Attention-based architectures

INTELLIGENT SYSTEMS FOR PATTERN RECOGNITION (ISPR)

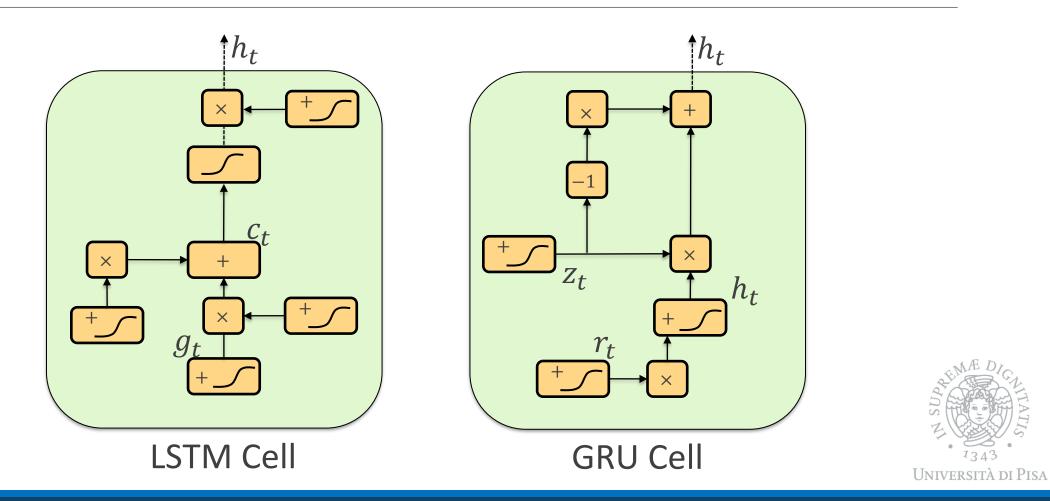
DAVIDE BACCIU – DIPARTIMENTO DI INFORMATICA - UNIVERSITA' DI PISA

DAVIDE.BACCIU@UNIPI.IT

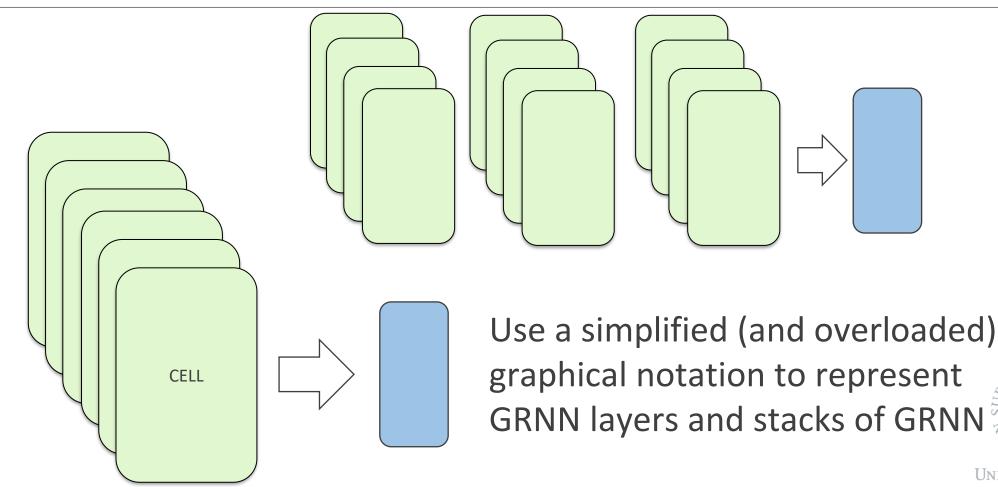
Lecture Outline

- Neural attention for structured/compound data
 - Sequence-to-sequence paradigm
 - Cross-attention
 - Self-attention and transformers
 - Attention in vision tasks

Gated RNN Refresher



Graphical Notation for Compositionality



UNIVERSITÀ DI PISA

Dealining with Compound Data

- GRNN are excellent to handle size/topology varying data in input
 - How can we handle size/topology varying outputs?
 - Sequence-to-sequence
- Structured data is compound information
 - Efficient processing needs the ability to focus on certain parts of such information
 - Attention mechanism

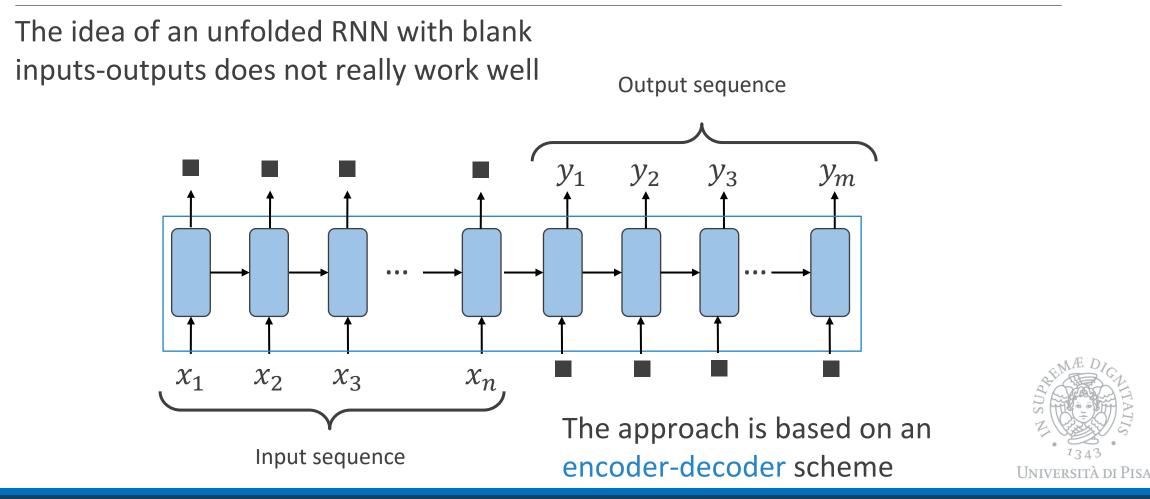
Sequence-to-sequence

Sequence Transduction

- Input and output are both sequences
- They may have different lengths
- Example: machine translation

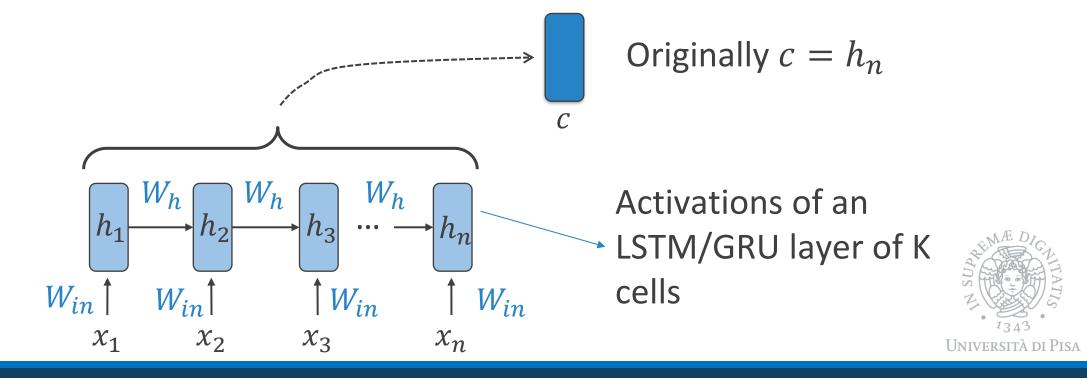
How do we model the context here?

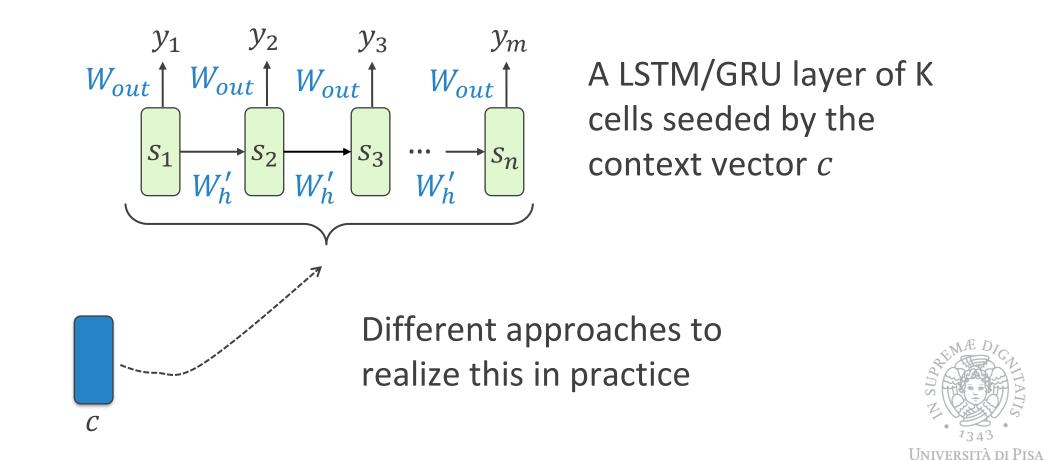
Learning to Output Variable Length Sequences

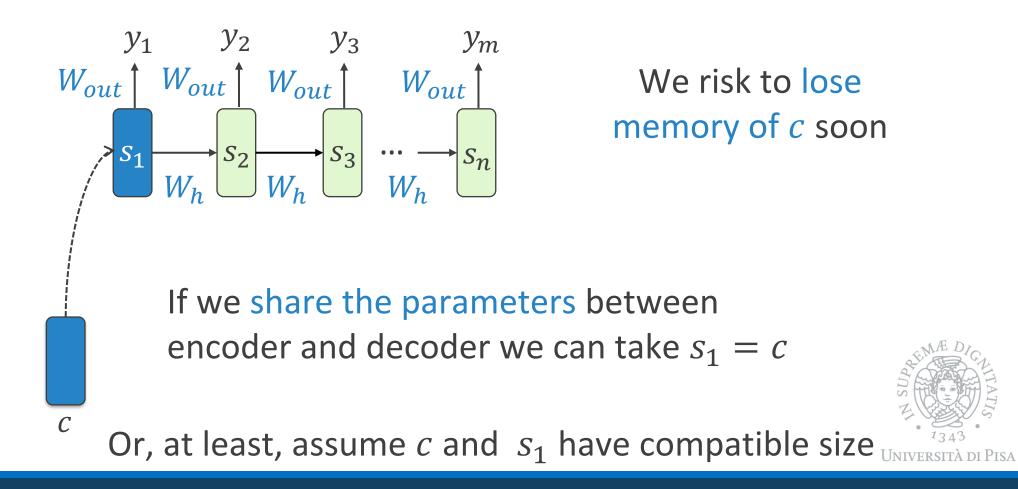


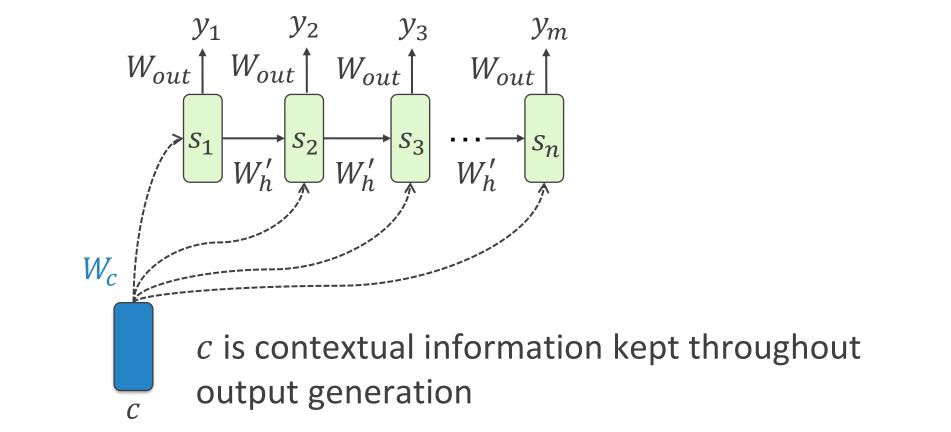
Encoder

Produce a compressed and fixed length representation c of all the input sequence x_1, \ldots, x_n

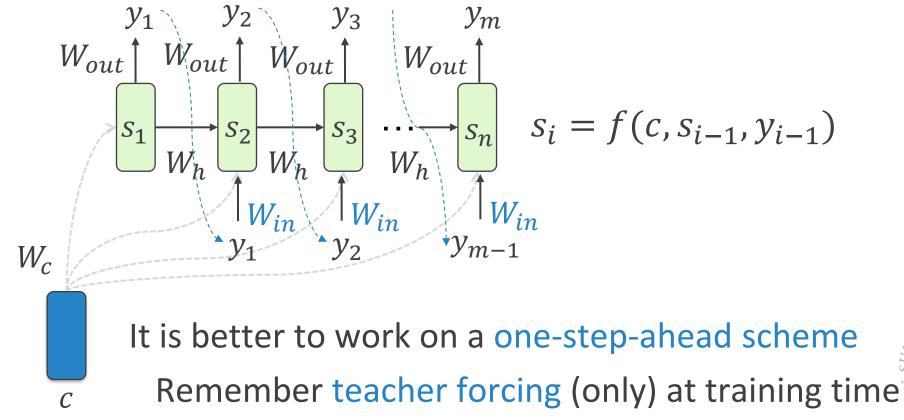








DAVIDE BACCIU - ISPR COURSE

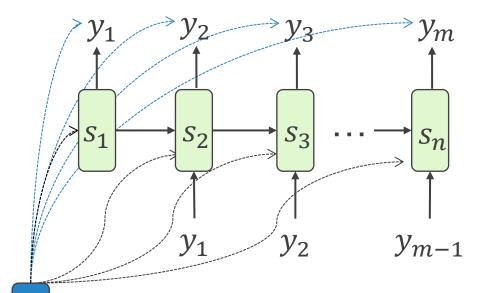


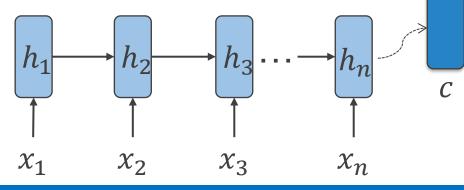
DAVIDE BACCIU - ISPR COURSE

Sequence-To-Sequence Learning

Encoder-Decoder can share parameters (but it is uncommon)

Encoder-Decoder can be trained end-to-end or independently





Reversing the input sequence in encoding typically resulted in increased performance (?!)

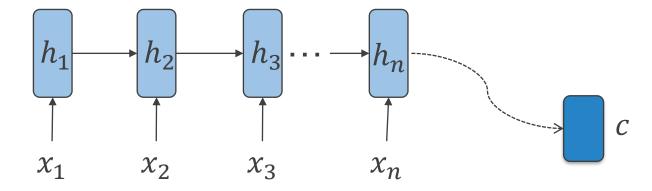
A Motivating Example

The cat is on the table

Il gatto è sul tavolo

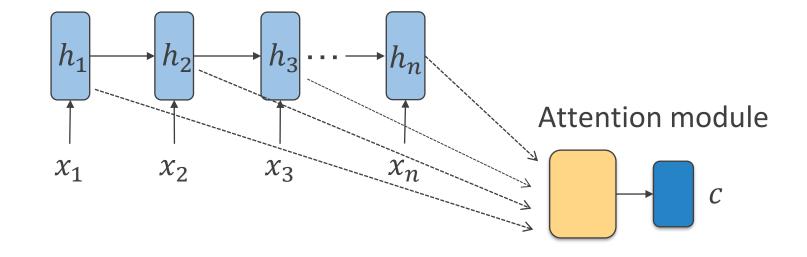
Attention

On the Need of Paying Attention



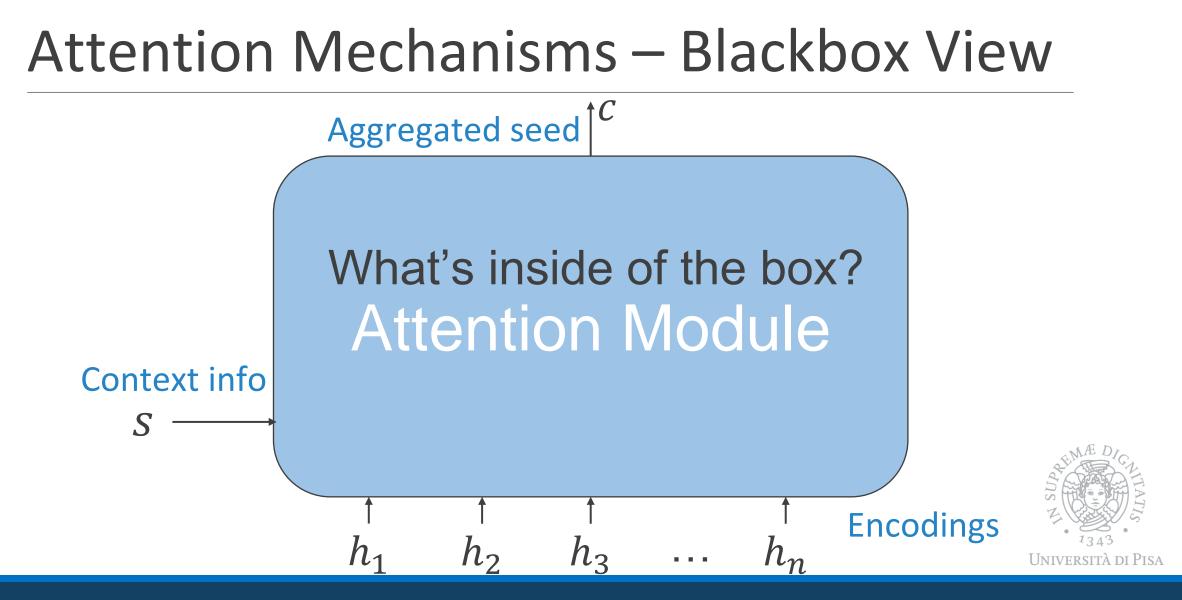
- Encoder-Decoder scheme assumes the hidden activation of the last input element summarizes sufficient information to generate the output
 - Bias toward most recent past
- Other parts of the input sequence might be very informative for the task
 - Possibly elements appearing very far from sequence end

On the Need of Paying Attention



 Attention mechanisms select which part of the sequence to focus on to obtain a good c

Università di Pisa

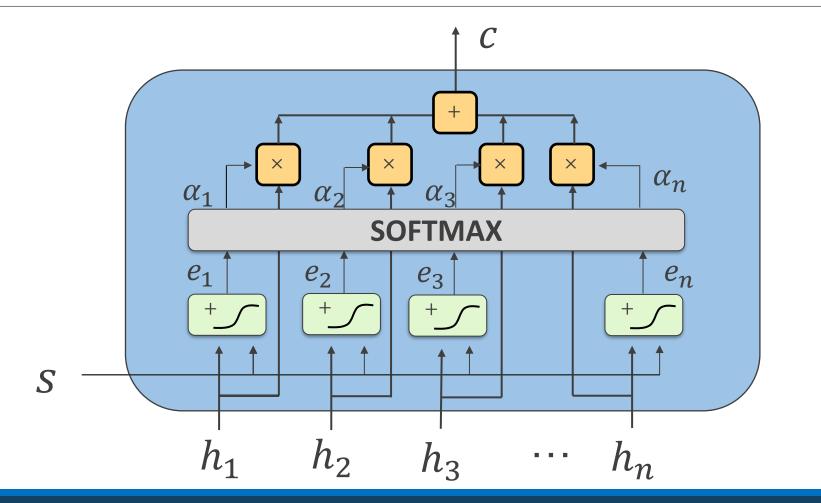


What's inside of the box?

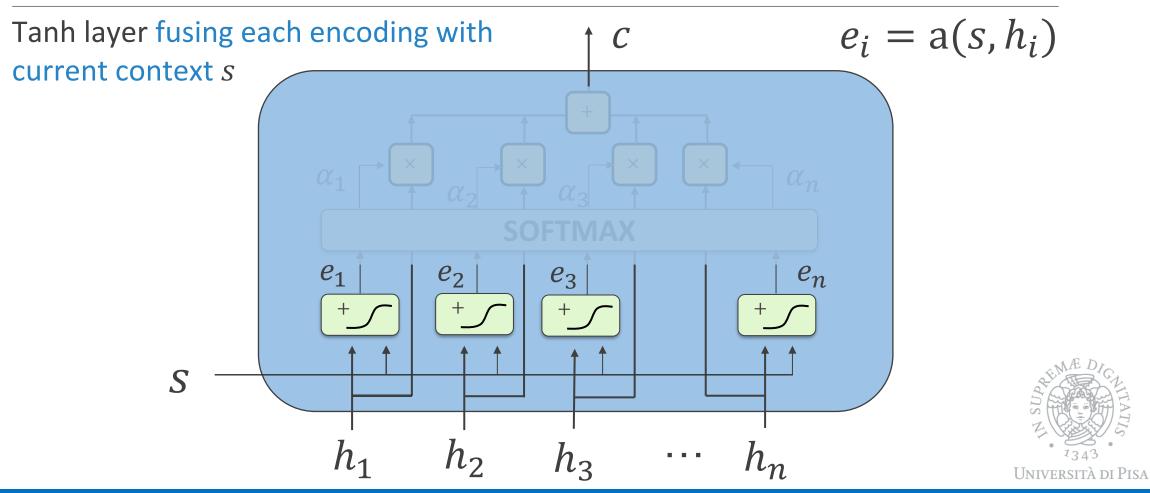
The Revenge of the Gates!

DAVIDE BACCIU - ISPR COURSE

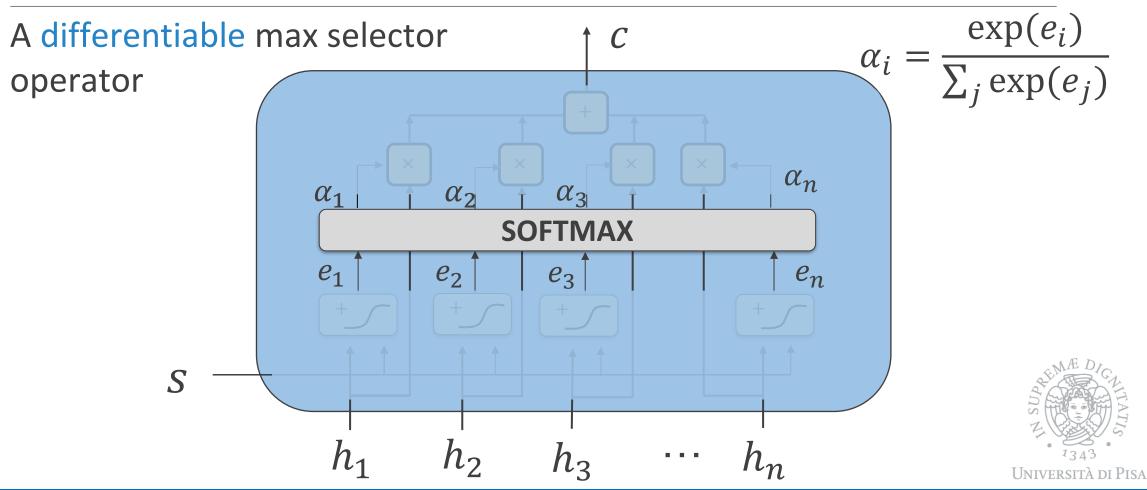
Opening the Box



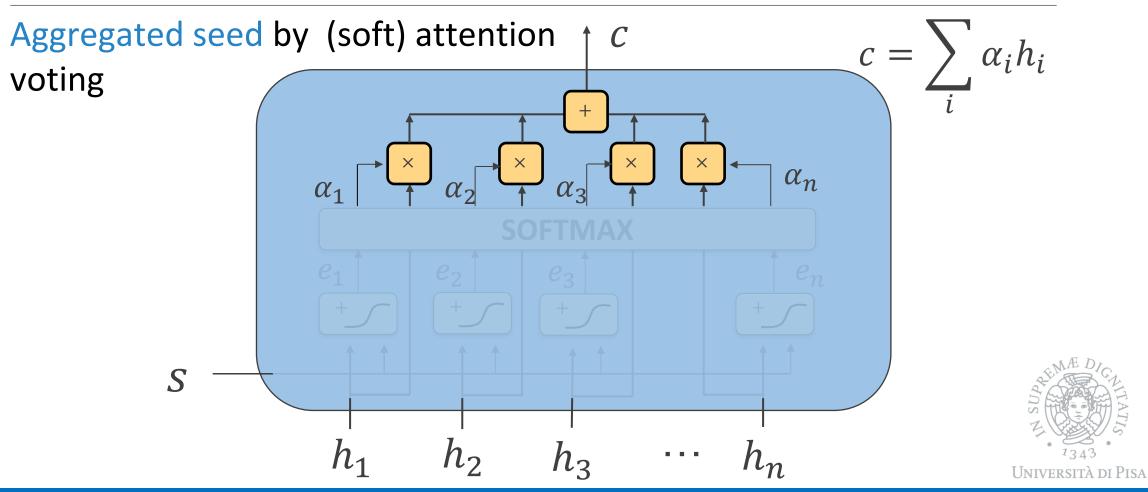
Opening the Box – Relevance



Opening the Box – Softmax

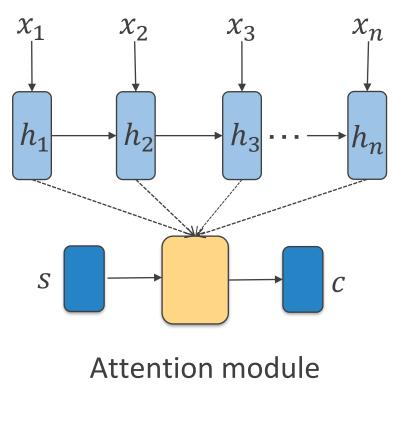


Opening the Box – Voting

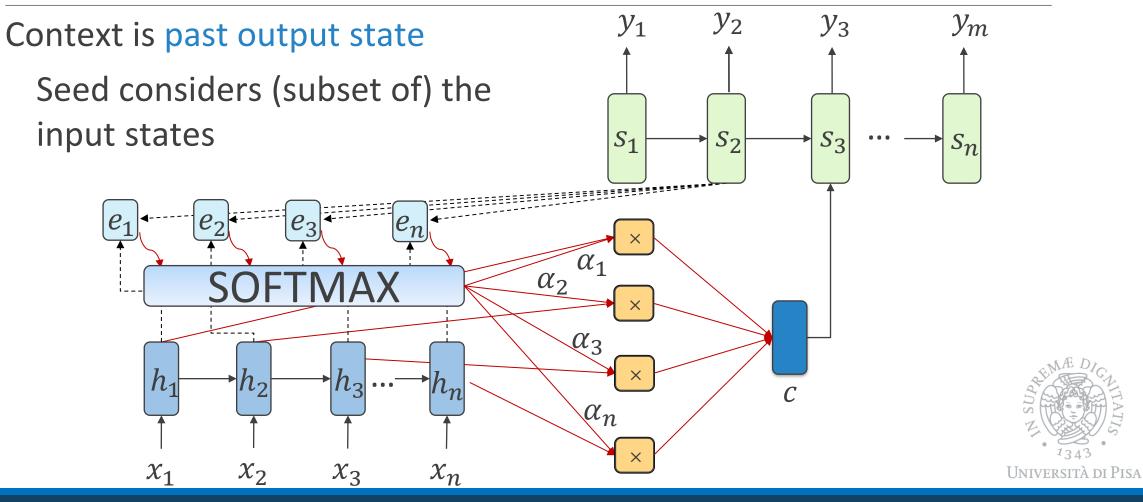


Attention - Equations

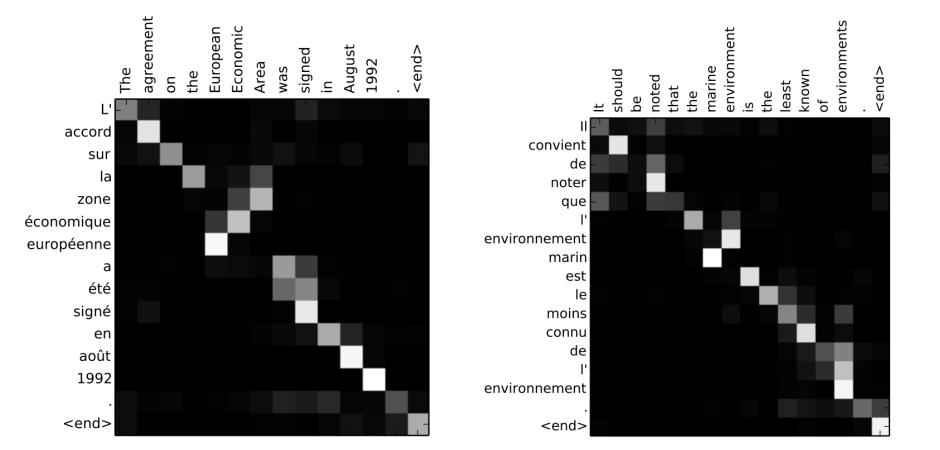
- Relevance: $e_i = a(s, h_i)$
- Normalization: $\alpha_i = \frac{\exp(e_i)}{\sum_j \exp(e_j)}$
- Aggregation: $c = \sum_i \alpha_i h_i$



Attention in Seq2Seq



Learning to Translate with Attention

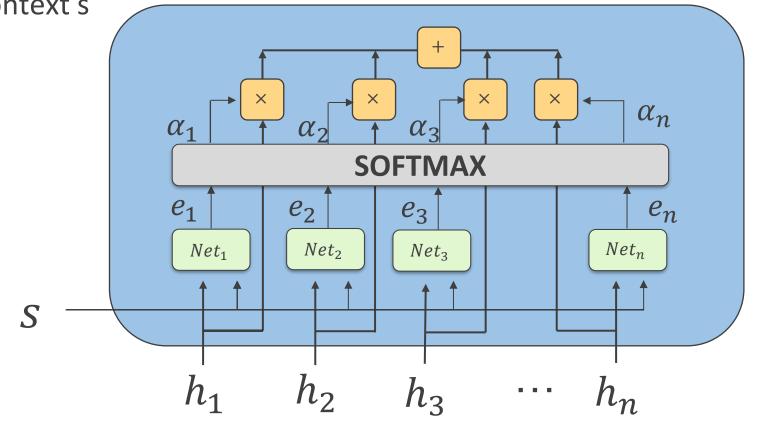


Bahdanau et al, Show, Neural machine translation by jointly learning to align and translate, ICLR 2015

DAVIDE BACCIU - ISPR COURSE

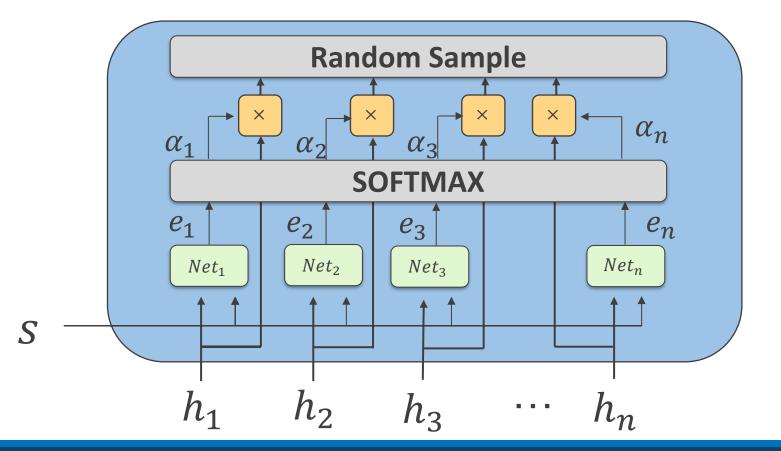
Advanced Attention – Generalize Relevance

This component determines how much each h is correlated/associated with current context s



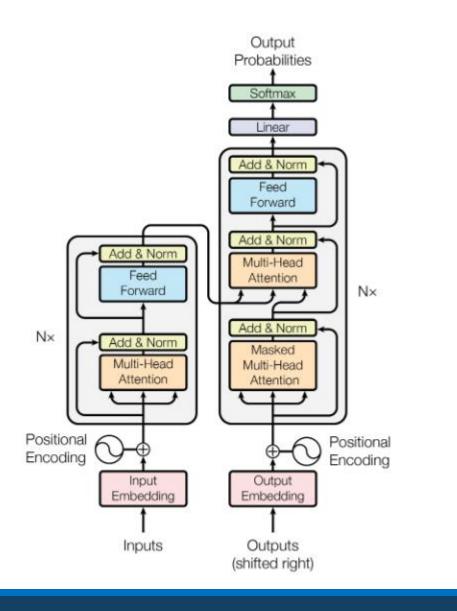
Advanced Attention – Hard Attention

Sample a single encoding using probability α_i



Transformers

- First pure attention-based model
- Self-attention
- No recurrence
- Encoder-decoder architecture



Self Attention

Each element of an input sequence X_i projects into 3 vectors: **query**, **key** and **value**

Self Attention – K,V,Q Generation

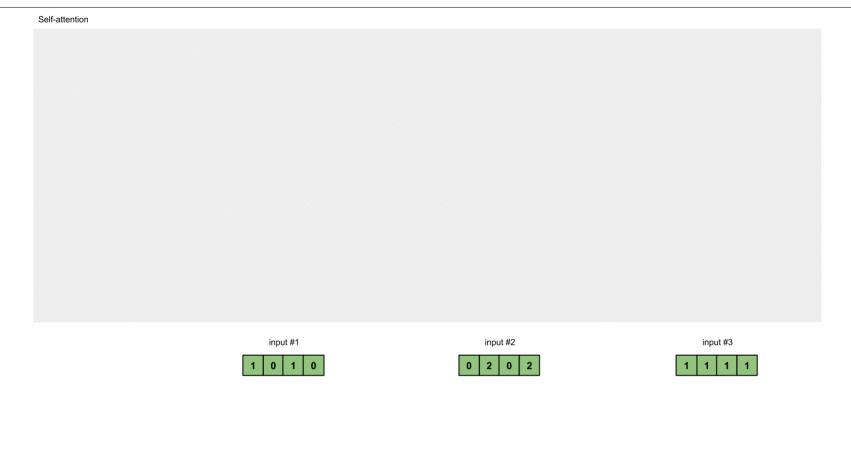
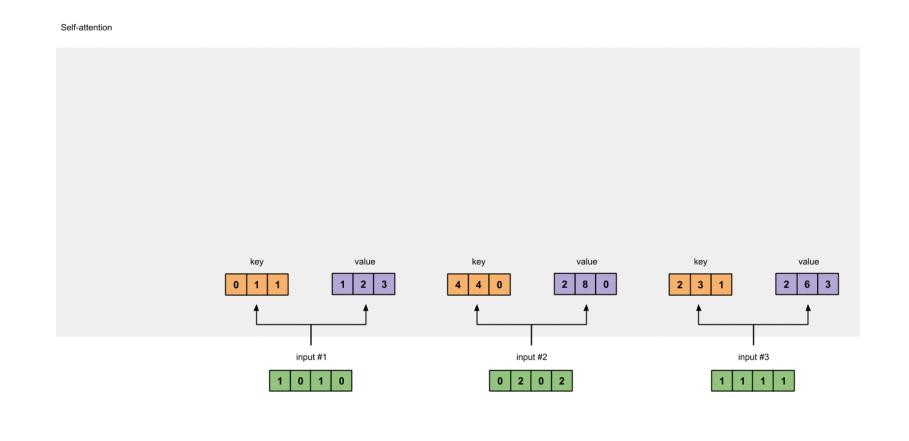


Figure credit to this article

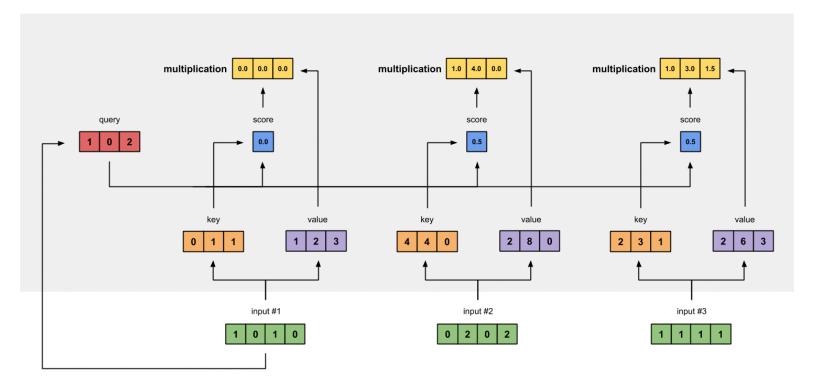
Self Attention – Compute Attention Score



DAVIDE BACCIU - ISPR COURSE

Self Attention – Produce Output

Self-attention



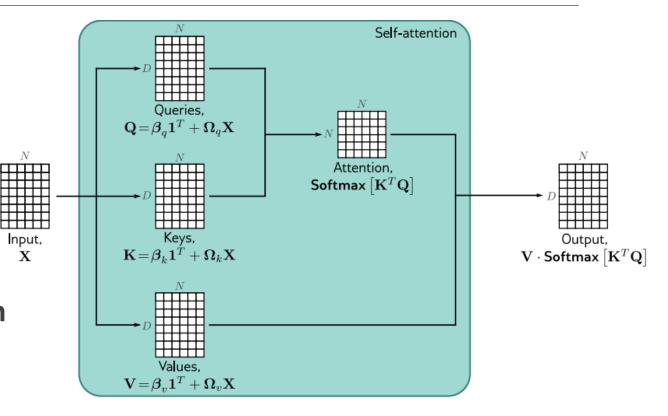
DAVIDE BACCIU - ISPR COURSE

Self Attention

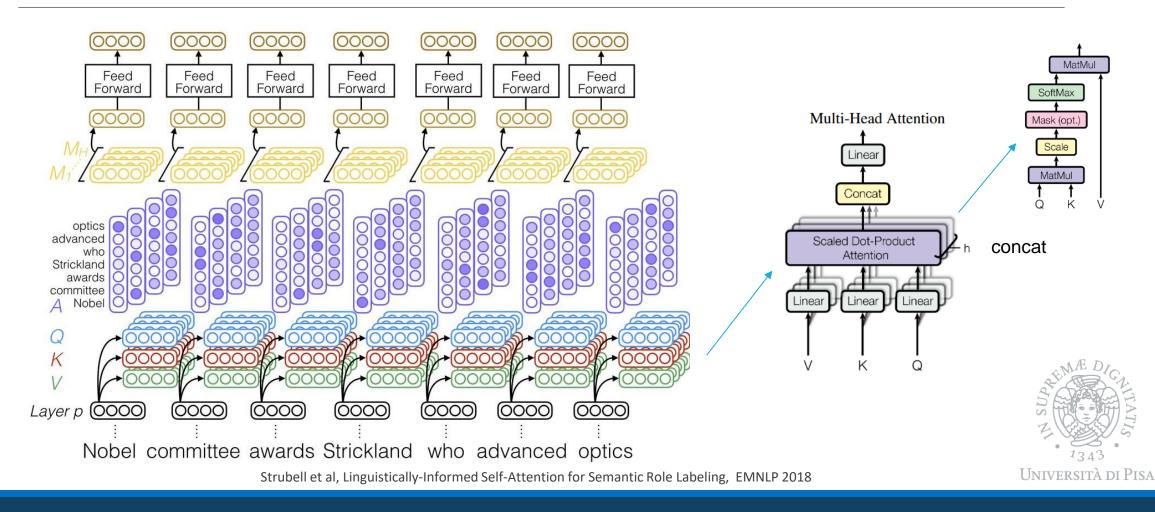
Each element of an input sequence X_i projects into 3 vectors: **query**, **key** and **value**

Scaled (multiplicative) self-attention

$$\sum_{j} softmax_{j} \left(\frac{Q_{i} \cdot \mathbf{K}^{T}}{\sqrt{d_{k}}} \right) V_{j}$$



Self Attention – MultiHead



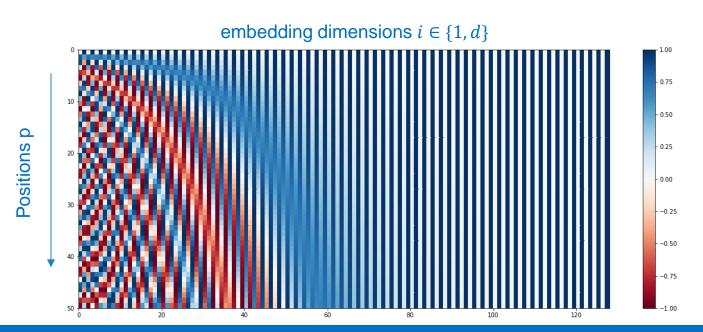
Is self-attention a good mechanism to model temporal dependencies?

What happens if I randomly shuffle some tokens?

(Absolute) Positional Encoding

- Self-attention is orderindependent
- But in sequences we need ordering information
- Word embedding + positional embedding

 $PE(p,2i) = \sin(p/10000^{2i/d})$ $PE(p,2i+1) = \cos(p/10000^{2i/d})$



Attention in Vision

Attention-Based Captioning – Focus Shifting

Soft Attention A bird flying over a body of water . Hard Attention

Xu et al, Show, Attend and Tell: Neural Image Caption Generation with Visual Attention, ICML 2015

41

DAVIDE BACCIU - ISPR COURSE

Attention-Based Captioning - Generation

Learns to correlate textual and visual concepts

A woman is throwing a <u>frisbee</u> in a park.

A dog is standing on a hardwood floor.

A <u>stop</u> sign is on a road with a mountain in the background.

Helps understanding why the model fails

A large white bird standing in a forest.

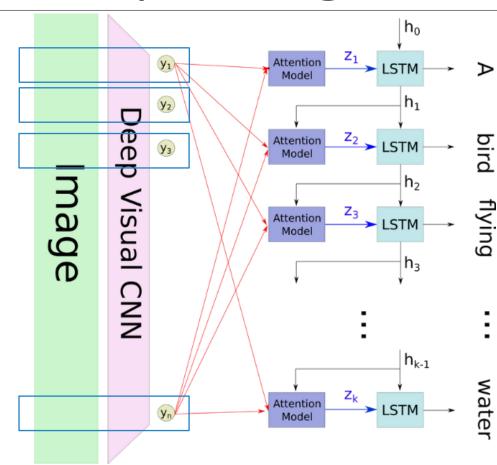
A woman holding a <u>clock</u> in her hand.

Xu et al, Show, Attend and Tell: Neural Image Caption Generation with Visual Attention, ICML 2015

Attention-Based Captioning – The Model

Encodings associated to *n* image regions

From convolutional layers rather than from fully connected



Xu et al, Show, Attend and Tell: Neural Image Caption Generation with Visual Attention, ICML 2015

A. Dosovitskiy et al, ICLR 2021

Vision Transformer (ViT) Transformer Encoder Class Lх + Bird MLP Ball Head Car **MLP** ... Norm Transformer Encoder + Patch + Position Embedding 2 3 5 7 8 Multi-Head 9 0* 1 [4] 6 Attention * Extra learnable Linear Projection of Flattened Patches [class] embedding Norm Embedded Patches

تع ¹343 UNIVERSITÀ DI PISA

DAVIDE BACCIU - ISPR COURSE

The Vision Transformer (ViT)

44

Take Home Messages

- Attention.. Attention.. and, again, attention
 - Soft attention is nice because makes everything fully differentiable
 - Hard attention is stochastic hence cannot Backprop
 - Empirical evidences of them being sensitive to different things
- Encoder-Decoder scheme
 - A general architecture to compose heterogeneous models and data
 - Decoding allows sampling complex predictions from an encoding conditioned distribution
- Transformers as low-inductive bias architectures
 - Need huge amounts of data to generalize

Upcoming lectures

- Wed 16/04 Coding I (Pytorch)
- Thu 17/04 Coding II (Keras/TF)
- Apr. 18 Apr 28 Spring Break (no lectures)
- Bonus track
 - Al Meets Psychiatry: fMRI-Based Multi-Disorder Diagnosis
 - Lecture by Elisa Ferrari at the AI for Health course
 - Today 15/04/2025 h. 16.15-17.30 Room L1 Room C

