Intro to Machine Learning with Keras

Antonio Carta – antonio.carta@unipi.it

Original slides by: **Federico Errica**, Researcher @ NEC Lab Europe

Website: http://pages.di.unipi.it/errica
Lecture Outline

- Keras 101 (TensorFlow 2.0 backend)
- Split your data 101
- **Learn via examples:**
 - Linear Model / Multi-Layer Perceptron
 - Neural Autoencoders for anomaly detection
 - Convolutional Neural Networks for image classification
 - Recurrent Networks for time-series prediction
About the Lab

- The code of the exercises will remain publicly available at https://github.com/diningphil/Intro_Keras

- If you have doubts, please interrupt me! I’ll do my best to answer

- Acknowledgments: Francesco Crecchi and Daniele Castellana

- Do try this at home ;)

In theory, theory and practice are the same. In practice, they are not.

(supposedly) Jan L. A. van de Snepscheut
TensorFlow 2.0

- A Machine Learning framework by Google
 - 2015 → over 100M downloads in 2020

- Production vs Prototyping
 - Static optimization for faster training/inference
 - Eager execution in TF 2.0
 - details later
 - Can be quite complex to learn at first
 - Change of coding paradigm
 - Less intuitive than PyTorch
Tensorboard
Interactive visualization

- Training logs
 - Train/val/test
- Model’s graph
- Project embeddings in 2D
- Histograms of weights, biases
- Images, audio and text

https://www.tensorflow.org/tensorboard
Keras 101
Credit goes to F. Crecchi

- Minimalist, highly-modular neural network library written in python
- TensorFlow backend
- Easy and fast prototyping
 - User-friendly
 - Modular
 - Pre-built layers, optimizers, etc..
 - Easy-extensibility
 - Also good for doing research!

- We will rely on TensorFlow 2.0
Keras and TensorFlow 2.0

- Keras merged into TF 2.0 now
 - `tf.keras`
 - Used in our Lab
 - Supported in Colab!

- We’ll cover the very basics

- Quickstart for experts
It’s poll time!

Is anyone NOT familiar with NumPy + tensor indexing?
Tensors

- Generalization of the concept of vectors and matrices to higher dimensional spaces
- When using Keras, it is fundamental to know what tensor shapes you are working with!
Indexing and Broadcasting

- Each dimension of a tensor can be indexed → sub-tensor
 - Usual square bracket notation: my_tensor[:, 10, :2:5]
 - You can filter on the basis of boolean arrays
 - my_tensor[:, bool_filter, :]

- Broadcasting allows you to forget about replicating data across dimensions
 - e.g., elem-wise multiplication between 100x10x32 and 100x1x32 tensors
 - Always check the shape of your tensors
Data-Flow Graph

- Model for **parallel computing**

- Benefits:
 - Parallel/distributed execution
 - Portability
 - **Auto-differentiation (!)**
 - **Clear separation** model and logic

- Graphs can be static or dynamic
 - Lazy vs eager execution
Auto-differentiation!

\[e = (a+b) \times (b+1) \]

\[
\begin{align*}
 c &= a + b \\
 d &= b + 1 \\
 e &= c \times d
\end{align*}
\]
Useful (Sub-)Packages

```
import tensorflow as tf
```

- **Datasets** → `tf.keras.datasets`
 - MNIST → `tf.keras.datasets.mnist`
- **Data creation/management** → `tf.data`
 - Dataset utilities → `tf.data.Dataset`
- **Layers** → `tf.keras.layers`
- **Loss functions** → `tf.keras.losses`
- **Metrics** → `tf.keras.metrics`
- **Optimizers** → `tf.keras.optimizers`
- **Regularizers** → `tf.keras.regularizers`
- **Tensorboard** → `tf.keras.callbacks`
- **Save/Load** → `tf.keras.callbacks`
Wait! I want to use a GPU!

import tensorflow as tf

try:
 # Specify a valid GPU device
 with tf.device('/device:GPU:0'):
 # "with" ensures that GPU resources are freed
 a = tf.constant([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
 b = tf.constant([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]])
 c = tf.matmul(a, b)
except RuntimeError as e:
 print(e)
Three API Styles

- **Sequential Model** (70+% of use cases)
 - Dead simple!
 - Only for single-input, single output, sequential layer stacks

- **Functional API** (95% of use cases)
 - Functions of functions!
 - Multi-input multi-output arbitrary graph topologies

- **Model subclassing**
 - Maximum flexibility!
import keras
from keras import layers

Sequential
model = keras.Sequential()
model.add(layers.Dense(20, activation='relu', input_shape=(10,)))
model.add(layers.Dense(20, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))

Functional
inputs = keras.Input(shape=(10,))
x = layers.Dense(20, activation='relu')(inputs)
x = layers.Dense(20, activation='relu')(x)
outputs = layers.Dense(10, activation='softmax')(x)
model = keras.Model(inputs, outputs)
Model subclassing

class MyModel(keras.Model):
 def __init__(self):
 super(MyModel, self).__init__()
 self.dense1 = layers.Dense(20, activation='relu')
 self.dense2 = layers.Dense(20, activation='relu')
 self.dense3 = layers.Dense(10, activation='softmax')

 def call(self, inputs):
 x = self.dense1(inputs)
 x = self.dense2(x)
 return self.dense3(x)

model = MyModel()
model.fit(x, y, epochs=10, batch_size=32)
Remember:
Use the right tool (API) for the right job!
Split your data 101

DATASET

TRAIN | VALIDATION | TEST

Train the model (80% of the data) | Model Selection (10% of the data) | Model Assessment (10% of the data)

Called **Hold-Out** Technique
Model Selection

- Process that finds the “best” hyper-parameters configuration for your model using the VALIDATION set
- “Best” according to some performance metric
- Two possible ways to do that:
 - **Grid Search**: Define possible values for each hyper-parameter and try all possible configurations
 - **Random Search**: fix range of value for each hyper-parameters and try several random configurations.
Golden Rule (a MUST)

Never

ever

EVER

(do a PhD)

USE THE TEST SET FOR MODEL SELECTION

THE TEST SET IS USED ONLY ONCE!
YOU CANNOT REPEAT THE EXPERIMENT
IF YOU “DO NOT LIKE” THE TEST RESULTS!
Seriously..

1) That makes the difference between making your boss 😒 (when things do not work “as expected” in production) or 😊

2) Bringing biased results to the table does not help anyone

3) The test set is the “oracle” of your model. You do not want to kill the oracle because you don’t like the answer.

4) Once you have your answer....
More complex splits

- **External** K-fold Cross Validation
 - For Model **Assessment**

- **Internal** K-fold Cross Validation
 - For Model **Selection**

- **Internal** Hold-out train/validation split
 - For Model **Selection**
Shall we start training our machine? ;)

Hands-on!
Our data: MNIST

- ML “Hello World” problem
- Labeled handwritten digits dataset
- **Goal**: obtain better and better performance on the task with models of increasing complexity
Suggestions for the Exercises

Play around with:
- Models: switch from a linear model to a deep feedforward network. Then try a CNN
- Optimizer: experiment with adaptive optimizers (Adam, RMSProp)
- Callbacks: try to add some additional callbacks, like learning rate schedulers, model checkpoint, early stoppings...
- Grid search: explore different grid sizes, different hyperparameter. Plot the results

○ NOTICE: if you run a large number of configurations, this may take a lot of time.
Our data: Membrane

- Used for Image Segmentation
- **Goal**: train a Convolutional Network to do image segmentation!
References

Keras Documentation:

1. https://www.tensorflow.org/api_docs/python/tf/keras
2. https://keras.io/guides/

Again: We will use the Keras library inside TensorFlow 2.0.

Keras Tutorials: https://www.tensorflow.org/guide/keras

Colab: https://colab.research.google.com/
Let's open a Notebook / Colab

Just type `jupyter notebook` in your terminal
(with the environment activated)

and create a Python3 notebook using the “New” button,
or open one of the notebooks in the repo

- **Interactive** execution of Python code
- **Alternative**: open the Github Lessons in Colab
 https://github.com/diningphil/Intro_Keras
10-minute break?

Upcoming: Coding Lab Practice

Questions?