Diffusion Models

INTELLIGENT SYSTEMS FOR PATTERN RECOGNITION (ISPR)

DAVIDE BACCIU – DIPARTIMENTO DI INFORMATICA - UNIVERSITA' DI PISA

DAVIDE.BACCIU@UNIPI.IT

Lecture Outline

- Introduction
 - Motivations
 - Learning to generate by denoising
- Denoising diffusion models
 - Forward & Reverse process
 - Training diffusion models
 - Implementation
- Advanced & Applications
 - Conditional generation
 - Multimodal

Why Diffusion Models?

"Diffusion Models Beat GANs on Image Synthesis" Dhariwal & Nichol, OpenAI, 2021

Ramesh et al., 2022

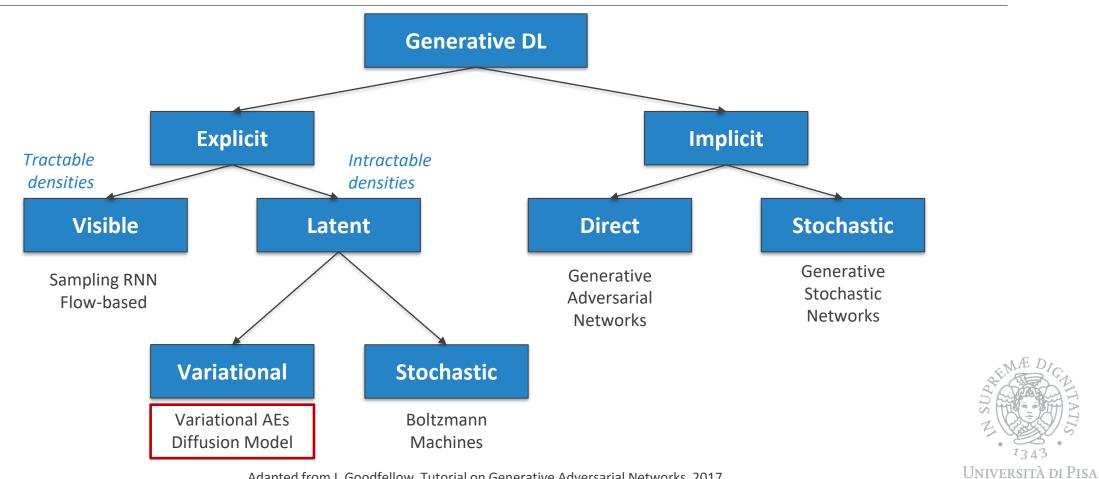
"a teddy bear on a skateboard in times square"

Why Diffusion Models?

High-Resolution Image Synthesis with Latent Diffusion Models" Rombach et al., 2022

DAVIDE BACCIU - ISPR COURSE

Diffusion models latent space has same size of data!



A Taxonomy

Adapted from I. Goodfellow, Tutorial on Generative Adversarial Networks, 2017

DAVIDE BACCIU - ISPR COURSE

Learning to generate by denoising

• Two processes

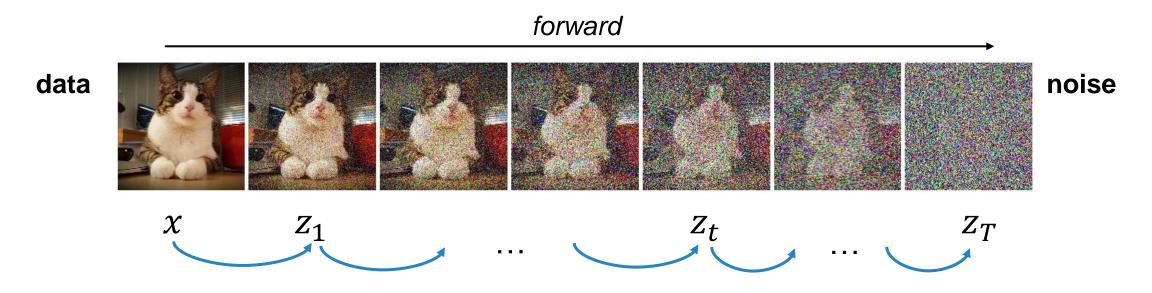
- Forward diffusion gradually adding noise to input
- Reverse process reconstructs data from noise (generation)
- The key is how to do this efficiently

forward (encoder)

data

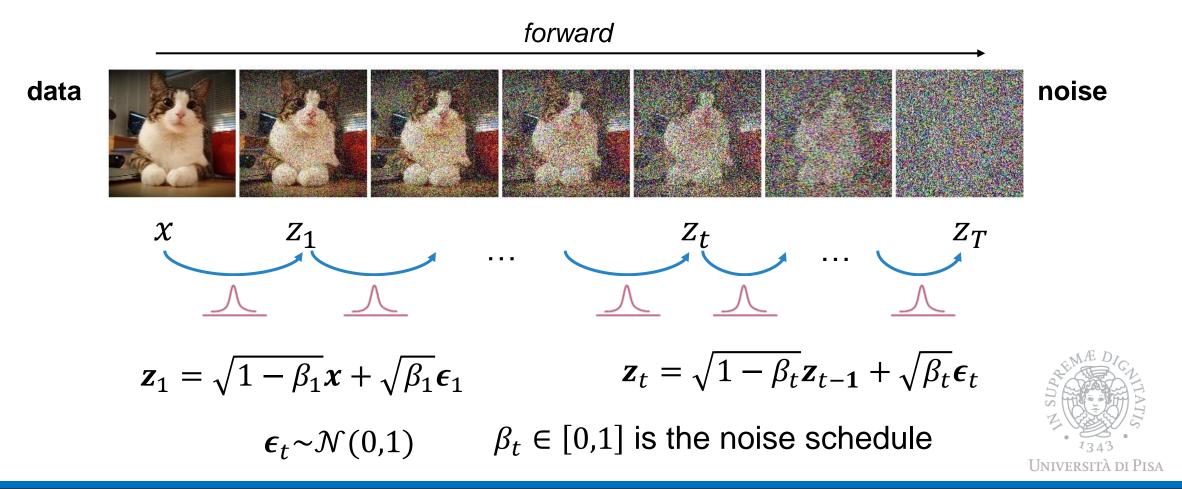
reverse (decoder)

Forward Diffusion - Intuition

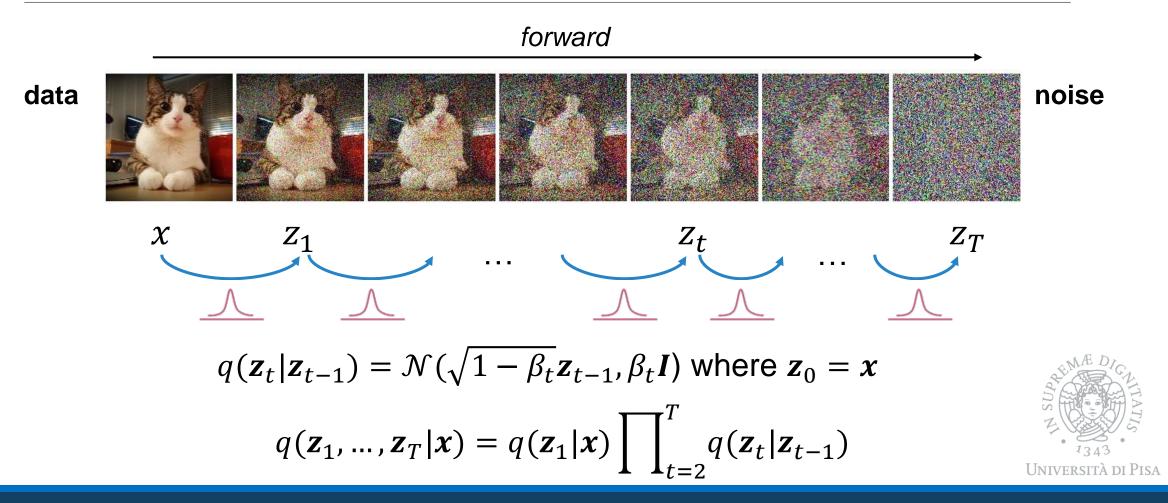


A fixed (i.e. non-adaptive) noise process in T steps mapping original data x into a same-sized latent variables z_t using simple additive noise

Forward Diffusion – Noise addition



Forward Diffusion – Distributions



Diffusion Kernel

Generating z_t sequentially is time-consuming so we use a closedform solution for $q(z_t | \cdot)$

$$q(\mathbf{z}_t | \mathbf{x}) = \mathcal{N}(\sqrt{\alpha_t} \mathbf{x}, (1 - \alpha_t) \mathbf{I}) \quad \text{(diffusion kernel)}$$
$$\alpha_t = \prod_{s=1}^t (1 - \beta_s)$$

Which allows writing the marginal as

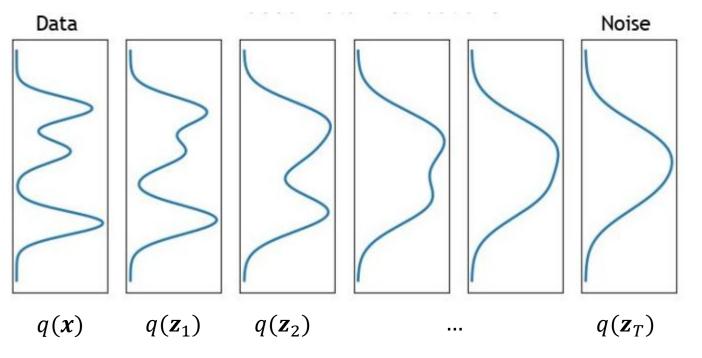
$$q(\mathbf{z}_t) = \int q(\mathbf{z}_t, \mathbf{x}) d\mathbf{x} = \int q(\mathbf{x}) q(\mathbf{z}_t | \mathbf{x}) d\mathbf{x}$$

UNIVERSITÀ DI PISA

data distribution

Evolution of diffused data distributions

$$q(\mathbf{z}_t) = \int q(\mathbf{z}_t, \mathbf{x}) d\mathbf{x} = \int q(\mathbf{x}) q(\mathbf{z}_t | \mathbf{x}) d\mathbf{x}$$



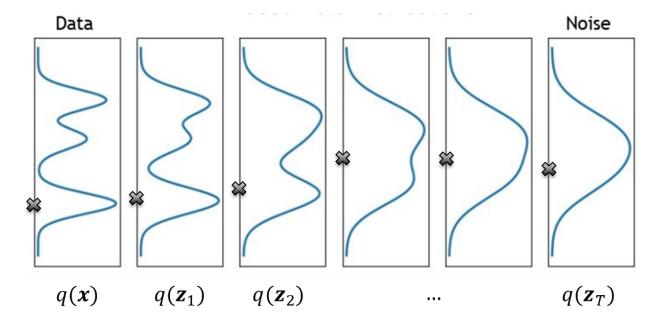
Denoising – Inverting the process

Sample $\mathbf{z}_T \sim \mathcal{N}(0,1)$

Iterate $\mathbf{z}_{t-1} \sim q(\mathbf{z}_{t-1} | \mathbf{z}_t)$

True denoising distribution is intractable

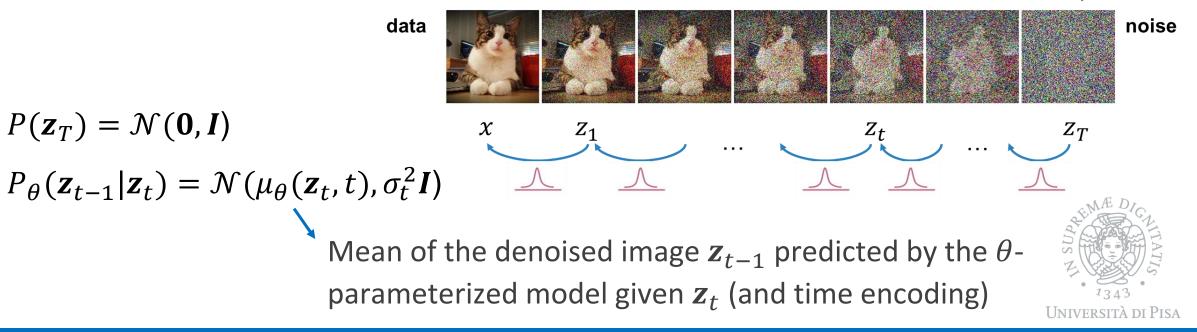
$$q(\mathbf{z}_{t-1}|\mathbf{z}_t) = \frac{q(\mathbf{z}_{t-1})q(\mathbf{z}_t|\mathbf{z}_{t-1})}{q(\mathbf{z}_t)}$$



We cannot de-mix noise if we don't know the starting point x. If we do, then we can show that $q(z_{t-1}|z_t, x)$ is Normal

Denoising – Reverse Process

- Reverse process learns an approximated denoising distribution (decoder)
- Assuming reverse distributions are approximately Normal (reasonable if β_t are small and T large). reverse/denoising/generation



Training

• Training follows the classical log-likelihood maximization view

$$\log P_{\theta}(\boldsymbol{x}) = \log \int P_{\theta}(\boldsymbol{z}_{1}, \dots, \boldsymbol{z}_{T}, \boldsymbol{x}) d\boldsymbol{z}_{1\dots T}$$

$$= \log \int P_{\theta}(\boldsymbol{x}|\boldsymbol{z}_{1}) \prod_{t=2}^{T} P_{\theta}(\boldsymbol{z}_{t-1}|\boldsymbol{z}_{t}) P_{\theta}(\boldsymbol{z}_{T}) d\boldsymbol{z}_{1...T}$$

• ...which is, of course, intractable

Training – ELBO at the rescue

ntroduce the encoder distribution
$$q$$
 (with $\overline{z} = z_1, ..., z_T$)
(loglik) $\log \int P_{\theta}(\overline{z}, x) d\overline{z} \ge \int q(\overline{z} | x) \log \left[\frac{P_{\theta}(\overline{z}, x)}{q(\overline{z} | x)} \right] d\overline{z}$ (*ELBO*)

Sparing some derivation and simplifications, we approximate ELBO as:

$$\mathbb{E}_{q(\boldsymbol{z}_{1}|\boldsymbol{x})}[\log P_{\theta}(\boldsymbol{x}|\boldsymbol{z}_{1})] - \sum_{t=2}^{T} KL(q(\boldsymbol{z}_{t-1}|\boldsymbol{z}_{t},\boldsymbol{x})||P_{\theta}(\boldsymbol{z}_{t-1}|\boldsymbol{z}_{t}))$$
Reconstruction term
Aligns predicted and original (input-conditional) denoising densities

ELBO Loss Function

Distributions in KL are all Gaussians so can write the full form of the loss

$$\sum_{x} \left((-\log \mathcal{N}(\mu_{\theta}(\mathbf{z}_{1},t),\sigma_{1}^{2}\mathbf{I})) + \sum_{t=2}^{T} \frac{1}{2\sigma_{t}^{2}} \left\| \begin{pmatrix} (1-\alpha_{t-1}) \\ (1-\alpha_{t}) \end{pmatrix} \sqrt{1-\beta_{t}} \mathbf{z}_{t} + \frac{\sqrt{\alpha_{t-1}}\beta_{t}}{(1-\alpha_{t})} \mathbf{x} \end{pmatrix} - \mu_{\theta}(\mathbf{z}_{t},t) \right\|^{2} \right)$$

Reconstruction
Target mean of
 $q(\mathbf{z}_{t-1} | \mathbf{z}_{t}, \mathbf{x})$ predicted \mathbf{z}_{t-1}

Minimize difference between estimate of z_{t-1} and the most likely value from ground truth-denoised data

Training – Practical view

Loss can be heavily simplified by reparameterizing so that the model predicts the noise $\epsilon_{\theta}(\cdot)$ that was mixed with the original data, rewriting x as

 $\boldsymbol{x} = \frac{1}{\sqrt{\alpha_t}} \boldsymbol{z}_t - \frac{\sqrt{1-\alpha_t}}{\sqrt{\alpha_t}} \boldsymbol{\epsilon}_t$

Inserting *x* above into the ELBO yields (after a while)

A network which predicts the unit noise given current noised input z_t

$$Loss(\theta) = \sum_{x} \sum_{t=1}^{T} \left\| \epsilon_{\theta} \left(\sqrt{\alpha_{t}} x + \sqrt{1 - \alpha_{t}} \epsilon_{t}, t \right) - \epsilon_{t} \right\|^{2}$$

$$Z_{t}$$
J. Ho et al, NeurIPS 2020

Implementation - Training

Algorithm 18.1: Diffusion model training

Input: Training data \mathbf{x} Output: Model parameters $\boldsymbol{\theta}$ repeat

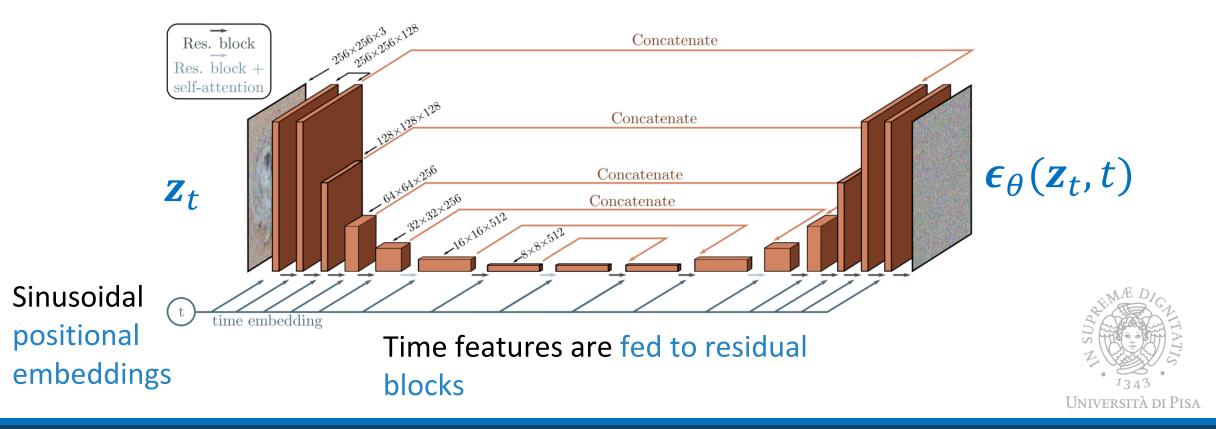
for $i \in \mathcal{B}$ do // For every training example index in batch $t \sim \text{Uniform}[1, \dots T]$ // Sample random timestep $\epsilon \sim \text{Norm}[0, \mathbf{I}]$ // Sample noise $\ell_i = \left\| \epsilon_{\theta} (\sqrt{\alpha_t} x_i + \sqrt{1 - \alpha_t} \epsilon, t) - \epsilon \right\|^2$ // Compute individual loss Accumulate losses for batch and take gradient step until converged

During forward we add noise to image. During reverse we predict that noise with a DNN and then subtract it from the image to denoise it.

Diffusion model for images

J. Ho et al, NeurIPS 2020 Dharivwal and Nichol NeurIPS 2021

U-Net architectures with ResNet blocks and self-attention layers



Noise Schedules

- Terms β_t and σ_t control variance of forward diffusion and reverse denoising, respectively
 - β_t linear schedule
 - $\sigma_t^2 = \beta_t$
- Slowly increase the amount of added noise (as high-resolution information is corrupted first)
- Alternatives
 - σ_t can be learned by minimizing the bound
 - β_t can be learned by minimizing the variance of the training objective

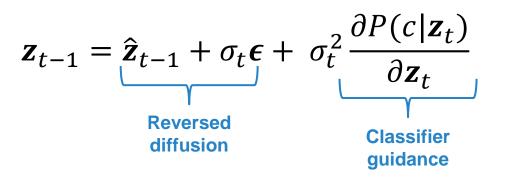
$$q(\mathbf{z}_t | \mathbf{z}_{t-1}) = \mathcal{N}(\sqrt{1 - \beta_t} \mathbf{z}_{t-1}, \beta_t \mathbf{I})$$

$$P_{\theta}(\boldsymbol{z}_{t-1}|\boldsymbol{z}_{t}) = \mathcal{N}(\mu_{\theta}(\boldsymbol{z}_{t}, t), \sigma_{t}^{2}\boldsymbol{I})$$

Guided Generation – Classifier Guidance

Guide diffusion process using auxiliary data c, using the gradient of a trained classifier as guidance

- 1. Train the diffusion model unconditionally
- 2. Train a classifier $P(c|\mathbf{z}_t)$ where *c* are conditioning labels
- 3. Add an extra term when sampling the diffusion model, i.e. when reconstructing z_{t-1} from z_t , that modifies the reconstruction in the direction given by the gradient of a classifier



Classifier Guidance - Issues

 Classifier guidance comes from mixing the predicted score function of the unconditional diffusion model with the classifier gradients

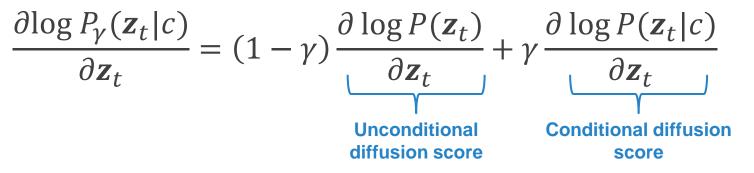
$$\frac{\partial \log P_{\gamma}(\boldsymbol{z}_t | c)}{\partial \boldsymbol{z}_t} = \frac{\partial \log P(\boldsymbol{z}_t)}{\partial \boldsymbol{z}_t} + \gamma \frac{\partial \log P(c | \boldsymbol{z}_t)}{\partial \boldsymbol{z}_t}$$

- γ guidance scale
- Classifier receives a noisy input z_t at each step (can't use pretrained ones)
- Most of z_t is of no use for predicting c => arbitrary classifier gradients

Classifier-free Guidance

J. Ho, T. Salimans, NeurIPS 2021 Workshop DGMs Applications

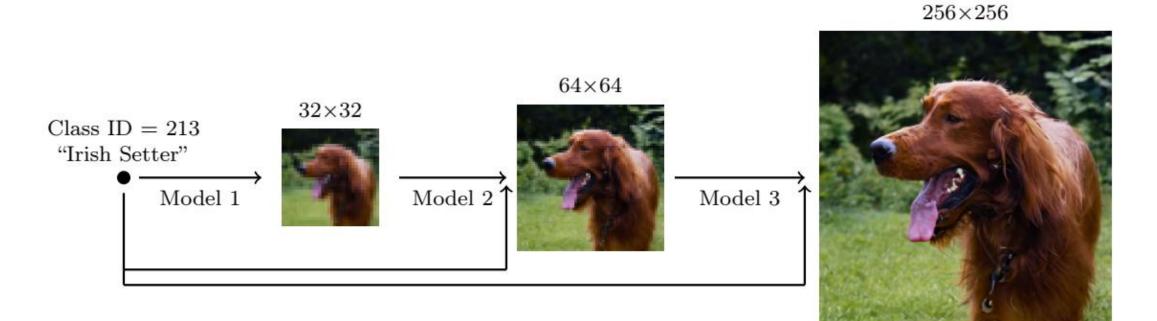
Derive guidance from Bayes rule



- Training conditional diffusion with dropout (randomly removing conditioning)
- Conditioning replaced by flag input (presence/absence of conditioning) => single model for conditional/unconditional diffusion

UNIVERSITÀ DI PISA

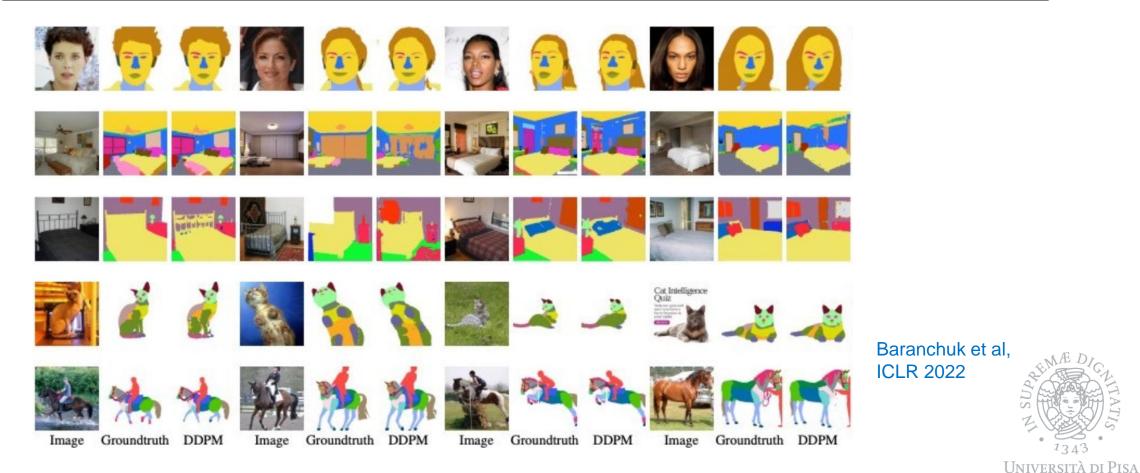
High-Resolution Image Generation



J. Ho et al, JMLR 2022

DAVIDE BACCIU - ISPR COURSE

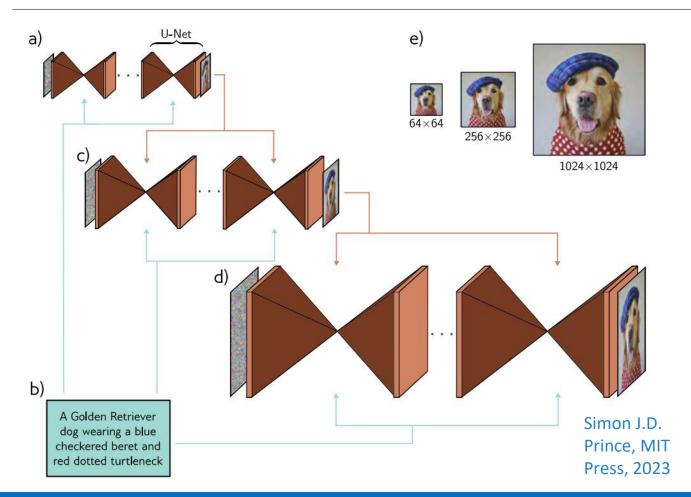
Diffusion-based Semantic Segmentation



DAVIDE BACCIU - ISPR COURSE

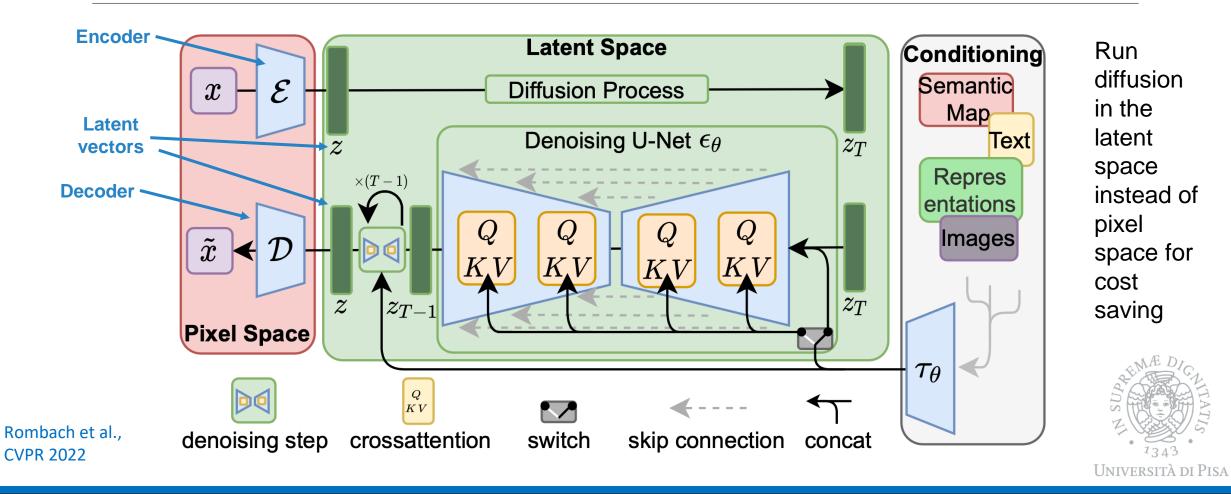
Conditional Generation

Cascaded Conditional Generation

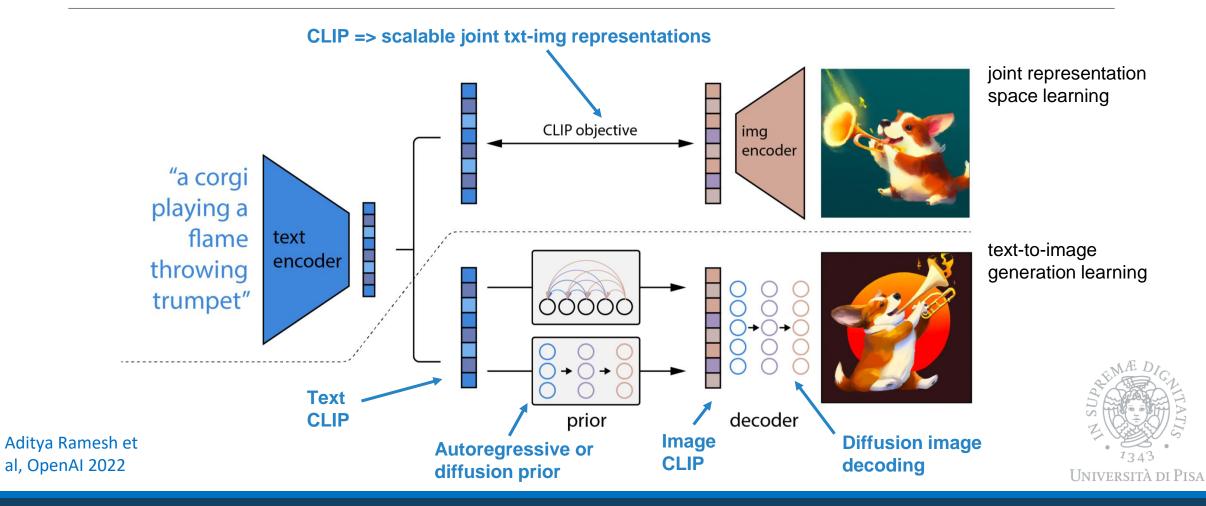


- Scalar vector embedding
 + spatial addition (or adaptive group normalization)
- Image channel-wise concatenation of the conditional image
- Text vector embedding + spatial addition or crossattention

Latent Space Diffusion



DALL•E 2 – Diffusion Model



Take Home Messages

- Generate data from noise through a learned incremental denoising with fixed steps
 - Diffusion process can be reversed if the variance of the gaussian noise added at each step is small enough
 - Training goal is to make sure that the predicted noise map at each step is unit gaussian
 - During generation, subtract the predicted noise from the noisy image at time t to generate the image at time t-1
- Diffusion can be computationally involved
 - Need to take many small steps
 - Vanilla diffusion on a latent space same size as the original data
- Guided generation can improve sample quality (and reduce diversity)
- Latent space diffusion
 - Improves efficiency of generation
 - Generalizes which data that can be used (including discrete objects)
 - Allows introducing semantic structuring in latent space

Next Lecture(s)

Final lecture on deep generative models: normalizing flow

- Change of variable
- Coupling flows
- Masking & squeezing
- Invertible convolutions
- Autoregressive flows
- Normalizing flows and deep generative models wrap-up

