factorization

Definition (Boltzmann distribution)

A convenient and widely used strictly positive representation of the potential

functions is
Ye(Xc) = exp{—E(X¢)}
where E(X ) is the energy function
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Factorizing Potential Functions

In general, we will assume to work with MRF where the partition functions factorize as

Ye(Xc) = exp (Z Ockfck (Xc)>
k

where

o fck (or fi) are feature functions or sufficient statistics to compute the potential of
cliqgue C

o Ok € Rare parameters
o k indexes over the available feature functions

Undirected graphical models do not express the factorization of potentials into feature
functions = factor graphs
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Factor Graphs

o RV are again circular nodes
o Factors f., are denoted as square nodes
o Edges connect a factor to the RV

% X OO OO
(%) (%)
VX1, Xp, X3) = f(X1, X2, X3)
Y(X1, X2, X3) = fo (X1, X2, X3) fp (X2, X3)
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Sum-Product Inference

o A powerful class of exact inference algorithms (Belief Propagation)

o Use factor graph representation to provide a unique algorithm for
directed/undirected models

o Inference is feasible for chain and tree structures
e Forward-backward algorithm in HMMs
e Computationally more impacting in MRF due to partition function

o Inference in general MRF

e Restructure the graph to obtain a tree-like structure to perform message passing
(junction tree algorithm, Chow-Liu)
e Approximated inference (variational, sampling)

Constrain the MRF to obtain tractable classes of undirected models

DAVIDE BACCIU - ISPR COURSE 8




Restricting to Conditional Probabilities

In ML a part of the random variables can be assumed to be always

observable = input data

o Xj - observable inputs in the factor k
o Yy - hidden (or partly observable) RV
o [ (X, Yy ) -factor feature function

Under this assumption we can directly model the conditional distribution
1
P(Y|X) = —1_[ 7, X, Y
(Y1X) 7(X) ) exp{O fr (X, Yi)}
where X is the joint input that is always available

200 =) | [exptonfeXio i =y}
y k

I ———————————————————
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Conditional Random Field (CRF)

Constrained MRF models representing input-conditional distributions

T 1777 e

. N N
: fy f3

P(Y|X,0) = exp(01/1(Xi,Yi) + 0.12(Y;,Y) + 031 (X;,Y)+...)

Z(X)




Feature functions

What does a feature function f (X, Y) do?
o Represent couplings or constraints between random variables

o Often very simple, such as linear functions

o Make noisy binary pixel X; and its
clean version Y; have same sign
fiXu YD) = XY,
o Constrain nearby interpretations to
be similar
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Discriminative Learning in Graphical Models

X is always observable input while Y can be unobserved

O

O

Let us simplify the problem by considering to have a single Y and multiple X

Let us assume that we can observe the Y™ corresponding to X™ for some
samplesn
We can use this information to fit @ in P(Y|X, 0)

What does P(Y|X’, 8) do for a new X’ sample without observable Y'?
Performs a prediction (e.g. classification if Y is multinomial)

The model above describes the Logistic Regression/Classifier: a
discriminative version of Naive Bayes
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A CRF for Sequences

The undirected and discriminative equivalent of an HMM

S

Is this all about substituting emission probability with feature f, and
transition distribution with f;?
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A Generalization of HMM

Modeling relative influence of suffix and prefix symbols

1
PCYIX,0) = 7o | | exp(6pfy (Koot Y0 + 6cfeCXe Yo) +

Osfs(Xer1, V) + 0 fe (Yiq, Y1)}




Generic LCRF Formulation

Modeling explicitly input influence on transition
f

Y

>

General Linear CRF Likelihood:

PV 1X,0) = 5o | [ [exp@ficre veos %
t k

Use indicator variables in f;, definition to include or disregard the influence of
specificRV, e.g. Iy —; Iy, —,
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Posterior Inference in LCRF

Is there an equivalent of the smoothing problem in LCRF? Yes: P(Y;, Y, _ {|X)

o Solved by (exact) forward-backward inference
o Sum-product message passing on the LCRF factor graph
P(Ye, Ye-1|X) < g (Y)W (Ye, Yeoq, Xe) Be (V)

Clique weighting Forward Message

Ve (Ye, Vi1, Xp) = : .. :
eXp{Hefi(Xt, Ye) +0cfe (Y1, Vo) ar (1) = let(l’]'xt)at—l ()

Backward Message

Be) = ) Wera (i Xer)Beaa ()
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Other Inference Problems

o Max-product inference can be performed as in the Viterbi algorithm for
HMM

o The computationally expensive part is the computation of exponential
summation in Z(X) term

e The forward-backward algorithm computes it efficiently as normalization term of
P(Y:,Yi-11X)

o Exactinference in CRF other than chain-like is likely to be computationally
impractical
e Markov Chain Monte Carlo (sample y rather than estimate P(y))

e Variational Belief Propagation (reduce to message passing on trees)
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Learning MRFs and Example Applications



Training LCRF

Maximum (conditional) log-likelihood

n
max L(O) = méixz log P(y"|x", 8)

n=1
Substituting LCRF conditional formulation

LO)= ) ) D OufilW YL XD = ) logZ(X™)
n t Kk n
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Training LCRF

Maximum (conditional) log-likelihood

n
mHaXL(H) = meaxz log P(y"™|x™, 0)

n=1
Substituting LCRF conditional formulation

' 1 62
LOY=Y Y Oufel Y XD — Y logZ(X™) — )
n t k n k

Penalized with a regularization term, e.g. based on ||8||?
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Optimizing the Likelihood

o Typically L(6) cannot be maximized in closed form

o Use partial derivatives
aL(H) n yn n I yn nyn Hk
S0 = 2B YELKD = ) ) R0y XDPOLYIXY ~ o
n,t

n, tyyrs
o First termis [E[f;] under the empirical distribution (i.e. with y, y’ clamped)

o Second term is the E[f,] under model distribution

o When gradient is zero these are equal (apart for regularization)

f;
. @i . 2
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Stochastic Gradient Descent

In practice we can learn the 8 parameters by SGD (or variants)
om =9gm1t —y VL (6™ 1)
where

/ ’ Qk
VLw(0) = ) [V VELXE) = ) Y [0y XDP,YIX™) = 25
t t yy!
and P(y,y'|X™) is estimated by sum-product inference
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Engineering Features

Linear CRF have found wide applications

o Text processing: POS-tagging, semantic role identification

o Bioinformatics: sequence alignment, protein structure prediction
Feature functions have often the form f, (Xy,Yy) = 1, —5, q(X,)

o fi is non-zero only for a specific output configuration y;,

o fi then depends only on X, (i.e. features are not shared by classes)

Observation functions q(X.): word begins with capital, ends with -ing, ...
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MRF/CRF in Vision

o Define bi-dimensional lattice on the image

e Regular grid, patches, superpixels, segments

o Background/Foreground segmentation

e X; Observable label
e Y; Region annotation as background/foreground

o Impose constraints
e fs(V;,X;) = Cost of disregarding available annotation i i

o fu(Y,Y) = [yi * Yj ]Wij = Label affinity constraint / g’@
,‘ | @l w Iy
weighted by region similarity w;; = ; ‘ s
i 4
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Background Segmentation
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Background Segmentation




Image Completlon

N. Komodakis. Image Completlon Using Global Optimization. CVPR 2006
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Image Completion

— e = F —

Global Optimization. CVPR 2006

N. Komodakis.

Image Completion Using
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Semantic Segmentation

Imdnor stieetl ekl

S

e TS Comm i hunis waan

segmentation," ICCV 2012
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Semantic Segmentation

Il building
B erass
B tree
B cov
B sheep
- sky
. aeropl.
B vaer
B face
B
BB bicycle
B fower

'\f'“x:'—’ i ) ;‘ ; S
-- B sign
Il bid
B book
e il.
. B road

(a) image (b) groundtruth (c) indep. tasks Dz, y. 2 (e) full model
J. Yao, S. Fidler and R. Urtasun, "Describing the scene as a whole: Joint object detection, scene classification and semantic
segmentation," ICCV 2012
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Integrating Prior Information

top view

camera 1 camera 2 camera N

Roig et al "Conditional Random Fields for multi-camera object detection,” ICCV 2011
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MRF Software

©O O O O

CRFsuite - Fast implementation of linear/chain CRFs for NLP applications
(native C++; Scikit-like package python-crfsuite)

PyStruct - Python CRF package including 2D lattices, graph structures and
several inference algorithms

pgmpy - Python library for graphical models (includes CRF, MRF and more)
Pyro - Ubers’ own PyTorch provide an implementation of Deep CRF

UGM - Matlab library for Markov Random Fields

CRF implementations (in particular linear) are present in major DL libraries
(e.g. Tensorflow, PyTorch)
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A Python Example

from pgmpy . models import MarkovModel

from pgmpy . factors . discrete import DiscreteFactor
import numpy as np

from pgmpy . inference import BeliefPropagation

i\/iM:MarkovModeI ();
# Add edges ( and nodes if not existent )
MM. add_edges_from ([ (1, 27), (727, 7137), (o1, 117), (o2, 127), ('03,7137) 1)

#Generate transition feature

transition =np . array ([ 10, 90, 90, 10]) ;

#Generate corresponding factor

factorH1 = DiscreteFactor ([ 17/, ], cardinality = [ 2, 2 ], values = transition )
#Add it to the model

MM. add _factors ( factorH1 )

#Solve smoothing by belief propagation (i.e. estimate hidden RV)
belief_propagation = BeliefPropagation (MM)

ymax = belief_propagation . map_query ( variables =[ 117, 2, 1.\

evidence = { - toval ( ), : toval ( ), : toval ( )})
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Take Home Messages

o Markov Random Fields
® Undirected graphical models
® Allow to express constraints between RV without needing to use probabilities
® Topology follows data structure/relations and allow embedding prior information

o Conditional Random Fields
® Constrained MRF learning discriminative posteriors
® Feature functions to model constraints (often simple hand-coded feature detectors)
® Parameters allow to linearly combine features

O CRF/MRF are often used as final refinement (segmentation, POS tagging, ...)
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Next 3 Lectures

Bayesian Learning and Approximated Inference

O

O

O

Bayesian latent variable models
Variational inference

Latent Dirichlet Allocation

e Possibly the simplest Bayesian latent variable model
e Variational Expectation-Maximization

e Applications to machine vision

Sampling-based approximations

e Sampling for Latent Dirichlet Allocation
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