Explicit Density Learning

INTELLIGENT SYSTEMS FOR PATTERN RECOGNITION (ISPR)

DAVIDE BACCIU – DIPARTIMENTO DI INFORMATICA - UNIVERSITA' DI PISA

DAVIDE.BACCIU@UNIPI.IT
Lecture Outline

- Introduction to the Generative DL module
 - Motivations and taxonomy

- Explicit generative learning (Part I of III)
 - Learning distributions with fully visible information (RNN)
 - Learning distributions with latent information (VAE)

- VAE Application Examples
Generative DL Module
Why Generative?

- Focusing too much on discrimination rather than on characterizing data can cause issues
 - Reduced interpretability
 - Adversarial examples

- Generative models (try to) characterize data distribution
 - Understand the data \Rightarrow Understand the world
 - Understand data variances \Rightarrow Learn to steer them
 - Understand normality \Rightarrow Detect anomalies
Generative Learning is Unsupervised Learning

Labelled data is **costly and difficult** to obtain

A *sustainable future* for deep learning

- Learning the *latent structure* of data
- Discover important features
- Learn *task independent* representations
- Introduce (if any) supervision only on few samples
Approaching the Problem from a DL Perspective

Given training data, learn a (deep) neural network that can generate new samples from (an approximation of) the data distribution.

Training data \(\sim P(x) \)

Generated data \(\sim P_\theta(x) \)
Approaching the Problem from a DL Perspective

Given training data, learn a (deep) neural network that can generate new samples from (an approximation of) the data distribution

Two approaches

○ Explicit ⇒ Learn a model density $P_\theta(x)$

○ Implicit ⇒ Learn a process that samples data from $P_\theta(x) \approx P(x)$
A Taxonomy

Generative DL

Explicit

Visible
- Sampling RNN
- Flow-based

Latent

Variational
- Variational AEs
- Diffusion Model

Stochastic
- Boltzmann Machines

Implicit

Direct
- Generative Adversarial Networks

Stochastic
- Generative Stochastic Networks

Adapted from I. Goodfellow, Tutorial on Generative Adversarial Networks, 2017
Density Learning with Full Observability
Learning with Fully Visible Information

If all information is fully visible the joint distribution can be computed from the chain rule factorization

\[P(x) = \prod_{i=1}^{N} P(x_i | x_1, \ldots, x_{i-1}) \]

Bayesian Networks

Need to be able to define a sensible ordering for the chain rule

Conditional distribution difficult to compute

Probability of a pixel having a certain intensity value, given the known intensity of its predecessor
Approximating the Conditional Probability

If all information is fully visible the joint distribution can be computed from the chain rule factorization.

Scan the image according to a schedule and encode the dependency from previous pixels in the states of an RNN.
Approximating the Conditional Probability

If all information is fully visible the joint distribution can be computed from the chain rule factorization.

Scan the image according to a schedule and encode the dependency from previous pixels in the states of an RNN.
Approximating the Conditional Probability

If all information is fully visible the joint distribution can be computed from the chain rule factorization.

Scan the image according to a schedule and encode the dependency from previous pixels in the states of an RNN.
Approximating the Conditional Probability

If all information is fully visible the joint distribution can be computed from the **chain rule factorization**

Scan the image according to a schedule and **encode the dependency** from previous pixels in the **states of an RNN**
Approximating the Conditional Probability

If all information is fully visible the joint distribution can be computed from the chain rule factorization.

Scan the image according to a schedule and encode the dependency from previous pixels in the states of an RNN.
Generating Images Pixel by Pixel

A. van der Oord et al., Pixel Recurrent Neural Networks, 2016
Generating Images Pixel by Pixel - Results

A. van der Oord et al., Pixel Recurrent Neural Networks, 2016
Variational Autoencoders
With only visible information, we try to learn the θ parameterized model distribution

$$P_\theta(x) = \prod_{i}^{N} P_\theta(x_i|x_1, \ldots, x_{i-1})$$

Now we introduce a latent process regulated by unobservable variables z

$$P_\theta(x) = \int P_\theta(x|z)P_\theta(z)dz$$

Typically, intractable for nontrivial models (cannot be computed for all z assignments)
A Neural Network with Latent Variables?

We have already introduced a probabilistic twist on AE.

Autoencoder (AE) neural networks
A Deeper Probabilistic Push

As an additional push in the probabilistic interpretation, we assume to be able to generate the reconstruction from a sampled latent representation.

\[
\begin{align*}
\tilde{x} & \quad \text{Sample from the true conditional } P(\tilde{x}|z) \\
z & \quad \text{Sample latent variables from the true prior } P(z)
\end{align*}
\]

Of course we don’t have access to the true distributions, so how do we approximate them?
Variational Autoencoders (VAE) – The Catch

\[\tilde{x} \]

Decoder \(g \)

\[z \]

Represent the \(P(\tilde{x}|z) \) distribution through a neural network \(g \) (remember the denoising autoencoder)

Sample \(z \) from a simple distribution such as a Gaussian

\[z \sim \mathcal{N}(\mu(x), \sigma(x)) \]

At training time sample \(z \) conditioned on data \(x \) and train the decoder \(g \) to reconstruct \(x \) itself from \(z \)
VAE Training

Ideally, one would like to train maximizing

$$L(D) = \prod_{i=1}^{N} P(x_i)$$

$$= \prod_{i=1}^{N} \int P(x_i | z) P(z) dz$$

Marginalize over latent variable, z
VAE Training – Is it all this easy?

Ideally, one would like to train maximizing

\[L(D) = \prod_{i=1}^{N} P(x_i) \]

Unfortunately for you: no!

Intractable

Variational approximation
Variational Approximation

The revenge of the ELBO (Evidence Lower BOund)

\[\log P(x|\theta) \geq \mathbb{E}_Q[\log P(x, z)] - \mathbb{E}_Q[\log Q(z)] = \mathcal{L}(x, \theta, \phi) \]

Maximizing the ELBO allows approximating from below the intractable log-likelihood \(\log P(x) \)

\[\mathcal{L}(x, \theta, \phi) = \mathbb{E}_Q[\log P(x|z)] + \mathbb{E}_Q[\log P(z)] - \mathbb{E}_Q[\log Q(z)] \]

Decoder estimate of the reconstruction (based on a sampled \(z \))

\(K_L(Q(z|\phi)||P(z|\theta)) \)

(It is not differentiable!)

Need a \(Q(z) \) function to approximate \(P(z) \)
Reparameterization Trick

\[z \sim \mathcal{N}(\mu(x), \sigma(x)) \]

Sample

Non-differentiable operation

\[\tilde{x} \]

\[\tilde{x} \]

\[\mu(x) \]

\[\sigma(x) \]

Sampling is limited to non differentiable variable \(\epsilon \) \(\Rightarrow \) Can backpropagate
Variational Autoencoder – The Full Picture

Encoder network $Q(z|x, \phi)$ with parameters ϕ

Decoder network $P(\tilde{x}|z, \theta)$ with parameters θ

Sample $\epsilon \sim \mathcal{N}(0,1)$

Training time architecture
VAE Training

Training is performed by backpropagation on θ, ϕ to optimize the ELBO

$$\mathcal{L}(x, \theta, \phi) = \mathbb{E}_Q[\log P(x|z = \mu(x) + \sigma^{1/2}(x) \ast \epsilon, \theta)]$$

$$-KL(Q(z|x, \phi)||P(z|\theta))$$

Can be computed in closed form when both $Q(z)$ and $P(z)$ are Gaussians

$$KL(\mathcal{N}(\mu(x), \sigma(x)) ||\mathcal{N}(0,1))$$

Train the encoder to behave like a Gaussian prior with zero-mean and unit-variance
VAE Loss – Another view on differentiability

In principle we would like to optimize the following loss by SGD

$$\mathbb{E}_{X \sim D} \left[\mathbb{E}_{Z \sim Q} \left[\log P(x|z) \right] - KL(Q(z|x, \phi) || P(z)) \right]$$

which can be rearranged following the reparametrization trick

$$\mathbb{E}_{X \sim D} \left[\mathbb{E}_{\epsilon \sim \mathcal{N}(0,1)} \left[\log P(x|z = \mu(x) + \sigma^{1/2}(x) * \epsilon, \theta) \right] - KL(Q(z|x, \phi) || P(z)) \right]$$

No expectation is w.r.t distributions that depend on model parameters

⇒ We can move gradients into them
Information Theoretic Interpretation

\[\mathbb{E}_{X \sim D} \left[\mathbb{E}_{Z \sim Q} \left[\log P(x|z) \right] - KL(Q(z|x, \phi) \| P(z)) \right] \]

Number of bits required to reconstruct \(x \) from \(z \) under the ideal encoding (i.e. \(Q(z|x) \) is generally suboptimal)

Number of bits required to convert an uninformative sample from \(P(z) \) into a sample from \(Q(z|x) \)

Information gain - Amount of extra information that we get about \(X \) when \(z \) comes from \(Q(z|x) \) instead of from \(P(z) \)
Sampling the VAE (a.k.a. testing)

At test time detach the encoder, sample a random encoding and generate the sample as the corresponding reconstruction.

\[\tilde{x} \]

Decoder \(g \)

Sample \(z \sim \mathcal{N}(0,1) \)
VAE vs Denoising/Contractive AE

Contractive AE

Variational AE

x noisy samples x original sample
VAE Examples - Digits

Organization of data in the latent space

Reconstruction of points sampled from latent space

Image credits @ fastforwardlabs.com
VAE Examples - Faces

Hou et al, Deep Feature Consistent Variational Autoencoder, 2017

Latent space interpolation
Conditional Generation (CVAE)

Training

Encoder Q

Sample \(\mathbf{z} \sim \mathcal{N}(0,1) \)

Decoder g

\(\tilde{x} \)

\(x \)

Inference

Sample \(\mathbf{z} \sim \mathcal{N}(0,1) \)

Decoder g

\(\tilde{x} \)

Learns the conditional distribution \(P(x|y) \)
(this is the simplest possible form of CVAE)
Take Home Messages

- PixelRNN/ PixelCNN – Learn explicit distributions by optimizing exact likelihood
 - Yields good samples and excellent likelihood estimates
 - Inefficient sequential generation
- VAE – Learn complex distributions over latent variables through a variational approximation using neural networks
 - Learns a latent representation useful for inference
 - Can lead to poor generated sample quality
Next Lecture

- Learning a sampling process
- Generative adversarial networks
- Hybrid Variational-Adversarial approaches