Diffusion Models

INTELLIGENT SYSTEMS FOR PATTERN RECOGNITION (ISPR)

DAVIDE BACCIU – DIPARTIMENTO DI INFORMATICA - UNIVERSITA' DI PISA

DAVIDE.BACCIU@UNIPI.IT

Lecture Outline

- Introduction
 - Motivations
 - Learning to generate by denoising
- Denoising diffusion models
 - Forward & Reverse process
 - Training diffusion models
 - Implementation
- Advanced & Applications
 - Conditional generation
 - Multimodal

Why Diffusion Models?

"Diffusion Models Beat GANs on Image Synthesis" Dhariwal & Nichol, OpenAl, 2021

"a teddy bear on a skateboard in times square"

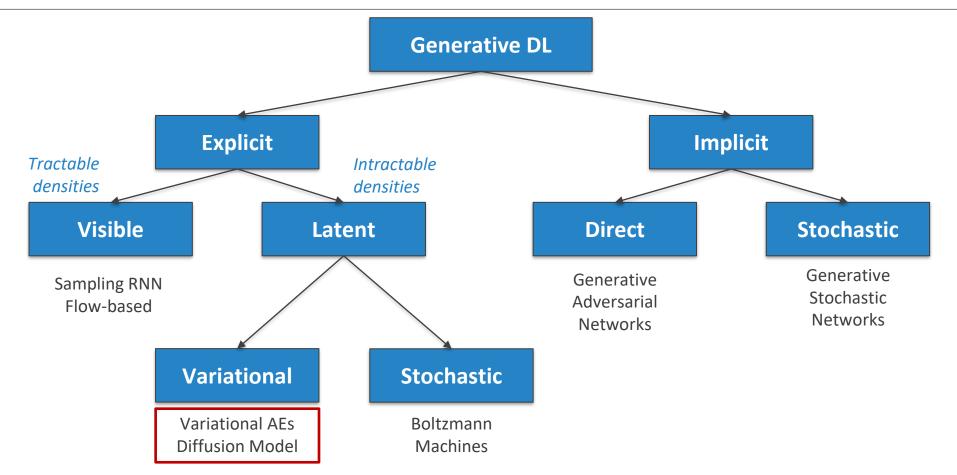
Ramesh et al., 2022

Why Diffusion Models?

High-Resolution Image Synthesis with Latent Diffusion Models" Rombach et al., 2022

A Taxonomy

Diffusion models latent space has same size of data!



Adapted from I. Goodfellow, Tutorial on Generative Adversarial Networks, 2017

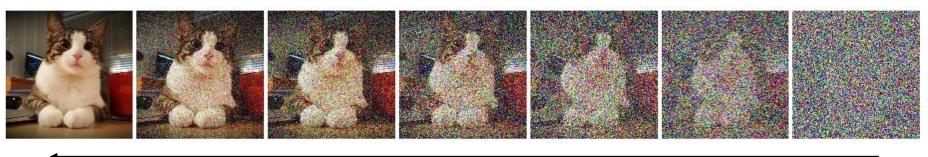
Università di Pisa

Learning to generate by denoising

- Two processes
 - Forward diffusion gradually adding noise to input
 - Reverse process reconstructs data from noise (generation)
- The key is how to do this efficiently

forward (encoder)

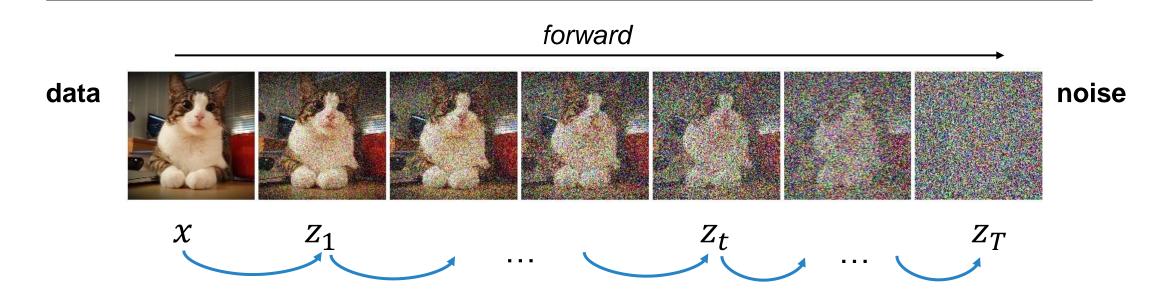
data



reverse (decoder)

noise

Forward Diffusion - Intuition



A fixed (i.e. non-adaptive) noise process in T steps mapping original data x into a same-sized latent variables z_t using simple additive noise

Forward Diffusion – Noise addition

forward data noise

$$\mathbf{z}_1 = \sqrt{1 - \beta_1} \mathbf{x} + \sqrt{\beta_1} \boldsymbol{\epsilon}_1$$

$$\epsilon_t \sim \mathcal{N}(0,1)$$

 $\epsilon_t \sim \mathcal{N}(0,1)$ $\beta_t \in [0,1]$ is the noise schedule

 $\mathbf{z}_t = \sqrt{1 - \beta_t} \mathbf{z}_{t-1} + \sqrt{\beta_t} \boldsymbol{\epsilon}_t$

Forward Diffusion – Distributions

data $x = \frac{z_1}{z_1} + \frac{z_2}{z_2} + \frac{z_2$

$$q(\mathbf{z}_t|\mathbf{z}_{t-1}) = \mathcal{N}(\sqrt{1-\beta_t}\mathbf{z}_{t-1},\beta_t\mathbf{I}) \text{ where } \mathbf{z}_0 = \mathbf{x}$$

$$q(\mathbf{z}_1,...,\mathbf{z}_T|\mathbf{x}) = q(\mathbf{z}_1|\mathbf{x}) \prod_{t=2}^T q(\mathbf{z}_t|\mathbf{z}_{t-1})$$

Diffusion Kernel

Generating z_t sequentially is time-consuming so we use a closed-form solution for $q(z_t|\cdot)$

$$q(\mathbf{z}_t|\mathbf{x}) = \mathcal{N}(\sqrt{\alpha_t}\mathbf{x}, (1-\alpha_t)\mathbf{I})$$
 (diffusion kernel)

$$\alpha_t = \prod_{s=1}^t (1 - \beta_s)$$

Which allows writing the marginal as

$$q(\mathbf{z}_t) = \int q(\mathbf{z}_t, \mathbf{x}) d\mathbf{x} = \int q(\mathbf{x}) q(\mathbf{z}_t | \mathbf{x}) d\mathbf{x}$$

data distribution

Evolution of diffused data distributions

$$q(\mathbf{z}_t) = \int q(\mathbf{z}_t, \mathbf{x}) d\mathbf{x} = \int q(\mathbf{x}) q(\mathbf{z}_t | \mathbf{x}) d\mathbf{x}$$
Data
Noise

 $q(\mathbf{z}_T)$

 $q(\mathbf{z}_2)$

 $q(\mathbf{z}_1)$

q(x)

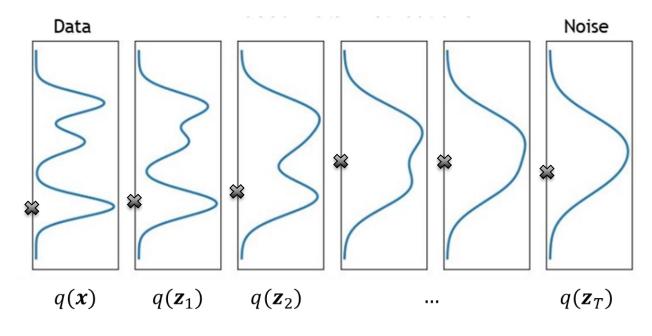
Denoising – Inverting the process

Sample $\mathbf{z}_T \sim \mathcal{N}(0,1)$

Iterate $\mathbf{z}_{t-1} \sim q(\mathbf{z}_{t-1}|\mathbf{z}_t)$

True denoising distribution is intractable

$$q(\mathbf{z}_{t-1}|\mathbf{z}_t) = \frac{q(\mathbf{z}_{t-1})q(\mathbf{z}_t|\mathbf{z}_{t-1})}{q(\mathbf{z}_t)}$$



We cannot de-mix noise if we don't know the starting point x. If we do, then we can show that $q(z_{t-1}|z_t,x)$ is Normal

Denoising – Reverse Process

- Reverse process learns an approximated denoising distribution (decoder)
- Assuming reverse distributions are approximately Normal (reasonable if β_t are small and T large).

 reverse/denoising/generation

data

$$P(\boldsymbol{z}_T) = \mathcal{N}(\boldsymbol{0}, \boldsymbol{I})$$

$$P_{\theta}(\mathbf{z}_{t-1}|\mathbf{z}_t) = \mathcal{N}(\mu_{\theta}(\mathbf{z}_t, t), \sigma_t^2 \mathbf{I})$$

Mean of the denoised image z_{t-1} predicted by the θ parameterized model given z_t (and time encoding)

Training

Training follows the classical log-likelihood maximization view

$$\log P_{\theta}(\mathbf{x}) = \log \int P_{\theta}(\mathbf{z}_1, \dots, \mathbf{z}_T, \mathbf{x}) d\mathbf{z}_{1\dots T}$$

$$= \log \int P_{\theta}(\boldsymbol{x}|\boldsymbol{z}_1) \prod_{t=2}^{T} P_{\theta}(\boldsymbol{z}_{t-1}|\boldsymbol{z}_t) P_{\theta}(\boldsymbol{z}_T) d\boldsymbol{z}_{1...T}$$

...which is, of course, intractable

Training – ELBO at the rescue

Introduce the encoder distribution q (with $\bar{z}=z_1,\ldots,z_T$)

(loglik)
$$\log \int P_{\theta}(\bar{z}, x) d\bar{z} \ge \int q(\bar{z}|x) \log \left[\frac{P_{\theta}(\bar{z}, x)}{q(\bar{z}|x)} \right] d\bar{z} \ (ELBO)$$

Sparing some derivation and simplifications approximate ELBO as:

$$\mathbb{E}_{q(\boldsymbol{z}_{1}|\boldsymbol{x})}[\log P_{\theta}(\boldsymbol{x}|\boldsymbol{z}_{1})] - \sum_{t=2}^{T} KL(P_{\theta}(\boldsymbol{z}_{t-1}|\boldsymbol{z}_{t})||q(\boldsymbol{z}_{t-1}|\boldsymbol{z}_{t},\boldsymbol{x}))$$

Reconstruction term

Aligns predicted and original (inputconditional) denoising densities

ELBO Loss Function

Distributions in KL are all Gaussians so can write the full form of the loss

$$\sum_{x} \left((-\log \mathcal{N}(\mu_{\theta}(\boldsymbol{z}_{1},t),\sigma_{1}^{2}\boldsymbol{I})) + \sum_{t=2}^{T} \frac{1}{2\sigma_{t}^{2}} \left\| \left(\frac{(1-\alpha_{t-1})}{(1-\alpha_{t})} \sqrt{1-\beta_{t}} \boldsymbol{z}_{t} + \frac{\sqrt{\alpha_{t-1}}\beta_{t}}{(1-\alpha_{t})} \boldsymbol{x} \right) - \mu_{\theta}(\boldsymbol{z}_{t},t),\sigma_{t}^{2}\boldsymbol{I}) \right\|^{2} \right)$$
Reconstruction
$$\text{Target mean of } q(\boldsymbol{z}_{t-1}|\boldsymbol{z}_{t},\boldsymbol{x})$$

Minimize difference between estimate of \mathbf{z}_{t-1} and the most likely value from ground truth-denoised data

Training – Practical view

Loss can be heavily simplified by reparameterizing so that the model predicts the noise $\epsilon_{\theta}(\cdot)$ that was mixed with the original data, rewriting x as

$$\boldsymbol{x} = \frac{1}{\sqrt{\alpha_t}} \boldsymbol{z}_t - \frac{\sqrt{1 - \alpha_t}}{\sqrt{\alpha_t}} \boldsymbol{\epsilon}_t$$

Inserting x above into the ELBO yields (after a while)

A network which predicts the unit noise given current noised input \mathbf{z}_t

$$Loss(\theta) = \sum_{x} \sum_{t=1}^{T} \left\| \epsilon_{\theta} \left(\sqrt{\alpha_{t}} x + \sqrt{1 - \alpha_{t}} \epsilon_{t}, t \right) - \epsilon_{t} \right\|^{2}$$

$$\mathbf{Z}_{t}$$
J. Ho et al., NeurIPS 2020

Implementation - Training

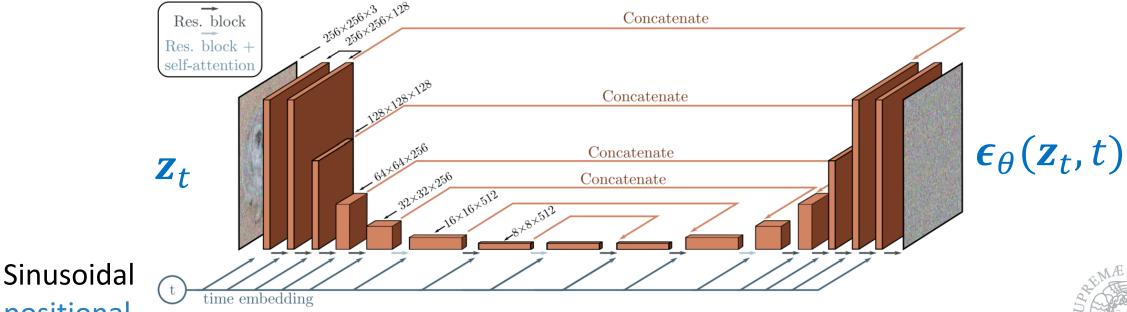
```
Algorithm 18.1: Diffusion model training
```

During forward we add noise to image. During reverse we predict that noise with a DNN and then subtract it from the image to denoise it.

Diffusion model for images

J. Ho et al, NeurlPS 2020 Dhariywal and Nichol NeurlPS 2021

U-Net architectures with ResNet blocks and self-attention layers



positional embeddings

Time features are fed to residual blocks

Università di Pisa

Noise Schedules & Other Tricks

- Terms β_t and σ_t control variance of forward diffusion and reverse denoising, respectively
 - β_t linear schedule
 - $\sigma_t^2 = \beta_t$
- Slowly increase the amount of added noise (as high-resolution information is corrupted first)
- Alternatives
 - σ_t can be learned by minimizing the bound
 - β_t can be learned by minimizing the variance of the training objective

$$q(\mathbf{z}_{t}|\mathbf{z}_{t-1}) = \mathcal{N}(\sqrt{1-\beta_{t}}\mathbf{z}_{t-1},\beta_{t}\mathbf{I})$$

 $P_{\theta}(\mathbf{z}_{t-1}|\mathbf{z}_t) = \mathcal{N}(\mu_{\theta}(\mathbf{z}_t, t), \sigma_t^2 \mathbf{I})$

Trick for high-resolution images

Use a cascade of diffusion models as in progressive GANs

Guided Generation – Classifier Guidance

Guide diffusion process using auxiliary data c, using the gradient of a trained classifier as guidance

- 1. Train the diffusion model unconditionally
- 2. Train a classifier $P(c|\mathbf{z}_t)$ where c are conditioning labels
- 3. Add an extra term when sampling the diffusion model, i.e. when reconstructing z_{t-1} from z_t , that modifies the reconstruction in the direction given by the gradient of a classifier

$$\mathbf{z}_{t-1} = \hat{\mathbf{z}}_{t-1} + \sigma_t \boldsymbol{\epsilon} + \sigma_t^2 \frac{\partial P(c|\mathbf{z}_t)}{\partial \mathbf{z}_t}$$
Reversed diffusion Classifier guidance

Classifier Guidance - Issues

 Classifier guidance comes from mixing the predicted score function of the unconditional diffusion model with the classifier gradients

$$\frac{\partial \log P_{\gamma}(\mathbf{z}_t|c)}{\partial \mathbf{z}_t} = \frac{\partial \log P(\mathbf{z}_t)}{\partial \mathbf{z}_t} + \gamma \frac{\partial \log P(c|\mathbf{z}_t)}{\partial \mathbf{z}_t}$$

- γ guidance scale
- Classifier receives a noisy input z_t at each step (can't use pretrained ones)
- Most of z_t is of no use for predicting c => arbitrary classifier gradients

Classifier-free Guidance

J. Ho, T. Salimans, NeurIPS 2021 Workshop DGMs Applications

Derive guidance from Bayes rule

$$\frac{\partial \log P_{\gamma}(\mathbf{z}_t|c)}{\partial \mathbf{z}_t} = (1 - \gamma) \frac{\partial \log P(\mathbf{z}_t)}{\partial \mathbf{z}_t} + \gamma \frac{\partial \log P(\mathbf{z}_t|c)}{\partial \mathbf{z}_t}$$
Unconditional diffusion score
$$\frac{\partial \log P_{\gamma}(\mathbf{z}_t|c)}{\partial \mathbf{z}_t} + \gamma \frac{\partial \log P(\mathbf{z}_t|c)}{\partial \mathbf{z}_t}$$
Unconditional diffusion score

- Training conditional diffusion with dropout (randomly removing conditioning)
- Conditioning replaced by flag input (presence/absence of conditioning) => single model for conditional/unconditional diffusion

Università di Pisa

High-Resolution Image Generation

Class ID = 213
"Irish Setter"

Model 1

Model 2

Model 3

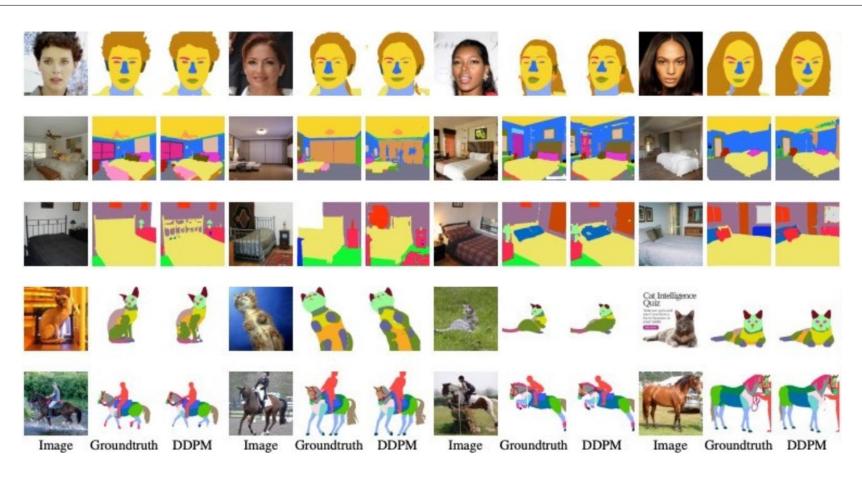
Model 3

 256×256

Università di Pisa

J. Ho et al, JMLR 2022

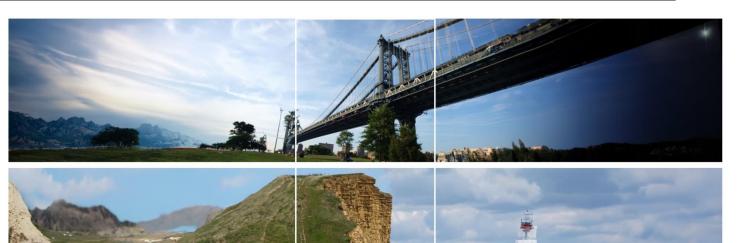
Diffusion-based Semantic Segmentation



Baranchuk et al, ICLR 2022

Conditional Generation

"A photo of a raccoon wearing an astronaut helmet, looking out of the window at night" (IMAGEN)



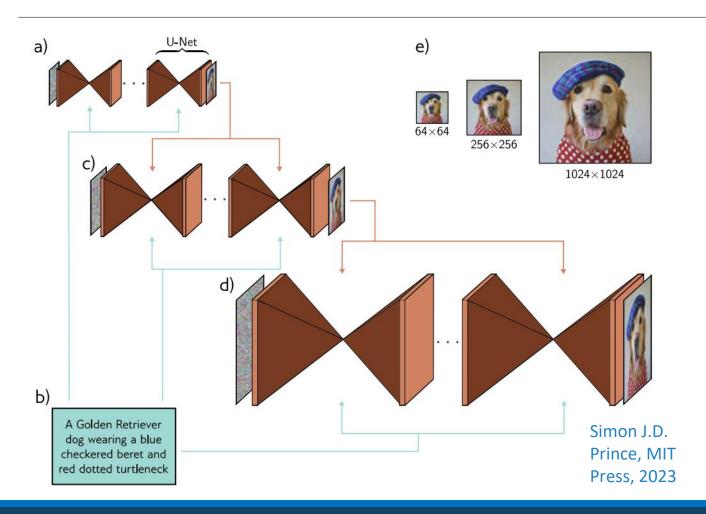
Generated

Input

Generated

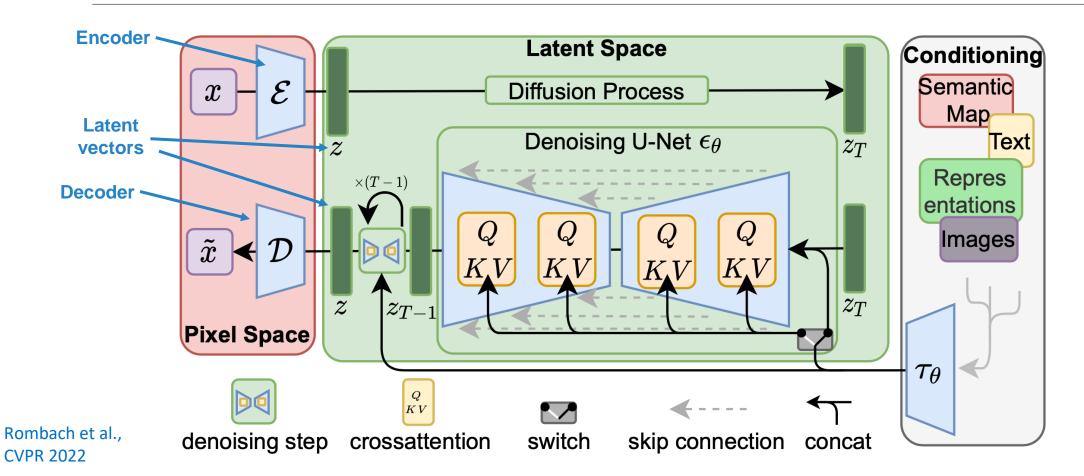
Panorama completion

Cascaded Conditional Generation



- Scalar vector embedding + spatial addition (or adaptive group normalization)
- Image channel-wise concatenation of the conditional image
- Text vector embedding + spatial addition or crossattention

Latent Space Diffusion



Run
diffusion
in the
latent
space
instead of
pixel
space for
cost
saving

DALL•E 2 – Diffusion Model



Take Home Messages

- Generate data from noise through a learned incremental denoising with fixed steps
 - Diffusion process can be reversed if the variance of the gaussian noise added at each step is small enough
 - Training goal is to make sure that the predicted noise map at each step is unit gaussian
 - During generation, subtract the predicted noise from the noisy image at time t to generate the image at time t-1
- Diffusion can be computationally involved
 - Need to take many small steps
 - Vanilla diffusion on a latent space same size as the original data
- Guided generation can improve sample quality (and reduce diversity)
- Latent space diffusion
 - Improves efficiency of generation
 - Generalizes which data that can be used (including discrete objects)
 - Allows introducing semantic structuring in latent space

Upcoming Lectures

- No Lecture on 23-25 April
- Tuesday 30 April
 - Final lecture on deep generative models: normalizing flow
- No Lecture 01 May
- Thursday 02 May
 - First lecture on advanced models

