
Laboratory Lecture for the “Intelligent Systems for Pattern Recognitionˮ
course of the Masterʼs Degree in Computer Science 20242025

Riccardo Massidda
riccardo.massidda@di.unipi.it

Huge thanks to Valerio De Caro and Antonio Carta for previous versions of this material.

Why PyTorch?

Tensor Manipulation.
Tensor operations on a MATLAB/NumPy-like API.

Accelerator Support.
Seamless execution on CPU, GPU, and TPU devices.

Automatic Differentiation.
Only need to define forward computation → chain rule! ⛓

High-Level API.
Readily available neural networks layers, losses, optimizers, …

Getting Started

For this lecture:

1. Clone the repository di-unipi/ispr-lab from GitHub,
2. Install PyTorch, either using an environment manager (conda, pipenv,

poetry, etc.) or using Docker/Podman 🐳.

In a hurry? Just open the repository in Google Colab!

Up-to-date instructions to install PyTorch here: Start Locally | PyTorch

https://github.com/di-unipi/ispr-lab
https://colab.research.google.com/
https://pytorch.org/get-started/

Basics of
Tensor
Operations
and
Manipulation

Tensors

Tensors are the main data structure and represent multidimensional arrays.

As for NumPy arrays, they support advanced indexing and broadcasting.

Attributes:

● dtype: determine the type of the tensor elements (float{16, 32, 64,
int{8, 16, 32, 64, uint8. Can be specified during the initialization.

● device: memory location, as in CPU or GPU
● layout: dense tensors (strided) or sparse (sparse_coo)

Tensor Initialization

● Existing Array: torch.tensor(list)
● Constants: torch.zeros(*dims), torch.ones(*dims)
● Random: torch.randn(*dims), torch.rand(*dims)
● Range: torch.linspace(start, end, steps=100)
● NumPy: torch.from_numpy(arr)

Tensor Operations

Some operators are overloaded :

● +, - for addition and subtraction (support broadcasting)
● * is the elementwise multiplication (not the matrix product, supports

broadcasting)
● @ for matrix multiplication (torch.matmul)

In-place operations are defined with a suffix underscore :

● add_, sub_, matmul_ are the in-place equivalent for the previous
operators , and also support broadcasting.

Check the documentation: http://pytorch.org/docs/stable/tensors.html

http://pytorch.org/docs/stable/tensors.html

Broadcasting Rules

PyTorch broadcasting semantics follows NumPy own semantics.

Two tensors are “broadcastableˮ if the following rules hold:

1. Each tensor has at least one dimension.
2. When iterating over the dimension sizes, starting at the trailing

dimension, the dimension sizes must either be equal, one of them is 1, or
one of them does not exist.

https://pytorch.org/docs/stable/notes/broadcasting.html
https://numpy.org/doc/stable/user/basics.broadcasting.html

Broadcasting Rules

https://pytorch.org/docs/stable/notes/broadcasting.html

https://pytorch.org/docs/stable/notes/broadcasting.html

Broadcasting Rules

https://numpy.org/doc/stable/user/basics.broadcasting.html

https://numpy.org/doc/stable/user/basics.broadcasting.html

Broadcasting Rules

https://numpy.org/doc/stable/user/basics.broadcasting.html

https://numpy.org/doc/stable/user/basics.broadcasting.html

Broadcasting Rules

https://numpy.org/doc/stable/user/basics.broadcasting.html

https://numpy.org/doc/stable/user/basics.broadcasting.html

Tensors in GPU

The submodule torch.cuda provides the API for GPU management.
Check availability of the GPU

torch.cuda.is_available

Create or move to GPU

torch.tensor([2., -1.], device="cuda")

tensor.to("cuda")

In all operations, all the tensor must reside on the same device and result on
the same device .

You can move tensors back to the CPU with the tensor.cpu() method.

Tensors in GPU

 On a server, you typically have access to multiple shared GPU and you must
select one:

1. Manually selecting with the device argument (‘cuda:0 ,̓ ‘cuda:1ʼ…) , or
2. Using the context manager torch.cuda.device

Changing the shell environment variable CUDA_VISIBLE_DEVICES to limit the
visible GPUs

export CUDA_VISIBLE_DEVICES=0

Note that the indices of the GPU IDs will always start from 0.

⚠ Remember to de-allocate tensors from the GPU if youʼre not using it!

Tensor Indexing

Basic tensor indexing is similar to list
indexing, but with multiple
dimensions .

Boolean arrays can be used to filter
elements that satisfy some condition .

If the indices are less than the
number of dimensions, the missing
indices are considered complete
slices .

first k elements
x = arr[:k]
all but the first k
x = arr[k:]
negative indexing
x = arr[-k:]
mixed indexing
arr[:t_max, b:b+k, :]

indexing with Boolean condition
def relu(x):
 x[x < 0] = 0
 return x

Tensor Reshaping

Reshaping is fundamental to combine
tensors.

tensor.squeeze() removes all singleton
dimensions

tensor.unsqueeze(dim) add a singleton
dimension at the provided dimension

tensor.transpose(dim1, dim2)
transposes the two dimensions of the
tensor

tensor.permute(*dims) re-arranges the
dimensions as in *dims

x = torch.randn(5,1,5)

squeeze
x.squeeze() → [5,5]

unsqueeze
x.unsqueeze(3) → [5,1,5,1]

transpose
x.transpose(1, 2) → [5,5,1]

indexing with Boolean condition
x.permute(1,0,2) → [1,5,5]

Tensor Reduce

Reduction operations collapse the
tensor dimensionality.

tensor.sum(dim)
tensor.mean(dim)
tensor.prod(dim)
tensor.amin(dim)
tensor.amax(dim)

The keepdim parameter keeps an
empty dimension in place.

x = torch.randn(5,1,5)

x.sum(0) → [1, 5]
x.mean(1) → [5, 5]
x.amin(2) → [5,1]

Your Turn!

The Kaiming uniform initialization scheme
provides a standard baseline to train Neural
Networks with rectified activation functions.

Write the following functions:

_relu_kaiming_init_(weights: torch.Tensor)
that modifies in-place the provided tensor,

_relu_kaiming_init(in_size, out_size) that
returns a new tensor with shape (out_size ×
in_size)

Autograd
Automatic
Differentiation
in PyTorch

Autograd

The submodule torch.autograd is responsible for automatic
differentiation.

Each operation creates a Function node in a dynamic computational graph,
connected to its Tensor arguments.

The gradient is computed on each tensor by calling the backward() method.

Autograd

Overview of PyTorch Autograd Engine

https://pytorch.org/blog/overview-of-pytorch-autograd-engine/

Autograd

The main Tensor attributes related to the graph structure are:

● data: Tensor containing the data itself
● grad: Tensor containing the gradient (initially set to None)
● grad_fn: the function used to compute the gradient

Each Function implements two methods:

● forward: function application
● backward: gradient computation

Autograd

The requires_grad attribute is used to specify if the gradient computation should
propagate into the Tensor or not, which also stops the backpropagation.

For optimizable model parameters ⇒ requires_grad=True

For input data or constant values ⇒ requires_grad=False

The method detach removes the tensor from the graph, truncating the gradient.

In-place modification is not allowed, as it breaks the automatic differentiation.

At inference time, the context manager torch.no_grad speeds up computation.

Autograd documentation: http://pytorch.org/docs/stable/autograd.html

http://pytorch.org/docs/stable/autograd.html%E2%80%8B

Autograd

Building
Models and
Pipelines

Model Interface

torch.nn contains the basic
components to define your neural
networks, loss functions,
regularization techniques and
optimizers.

Module and Parameters

Module is the base class for all the neural network components: Linear,
Convolutional, Recurrent Layers…

Each Module contains a set of Parameter objects, i.e., a “tensor with a name
and requires_grad=Trueˮ

The parameters() method returns an iterator over model parameters.

If you want to add a list of parameters or sub-modules, you can use the
ParameterList and ModuleList objects.

⚠ If you use a regular list, the parameters will not be registered!

Forward and Backward

The logic of the module is defined in the forward() method, which you can
call either as net(in_tensor) or net.forward(in_tensor).

The backward() step is automatically defined by Autograd, but can be
overridden!

It is possible to define forward and backward hooks to debug your model!

Modules can operate in train or eval mode: net.train() or net.eval()

This is useful for layers that define a different behavior during train and test ,
e.g. Dropout, BatchNormalization…

Existing Modules

Thereʼs no need to
reinvent the wheel!
(in most cases, but sometimes you really do: good luck)

PyTorch provides lots
of common modules
that can be easily glued
together.

https://pytorch.org/docs/stable/nn.html

https://pytorch.org/docs/stable/nn.html

Datasets and Data Loaders

The module torch.data.utils
defines classes to handle datasets and
load them from data.

DataLoader automatizes mini-batching,
shuffling of the dataset, sampling
techniques and any pre-processing,
and allows parallel loading .

Training Loop

To define a training loop, we need a loss function and an optimizer.

Always check the documentation for the correct shape and input arguments
(does the loss need logits or probabilities? Which dimension should be the
last? Is the average for each element or for each sample?

⚠ Remember to reset gradients using the zero_grad() method!

(less talk, more code)

Logging

Several metrics can help to understand your model.

Logging them, itʼs always a good idea!

TensorBoard works great for PyTorch as well.

Otherwise, there are cloud-based commercial
products Weights & Biases, neptune.ai, …)

Model Serialization

Last, but not least, how do I store my model?

The state dictionary stores the value of all model parameters.

torch.save(the_model.state_dict(), PATH)

Then, instantiate the object and reload the state dictionary.

net = MyModelClass(*args, **kwargs)

net.load_state_dict(torch.load(PATH))

PyTorch Ecosystem

To know how things work under-the-hood is worth the effort.

… but in practice, most “routineˮ operations can be abstracted away.

Both PyTorch Lightning and Transformers by HuggingFace 🤗 provide APIs
for common practices such as training, logging, evaluating and performing
inference on Machine Learning models.

Also, tons of libraries in the PyTorch Ecosystem: graph neural networks,
interpretability, continual learning, federated learning, quantum ML…

https://lightning.ai/docs/pytorch/stable/starter/introduction.html
https://huggingface.co/docs/transformers/index
https://landscape.pytorch.org/

Your Turn!

Implement and train a Convolutional Neural
Network to perform image classification on
the MNIST dataset.

📜 Side Quests:

1. Monitor the performance with a logger,
2. Play around with dropout,

batch_norm, etc.
(remember of train vs eval!

3. Try a PyTorch Lightning implementation

