Implicit models – Adversarial Learning

INTELLIGENT SYSTEMS FOR PATTERN RECOGNITION (ISPR)
DAVIDE BACCIU – DIPARTIMENTO DI INFORMATICA - UNIVERSITA’ DI PISA
DAVIDE.BACCIU@UNIPI.IT
Generative Learning from a DL Perspective

Given training data, learn a (deep) neural network that can generate new samples from (an approximation of) the data distribution

Two approaches

- **Explicit** ⇒ Learn a model density $P_\theta(x)$
- **Implicit** ⇒ Learn a process that samples data from $P_\theta(x) \approx P(x)$
Our Taxonomy

Generative DL

Explicit

Visible

Sampling RNN
Flow-based

Latent

Variational

Variational AEs
Diffusion Model

Stochastic

Boltzmann
Machines

Implicit

Direct

Generative Adversarial Networks

Stochastic

Generative Stochastic Networks

Adapted from I. Goodfellow, Tutorial on Generative Adversarial Networks, 2017
Distribution Learning Vs Learning to Sample

○ Variational AEs learn to approximate an intractable distribution

\[P_\theta(x) = \int P_\theta(x|z)P(z)dz \]

then sample it to generate the output

○ What if we learn to generate samples rather than learning the distribution?
 ● Generative Adversarial Networks (GAN)
 ● Game theoretic approach
The GAN Catch

- We need to learn to sample from a complex, high-dimensional training distribution
 - No straightforward way to do this

- The catch
 - Sample from a simple distribution: random noise
 - Train a differentiable deterministic function (neural network) to transform random noise to the training distribution
Generative Adversarial Networks

Again, a **two-steps architecture**

Generator Network
- z size $\geq x$ size to allow the G distribution full support on x
- Random Noise z

Discriminator Network
- $G(z)$
- x

Dataset
- Original or Fake
- Original or Fake samples from fake

Try to generate real looking samples that can fool discriminator

Try to tell original samples from fake
Alternate Optimization

\[C = \min_{\theta_G} \max_{\theta_D} \left[\mathbb{E}_x \left[\log D_{\theta_D}(x) \right] + \mathbb{E}_z \left[\log \left(1 - D_{\theta_D}(G_{\theta_G}(z)) \right) \right] \right] \]

- Discriminator output is likelihood of input being real
- Discriminator tries to maximize \(C \) s.t.
 - \(D_{\theta_D}(x) \to 1 \) and \(D_{\theta_D}(G_{\theta_G}(z)) \to 0 \)
- Generator tries to minimize \(C \) s.t.
 - \(D_{\theta_D}(G_{\theta_G}(z)) \to 1 \)
Alternate Optimization

\[
C = \min_{\theta_G} \max_{\theta_D} \left[\mathbb{E}_x \left[\log D_{\theta_D}(x) \right] + \mathbb{E}_z \left[\log (1 - D_{\theta_D}(G_{\theta_G}(z))) \right] \right]
\]

1. **Discriminator** gradient ascent

\[
C_D = \max_{\theta_D} \left[\mathbb{E}_x \left[\log D_{\theta_D}(x) \right] + \mathbb{E}_z \left[\log (1 - D_{\theta_D}(G_{\theta_G}(z))) \right] \right]
\]

2. **Generator** gradient descent

\[
C_G = \min_{\theta_G} \left[\mathbb{E}_z \left[\log (1 - D_{\theta_D}(G_{\theta_G}(z))) \right] \right]
\]

Optimizing this doesn’t really work
The Issue and a Solution

The cost that the Generator receives in response to generate $G(z)$ depends only on the Discriminator response.

$$C_G = \max_{\theta_G} \left[\mathbb{E}_z \left[\log(D_{\theta_D}(G_{\theta_G}(z))) \right] \right]$$

maximize likelihood of discriminator being wrong

Flat gradient when sample is plainly fake
GAN Training Pseudo-Algorithm

\[
\text{for number of training iterations do} \\
\text{for } k \text{ steps do} \\
\quad \text{• Sample minibatch of } m \text{ noise samples } \{z^{(1)}, \ldots, z^{(m)}\} \text{ from noise prior } p_g(z). \\
\quad \text{• Sample minibatch of } m \text{ examples } \{x^{(1)}, \ldots, x^{(m)}\} \text{ from data generating distribution } p_{\text{data}}(x). \\
\quad \text{• Update the discriminator by ascending its stochastic gradient:} \\
\quad \quad \nabla_{\theta_d} \left[\frac{1}{m} \sum_{i=1}^{m} \log D_{\theta_d}(x^{(i)}) + \log(1 - D_{\theta_d}(G_{\theta_g}(z^{(i)}))) \right] \\
\text{end for} \\
\quad \text{• Sample minibatch of } m \text{ noise samples } \{z^{(1)}, \ldots, z^{(m)}\} \text{ from noise prior } p_g(z). \\
\quad \text{• Update the generator by ascending its stochastic gradient (improved objective):} \\
\quad \quad \nabla_{\theta_g} \left[\frac{1}{m} \sum_{i=1}^{m} \log(D_{\theta_d}(G_{\theta_g}(z^{(i)}))) \right] \\
\text{end for}
\]
A Hard Two-Player Game

- The optimal solution of the min-max problem is a saddle point
- Little stability
 - Initially lot of heuristic work
 - Now converged to more principled solutions
Wasserstein Distance Models

Attempts to solve the hardness of training adversarial generators by optimizing the Wasserstein distance (EMD) between the generator and empirical distribution filtered through the discriminator function D

$$G^* = \arg\min_G \mathcal{W}(\mu, \mu_G)$$

$$= \arg\min_G \sup_{\|D\|_L \leq 1} \left[\mathbb{E}_{x \sim \mu} [D(x)] - \mathbb{E}_{x \sim \mu_G} [D(x)] \right]$$

$\|D\|_L \leq 1$ Requires optimizing D under a constraint on Lipschitz seminorm

- Clipping D weights (slow to converge)
Effect of the Wasserstein Loss

- Classical GAN loss results in saturation (discriminator with zero loss)
- WGAN provide gradients across all the range of training conditions

The DCGAN Architecture

Generator for image sampling

GAN and Images

Latent Space Arithmetic

Can do sensible linear operations on noise vectors (arithmetic, interpolation)

\[z_G = z_1 - z_2 + z_3 \]

How to Get High Resolution Samples?

https://arxiv.org/abs/1710.10196
Progressive GAN

https://arxiv.org/abs/1710.10196
Progressive GAN – Smooth Transition

https://arxiv.org/abs/1710.10196
Conditional Generation

Learn a mapping from an observed side information x and a random noise vector z to the fooling samples y

$$G: \{x, z\} \rightarrow y$$

Antipov et al, “Face Aging With Conditional Generative Adversarial Networks”, ICIP 2017
Conditional Generation – Image2Image

CycleGAN – Style transfer without pairing

Enforce alignment by ensuring that generated images in domain B can lead to good fakes in domain A and vice versa.

https://junyanz.github.io/CycleGAN/
CycleGAN Examples

https://junyanz.github.io/CycleGAN/
Best of 2 worlds?

Adversarial autoencoders (AAE)

\[
\begin{align*}
q(z|x) & \quad z \sim q(z|x) \quad p(x|z) \\
\end{align*}
\]

\[
\begin{align*}
x & \quad \text{Encoder / GAN Generator} \quad \hat{x} \\
p(z) & \quad z \sim p(z) \quad \text{Discriminator} \\
[0, 1] & \\
\end{align*}
\]

Force the latent codes to be indistinguishable from samples of a priori distribution
Training AAE

\[\mathcal{L}(x) = \mathbb{E}_Q \left[\log P(x|z) \right] - KL(Q(z|x)||P(z)) \]

Replaced by an adversarial loss

- **Reconstruction phase** - Update the encoder and decoder to minimize reconstruction error

- **Regularization phase** - Update discriminator to distinguish true prior samples from generated samples; update generator to fool the discriminator

- Adversarial regularization allows to impose priors for which we cannot compute the KL divergence
AAE Vs VAE

AAE yields a smoother coverage of the latent space

https://arxiv.org/abs/1511.05644
Incorporate label information explicitly to force z to capture class-independent information (e.g. style)

https://arxiv.org/abs/1511.05644
AAE – Semi-supervised learning

Factorize latent code in
• One hot encoding vector y
• Continuous code z

Distribution of y made little distinguishable from a multinomial (induced from data)

https://arxiv.org/abs/1511.05644
Software

- A **TF implementation** of PixelCNN
- A list of acknowledged VAE implementations is kept by Kingma [here](#)
- Plenty of DCGAN implementations
 - Torch
 - Tensorflow
- Conditional GAN for image-to-image
 - Pytorch code
 - Demo
- So many GANs: check out the **GAN-Zoo**
Take Home Messages

○ GAN – Learn to sample rather than learn the distribution
 ● Sample quality only recently surpassed by diffusion models (tomorrow)
 ● Unstable/difficult to train
 ● Cannot perform inference (no distribution learning)
 ● Needs differentiable generator

○ Adversarial Autoencoders
 ● Leveraging adversarial penalties in place of KL regularization
 ● Useful to impose “complex” or empirical priors
Next Lecture

Back to explicit approaches

- Diffusion models
- Generative learning as a noising-denoising process
- Guided diffusion
- Conditional diffusion
- Latent space diffusion