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Lecture Outline

❖ Motivations

❖ Formalization of the learning task: graph prediction, induction, 

transduction and generation

❖ Historical perspective: contractive and contextual models

❖ A view on modern deep learning for graphs

❖ Convolutional, feedforward, recurrent and attention-based approaches
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Introduction
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Why Graphs?
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Context is 
fundamental for the 
correct 
interpretation of 
information

Why Graphs?
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…well also for the plenty of applications

○ Chemistry & Physics

○ Knowledge graphs

○ (Bio/social) networks

○ Recommender systems

○ Point clouds

○ Code & ICT systems
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Graph Structured Data

Vectorial node label

𝑥𝑣

Cycle

Oriented edge/arc 𝑒𝑣𝑢
possibly with label 𝑙𝑣𝑢

𝑣

𝑢Node/vertex 𝑢

Undirected edge Structures are useful 

because allow to 

represent relationships in 

the data
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A Nomenclature Nightmare

Deep learning for graphs

Graph neural networks

Neural networks for graphs

Graph CNN

CNN for/on graphs

Learning graph/node embedding

Geometric deep learning
Graph Convolutional Networks

Deep Graph Networks
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Deep Learning with graphs

Hierarchical
representation 
learning allows to 
efficiently diffuse 
information 
through graph 
structure

Node 
representation 
depends on its 
context (shorter 
first-longer later)
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Predictive Tasks – Network data
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?

?

Node predictions

Predict a type or a continuous 

value for a given node

Link prediction

Predict whether two nodes are 

linked

Community/module detection

Identify clusters of linked nodes 

that are alike



Predictive Tasks – Graph Level

A dataset of i.i.d graphs

Graph classification

Assign whole structure to a 

specific class 

Graph regression

Regress a structure to a 

value (or a vector of values)
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Transductive tasks

Learn to generate a 

structured prediction

Given a 

vectorial

and/or 

structured 

input

𝒚

𝒙 𝒚~𝑃(𝒚|𝒙)
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An Hystorical (and Geographical) 
Perspective
Early neural network 

approaches to deal with cyclic 

graphs of varying topology date 

back to 2005-2009

(Sperduti & Starita, TNN 

1997)

Scarselli et al, TNN 2009 

A. Micheli, TNN 2009 
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Contractive - Graph Neural Networks 
(GNN)

14

❖ Extend the Recurrent/Recursive 
Neural Network approach to cyclic
graphs

❖ Handle loops through fixed points

❖ Impose dynamic weight constraints to 
yield a contractive state mapping  

Scarselli et al, TNN 2009 

https://sailab.diism.unisi.it/gnn/

https://sailab.diism.unisi.it/gnn/


Contextual - Neural Networks for 
Graphs (NN4G)
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A. Micheli, TNN 2009 

L=1

L=2

L=3
❖ A feedforward approach to process

graphs

❖ Handle loops through layering

❖ Uses context from frozen earlier

layers compute the state on the 

node at current layer

❖ Layerwise training



Deep Graph Networks

❖Encode vertices and the graph itself into a vector space by means 

of an adaptive (learnable) mapping

❖Use the learned encodings to solve predictive and explorative tasks
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A Survey of Recent Approaches

❖ Convolutional Neural Networks for Graphs

❖ Spectral  

❖ Spatial

❖ Message Passing Graph Processing

❖ The message passing paradigm

❖ Overview of relevant feedforward approaches

❖ Graph reduction

❖ Recurrent (randomized) graph processing

❖ Attention-based graph processing (Graph Transformers)
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Convolutional Neural 
Networks for Graphs
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How to Perform Convolutions on 
Graphs?

SPATIAL DOMAIN

What is the 
equivalent of 
sliding a 
kernel to 
aggregate 
local spatial 
information?

SPECTRAL DOMAIN

Exploit the Convolution Theorem 
and Fourier analysis to perform 
convolutions in the spectral domain

ℱ 𝑓 ∗ 𝑔 = ℱ 𝑓) × ℱ(𝑔

Decompose a function 𝑓 as a
combination of vectors 𝒆𝑘 from an
orthonormal basis
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The Spectral Scenario

❖ Single weighted undirected graph

❖ 𝑤𝑖𝑗 > 0 weight of the i-j edge

❖ Functions 𝑓𝑖 attaching values (i.e. 

labels/signals  𝑥𝑖) to nodes 𝑖

❖ Task: process the signals defined on 

the graph structure
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𝑤𝑖𝑗

𝑓𝑗𝑓𝑖



Spectral Graph Convolution in 1 Slide

○ Given a graph G, the eigendecomposition of its Laplacian provides 

an orthonormal basis 𝑈 which allow to compute the graph 

convolution of its node signals 𝒇 with a filter

21

𝒇 ∗𝐺 𝒈 = ℱ−1 ℱ 𝒇) ℱ(𝒈 = 𝑈𝐖(λ)𝑈𝑇𝒇

Convolutional filter g in spectral domain

Graph equivalent of the learnable 

CNN filter matrix W

Spectral convolution matrix W 

contains information on the 

graph Laplacian



A Graph View on (Image) Convolutions
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Visual convolutions are 

graph convolutions on a 

regular grid

Plus some key assumptions which make it 

difficult to directly apply them to graphs 

❖ Regular neighborhood

❖ Existence of a total node ordering



Node Neighborhoods 
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Example of 4-neighborhoods

…

convolutions

𝑤1 𝑤2 𝑤3 𝑤4 𝑤5

Neighborhoods depend on node ordering: 

how can I get coherent node ordering 

across multiple graphs?



PATCHY-SAN
Niepert, Ahmed, Kutzkov, ICML 2016
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Leverage graph labelling techniques (e.g. Weisfeiler-Lehman) to determine a coherent 

ordering within the graph and between the graphs

𝑤1 𝑤2 𝑤3 𝑤4 𝑤5

Neighborhood for k=5

Parametric convolutional 

filter of size k

Determining a coherent ordering to 

match nodes to filter parameters in 

NP complete (graph normalization)



Message-Passing Graph 
Processing
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Neighborhood Aggregation & Layering
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What is inside of the Box?

𝒉𝑖
𝑙−1

𝒉𝑗
𝑙−1

𝒉𝑘
𝑙−1

𝒉𝑣
𝑙

A learning model of course (e.g. a neural network) including an 

aggregation function to handle size-varying neighborhoods

A simple model

𝒉𝑣
l = 𝜎 𝑾𝑙𝐴𝐺𝐺 𝒉𝑖

𝑙−1: 𝑖 ∈ 𝑁 𝑣 , 𝑾𝑙𝒉𝑣
𝑙−1
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The graph convolutional layer

state perm. invariant 
function

MLP/LinearMLP/Linear

Variants/extensions:

Edge-aware convolution
Attention over neighbors
Laplacian-normalized
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A Message-Passing view on Deep Graph 
Networks
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Different kinds of message-passing 
updates
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Edge Node Graph



Graph Isomorphism Network (a.k.a. 
sum is better) Xu et al, ICLR 2019

❖ A study of GNN expressivity w.r.t. WL test of graph isomorphism

❖ Choice of aggregation functions influences what structures can 

be recognized

❖ Propose a simple aggregation and concatenation model
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Graph Attention

1

Learning to weight 

contribution of other 

nodes when 

aggregating to form 

the node embedding

multihead attention

Velickovic et al, ICLR 2018
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Using Node Embedding

𝒉𝐺 =

𝑖∈𝐺

𝒉𝑖
𝐿

Aggregate all node 

embeddings to compute 

graph level predictions

Typically 

embedding 

from top layer

Train node level predictors

Works also for 

inductive 

learning
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Deep Graph Networks - The Complete 
Picture
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What About Pooling?
❖ Standard aggregation operates of predefined node subsets 

❖ Ignore community/hierarchical structure in the graph

❖ Need graph coarsening (pooling) operators

❖ Differentiable

❖ Graph theoretical

❖ Graph signature
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Rex Ying et al, NIPS 2018

Bacciu et al, AAAI 2023



K-MIS Graph Coarsening

DAVIDE BACCIU - - UNIVERSITY OF PISA

A proper extension of image-

pooling to graphs with theoretical 

guarantees and scalability

Bacciu et al, AAAI 2023
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Training the Embedding

Backpropagate

from the (graph or 

node level) error 

computed from 

the top layer 

embeddings to the 

early layers
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graph

node



Recurrent Graph 
Processing
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Graph embedding by learning-free neurons 

○ Each vertex in an input graph is encoded by the hidden layer𝑣

embedding (state)
of vertex 𝑣 input feature

of vertex 𝑣
embedding (state)

of neighbors of vertex 𝑣

input weight matrix hidden weight matrix

𝐡(𝑣) = tanh(𝐕 𝐱 𝑣 + 

𝑣′∈𝑁(𝑣)

𝐖 𝐡(𝑣′))

𝒉(𝑣)

𝒙(𝑣) 𝒉(𝑣1) 𝒉(𝑣𝑘)…

…

𝑣1

𝑣2

𝑣𝑘

Need this to be contractive to 
ensure convergence of 

embedding

DAVIDE BACCIU - ISPR COURSE



Deep Reservoirs for Graphs

Trained in closed-form 

(e.g., pseudo-inversion, 

ridge regression)

𝒚 𝒈 = 𝐖𝐨 

𝑣∈𝑉𝒈

𝒉(𝑣)

Deep reservoir 

embedding

𝒙(𝑣5)

𝒙(𝑣4)

𝒙(𝑣1)

𝒙(𝑣2)

𝒙(𝑣3)

𝒙(𝑣4)

𝒉 𝐿 (𝑣5)

𝒉 𝑳 (𝑣1)

𝒉 𝐿 (𝑣2)

𝒉 𝑳 (𝑣3)

𝒉 𝐿 (𝑣4)

𝒉 𝑳 (𝑣4)

∑
𝐖𝐨

readout layer

𝒉 𝟏 (𝑣5)

𝒉 𝟏 (𝑣1)

𝒉 𝟏 (𝑣2)

𝒉 𝟏 (𝑣3)

𝒉 1 (𝑣4)

𝒉 𝟏 (𝑣4)

first layer last layer

Gallicchio & Micheli. 

AAAI 2020.
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Graph Transformers
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Global Graph Attention

A direct generalization of standard 
attention from sequence tokens to nodes

X1

X3 X2

X4

Dwivedi &

Bresson, AAAI-

WS 2021

Img adapted from Medium

https://medium.com/@reutdayan1/graph-transformer-2ede65db4658


Wait! What is the inductive bias here?

Original graph

GAT Model
Graph Transformer

Img source: Kumo AI

https://kumo.ai/research/introduction-to-graph-transformers/


The return of positional encodings
○ Transformers incorporate positional encodings to provide 

directional sense in a sequence (complete ordering)

○ Graph have no complete ordering, but positional encodings 
can be used to reintroduce structural bias

● Local PEs (Node-Level): Reflect a node's position relative to a specific 
substructure or cluster within the graph (e.g. reachability in random walks)

● Global PEs (Node-Level): Node's position w.r.t. entire graph (e.g. Laplacian 
eigenvectors)

● Relative PEs (Edge-Level): Represent the positional relationship between 
pairs of nodes (e.g. pairwise distances in random walks)

○ Can be complemented with structural encodings providing 
insights into the local and global architecture of the graph



GPS – Best of 2 worlds

Global

graph 

attention 

easing 

information 

transfer

Local 

message 

passing 

with 

strong 

structure 

bias

Rampášek et 

al, NeurIPS

2022



Wrap-Up
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Software

You can find most of the foundational models in this 

lecture implemented here

Our Python library for Deep 
Graph Networks

github.com/diningphil/PyDGN
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Data (Benchmarks)
❖ Pytorch Geometric and DGL integration

❖ Standardized splits and evaluators + leader-board

❖ Node, link and graph property prediction tasks

TUDataset

❖Standardise assessment of existing benchmarks 

rather than inventing new ones

❖ Chemical, social, vision, synthetic, bioinformatics 

(with leader-board)

❖ Pytorch Geometric and DGL integration
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Conclusions
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❖ Deep learning for graphs is a now a consolidated research area

❖ DGNs as natural extensions of convolutional and recurrent architectures to 
graphs

❖ A candidate AI model for the integration of symbolic knowledge, numerical data and 
reasoning

❖ First wave of works (now almost over?) focusing mainly on 

❖ Different ways of implementing message passing and aggregation on static 
graphs

❖ Graph reductions and pooling

❖ Expressivity properties associated with different aggregation functions

❖ Efficiency and efficacy of context creation and propagation by mixing local and 
global message passing



Next Lecture
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❖ Generative graph learning

❖ Probabilistic models on graphs

❖ Graph VAE, graph language models and graph diffusion models

❖ Issues with information propagation on graphs

❖ Oversmoothing, oversquashing and undereaching

❖ Topological approaches

❖ Dynamical systems approaches

❖ Spatio-temporal and dynamic graphs

❖ Applications
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