Introduction to Reinforcement Learning

INTELLIGENT SYSTEMS FOR PATTERN RECOGNITION (ISPR)
DAVIDE BACCIU – DIPARTIMENTO DI INFORMATICA - UNIVERSITA’ DI PISA
DAVIDE.BACCIU@UNIPI.IT
Preliminaries
Introduction to the RL Module

- RL Fundamentals
- Value Function Methods
- Policy Gradient Methods
- Exploration and Exploitation
- Deep reinforcement learning

A NOTE - Much of the content of this course and its slides are heavily based on the masterpiece course by David Silver

https://www.davidsilver.uk/teaching/
Introduction & Fundamental Concepts
What characterizes Reinforcement Learning (vs other ML tasks)?

- No supervisor: only a *reward* signal
- Delayed asynchronous feedback
- Time matters (sequential data, continual learning)
- Agent’s actions affect the subsequent data it receives (inherent non-stationarity)
Rewards

- A reward R_t is a scalar feedback signal
- Indicates how well agent is doing at step t
- The agent’s job is to maximise cumulative reward
- Reinforcement learning is based on the reward hypothesis
- All goals can be described by the maximisation of expected cumulative reward
Sequential Decision Making

- Goal: select actions to maximise total future reward
- Actions may have long term consequences
- Reward may be delayed
- It may be better to sacrifice immediate reward to gain more long-term reward
- Examples:
 - A financial investment (may take months to mature)
 - Refuelling a helicopter (might prevent a crash in several hours)
 - Blocking opponent moves (might help winning chances many moves from now)
Agents and Environments

- S_t^e is the environment e private representation at time t
- S_t^a the internal representation owned by agent a
- Full observability \implies Agent directly observes the environment state $O_t = S_t^a = S_t^e$
- Formally this is a Markov Decision Process (MDP)
Partially Observable Environment

- Partial observability \Rightarrow Agent indirectly observes the environment
 - A robot with camera vision only may not know absolute location
 - A trading agent only observes current prices
 - A poker player only observes public cards

- Formally $S^a_t \neq S^e_t$ and the problem is a Partially Observable Markov Decision Process (POMDP)

- The agent needs to build its own state representation S^a_t
 - History: $S^a_t = H_t$
 - Beliefs on environment state: $S^a_t = [P(S^e_t = s^1) \ldots P(S^e_t = s^N)]$
 - A dynamic memory (RNN): $S^a_t = \sigma(W_s S^a_{t-1} + W_o O_t)$
Components of a Reinforcement Learning Agent
Policy

- A policy π is the agent’s behaviour
- It is a map from state s to action a
 - Deterministic policy: $a = \pi(s)$
 - Stochastic policy: $\pi(a|s) = P(A_t = a|S_t = s)$
- A policy π is a distribution over actions a given states
Value Function

- The value function v is a predictor of future reward.
- Used to evaluate the goodness/badness of states.
- And therefore to select between actions, e.g.

$$v_\pi(s) = \mathbb{E}_\pi[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots | S_t = s]$$

Expected (discounted) future reward following policy π from state s.
Model

- A model predicts what the environment will do next
- Predict next state s' following an action a
 \[P_{ss'}^a = P(S_{t+1} = s' | S_t = s, A_t = a) \]
- Predict next reward
 \[R_s^a = \mathbb{E}[R_{t+1} | S_t = s, A_t = a] \]
A Forever Classic - The Maze Example

- **Rewards**: -1 per time-step
- **Actions**: N, E, S, W
- **States**: Agent location

Start

Goal
Maze Example (Policy)

Arrows represent policy $\pi(s)$ for each state s
Maze Example (Value Function)

Numbers denote the value $v_{\pi}(s)$ for each s

Expected time to reach the goal
Maze Example (Model)

- Agent may have an internal (imperfect) model of the environment
 - How actions change the state
 - How much reward from each state
- Grid Layout: transition model \(P_{ss'}^a \)
- Numbers: immediate reward model \(R_s^a \)
Learning Vs Planning

Two fundamental problems in sequential decision making

- Reinforcement Learning
 - The environment is initially unknown
 - The agent interacts with the environment
 - The agent improves its policy

- Planning (reasoning, introspection, search,...)
 - A model of the environment is known
 - The agent performs computations with its model (no external interaction)
 - The agent improves its policy
Markov Decision Processes
Introduction to MDPs

- Markov decision processes formally describe an environment for reinforcement learning
 - Environment is fully observable
 - i.e. The current state completely characterises the process
- Almost all RL problems can be formalised as MDPs, e.g.
 - Optimal control primarily deals with continuous MDPs
 - Partially observable problems can be converted into MDPs
 - Bandits are MDPs with one state
A Markov Decision Process (MDP) is a Markov chain with rewards and actions. It is an environment in which all states are Markov.

Definition (Markov Decision Process)

- A Markov Decision Process is a tuple \(\langle S, A, P, R, \gamma \rangle \)
 - \(S \) is a finite set of states
 - \(A \) is a finite set of actions \(a \)
 - \(P \) is a state transition matrix, s.t. \(P_{ss'}^a = P(S_{t+1} = s' | S_t = s, A_t = a) \)
 - \(R \) is a reward function, s.t. \(R_s^a = \mathbb{E}[R_{t+1} | S_t = s, A_t = a] \)
 - \(\gamma \) is a discount factor, \(\gamma \in [0,1] \)
Return

Definition (Return)

The return G_t is the total discounted reward from time-step t

\[G_t = R_{t+1} + \gamma R_{t+2} + \ldots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \]

- The value of receiving reward R after $k + 1$ timesteps is $\gamma^k R$
- γ values immediate reward Vs delayed reward
 - $\gamma \approx 0$ leads to "myopic" evaluation
 - $\gamma \approx 1$ leads to "far-sighted" evaluation
Bellman Equation for MDPs

- The state-value function $v(s)$ of a Markov Decision Process is the expected return starting from state s
 $$v(s) = \mathbb{E}[G_t | S_t = s]$$

- The value function $v(S_t)$ can be decomposed into two parts
 - Immediate reward R_{t+1}
 - Discounted value of successor state $\gamma v(S_{t+1})$

$$v(s) = \mathbb{E}[G_t | S_t = s] = \mathbb{E} \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} | S_t \right]$$

$$= \mathbb{E}[R_{t+1} | S_t = s] + \gamma \mathbb{E}[v(S_{t+1}) | S_t = s]$$

$$= \mathcal{R}_s + \gamma \sum_{s'} P_{ss'} v(s')$$
Value Function (with policy)

Definition (Value Function)

The state-value function $v_\pi(s)$ of an MDP is the expected return starting from state s and following policy π

$$v_\pi(s) = \mathbb{E}_\pi[G_t | S_t = s]$$

Definition (Action-Value Function)

The action-value function $q_\pi(s, a)$ is the expected return starting from state s, taking action a, and then following policy π

$$q_\pi(s, a) = \mathbb{E}_\pi[G_t | S_t = s, A_t = a]$$
Bellman Expectation Equation – Value and Action-Value Functions

The state-value function can again be decomposed into immediate reward plus discounted value of successor state

\[v_\pi(s) = \mathbb{E}_\pi [R_{t+1} + \gamma v_\pi(S_{t+1}) | S_t = s] = \sum_{a \in \mathcal{A}} \pi(a | s) q_\pi(s, a) \]

Similarly, we can decompose the action-value function

\[q_\pi(s, a) = \mathbb{E}_\pi [R_{t+1} + \gamma q_\pi(S_{t+1}, A_{t+1}) | S_t = s, A_t = a] = \mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} P_{ss'}^a v_\pi(s') \]
Value and Action-Value Functions – One More Step of Nesting

\[v_\pi(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a v_\pi(s') \right) \]

The expected return of being in a state reachable from \(s \) through action \(a \) and then continue following policy

\[q_\pi(s, a) = R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a \sum_{a' \in \mathcal{A}} \pi(a'|s') q_\pi(s', a') \]

The expected return of any action \(a' \) taken from states reachable from \(s \) through action \(a \) (and then follow policy)
Finding an Optimal Policy

An optimal policy can be found by maximising over $q_*(s, a)$

$$
\pi_*(a|s) = \begin{cases}
1 & \text{if } a = \arg \max_{a \in \mathcal{A}} q_*(s, a) \\
0 & \text{otherwise}
\end{cases}
$$

- There is always a deterministic optimal policy for any MDP
- If we know $q_*(s, a)$, we straightforwardly find the optimal policy
Bellman Optimality Equations

Optimal value functions are **recursively related** Bellman-style

\[
v_*(s) = \max_{a \in \mathcal{A}} q_*(s, a) = \max_{a \in \mathcal{A}} R_s^a + \gamma \sum_{s' \in \mathcal{S}} P_{ss'}^a v_*(s')
\]

\[
q_*(s, a) = R_s^a + \gamma \sum_{s' \in \mathcal{S}} P_{ss'}^a v_*(s') = R_s^a + \gamma \sum_{s' \in \mathcal{S}} P_{ss'}^a \max_{a' \in \mathcal{A}} q_*(s', a')
\]
Solving the Bellman Optimality Equation

- Bellman Optimality Equation is non-linear
- No closed form solution (in general)
- Many iterative solution methods
 - Value Iteration
 - Policy Iteration
 - Q-learning
 - SARSA
Model-Based RL
Iterative Policy Evaluation

- **Problem**: evaluate a given policy π
- **Solution**: iterative application of Bellman expectation backup

$$v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_{\pi}$$

- **Using synchronous backups**
 1. At each iteration $k + 1$
 2. For all states $s \in S$
 3. Update $v_{k+1}(s)$ from $v_k(s')$ where s' is a successor state of s
Iterative Policy Evaluation (Dynamic Programming)

\[v_{k+1}(s) = \sum_{a \in A} \pi(a|s) \left(R_s^a + \gamma \sum_{s' \in S} P_{ss'}^a v_k(s') \right) \]

\[v_{k+1} = R^\pi + \gamma P^\pi v_k \]
Evaluating a Random Policy in the Small Gridworld

- Undiscounted episodic MPD ($\gamma = 1$)
- Nonterminal states 1, ..., 14
- One terminal state (shown twice as shaded squares)
- Actions leading out of the grid leave state unchanged
- Reward is -1 until the terminal state is reached
- Agent follows uniform random policy
 - $\pi(n \mid \cdot) = \pi(s \mid \cdot) = \pi(e \mid \cdot) = \pi(w \mid \cdot) = 0.25$
Iterative Policy Evaluation on Small Gridworld (I)

$k = 0$

ν_k

<table>
<thead>
<tr>
<th>0.0</th>
<th>0.0</th>
<th>0.0</th>
<th>0.0</th>
<th>0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Greedy policy on ν_k

$k = 1$

<table>
<thead>
<tr>
<th>0.0</th>
<th>-1.0</th>
<th>-1.0</th>
<th>-1.0</th>
<th>0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.0</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>-1.0</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>-1.0</td>
<td>-1.0</td>
<td>-1.0</td>
<td>-1.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

$k = 2$

<table>
<thead>
<tr>
<th>0.0</th>
<th>-1.7</th>
<th>-2.0</th>
<th>-2.0</th>
<th>0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.7</td>
<td>-2.0</td>
<td>-2.0</td>
<td>-2.0</td>
<td>0.0</td>
</tr>
<tr>
<td>-2.0</td>
<td>-2.0</td>
<td>-2.0</td>
<td>-1.7</td>
<td>0.0</td>
</tr>
<tr>
<td>-2.0</td>
<td>-2.0</td>
<td>-1.7</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

random policy
Iterative Policy Evaluation on Small Gridworld (II)

$k = 3$

<table>
<thead>
<tr>
<th></th>
<th>-2.4</th>
<th>-2.9</th>
<th>-3.0</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>-2.4</td>
<td>-2.9</td>
<td>-3.0</td>
<td>-2.9</td>
<td></td>
</tr>
<tr>
<td>-2.9</td>
<td>-3.0</td>
<td>-2.9</td>
<td>-2.4</td>
<td></td>
</tr>
<tr>
<td>-3.0</td>
<td>-2.9</td>
<td>-2.4</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>

$k = 10$

<table>
<thead>
<tr>
<th></th>
<th>-2.4</th>
<th>-2.9</th>
<th>-3.0</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>-2.4</td>
<td>-2.9</td>
<td>-3.0</td>
<td>-2.9</td>
<td></td>
</tr>
<tr>
<td>-2.9</td>
<td>-3.0</td>
<td>-2.9</td>
<td>-2.4</td>
<td></td>
</tr>
<tr>
<td>-3.0</td>
<td>-2.9</td>
<td>-2.4</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>

$k = \infty$

<table>
<thead>
<tr>
<th></th>
<th>-2.4</th>
<th>-2.9</th>
<th>-3.0</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td>0.0</td>
</tr>
<tr>
<td>-2.4</td>
<td>-2.9</td>
<td>-3.0</td>
<td>-2.9</td>
<td></td>
</tr>
<tr>
<td>-2.9</td>
<td>-3.0</td>
<td>-2.9</td>
<td>-2.4</td>
<td></td>
</tr>
<tr>
<td>-3.0</td>
<td>-2.9</td>
<td>-2.4</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>

optimal policy
How to Improve a Policy

- Given policy π
 - Evaluate the policy π
 $$v_\pi(s) = \mathbb{E}_\pi [R_{t+1} + \gamma R_{t+2} + \cdots | S_t = s]$$
 - Improve the policy by acting greedily with respect to v_π
 $$\pi' = greedy(\pi) \Rightarrow \pi'(s) = \arg\max_{a \in A} q_\pi(s, a)$$

- In Small Gridworld improved policy was optimal, $\pi' = \pi^*$
- In general, need more iterations of improvement / evaluation
- But this process of policy iteration always converges to π^*
Policy Iteration

✓ Policy evaluation - Estimate v_{π}
✓ Iterative policy evaluation

✓ Policy improvement - Generate $\pi' \geq \pi$
✓ Greedy policy improvement
Modified Policy Improvement

- Does policy evaluation need to converge to v_{π^*}?
 - Introduce a stopping condition, e.g. ϵ-convergence of value function
 - Stop after k iterations of iterative policy evaluation, e.g. $k=3$ was sufficient in small gridworld

- Why update policy every iteration?
 - Stop after $k = 1$
 - This is equivalent to value iteration (coming up)
Generalized Policy Iteration

✓ Policy evaluation - Estimate v_π
✓ Any policy evaluation

✓ Policy improvement - Generate $\pi' \geq \pi$
✓ Any policy improvement algorithm
Value Iteration

✓ **Problem**: find optimal policy π

✓ **Solution**: iterative application of Bellman optimality backup

$$v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_\pi$$

✓ Using *synchronous backups*

 i. At each iteration $k + 1$
 ii. For all states $s \in S$
 iii. Update $v_{k+1}(s)$ from $v_k(s')$

✓ Unlike policy iteration, there is *no explicit policy*

✓ Intermediate value functions *may not correspond to any policy*
Value Iteration - Formally

\[v_{k+1}(s) = \max_{a \in \mathcal{A}} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} P_{ss'}^a v_k(s') \right) \]

\[v_{k+1} = \max_{a \in \mathcal{A}} (\mathcal{R}^a + \gamma P^a v_k) \]
Wrap-up
Model-based Reinforcement Learning

<table>
<thead>
<tr>
<th>Problem</th>
<th>Bellman Equation</th>
<th>Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prediction</td>
<td>Bellman Expectation Equation</td>
<td>Iterative Policy Evaluation</td>
</tr>
<tr>
<td>Control</td>
<td>Bellman Expectation Equation + Greedy Policy Improvement</td>
<td>Policy Iteration</td>
</tr>
<tr>
<td>Control</td>
<td>Bellman Optimality Equation</td>
<td>Value Iteration</td>
</tr>
</tbody>
</table>

- Algorithms are based on **state-value function** $v_\pi(s)$ or $v_*(s)$
 - Complexity is $O(mn^2)$ per iteration ($m = |A|$ and $n = |S|$)

- Could also apply to **action-value function** $q_\pi(s, a)$ or $q_*(s, a)$
 - Complexity is $O(m^2n^2)$ per iteration
Take home messages

- Reinforcement learning is a general-purpose framework for decision-making.
- Markov decision processes are a formalism to describe a fully-observable environment for reinforcement learning.
 - Can be relaxed to infinite and continuous actions/state and partially observable environments.
- Value functions have a recursive formulation using Bellman equations.
 - Any MDP allows for an optimal policy.
- Policy iteration - Re-define the policy at each step and compute the value according to this new policy until the policy converges.
- Value iteration - Computes the optimal state value function by iteratively improving the estimate of V(s).
- Policy vs Value iteration
 - Policy can converge quicker (agent is interested in optimal policy).
 - Value iteration is computationally cheaper (per iteration).
Next Lecture

✓ **Model-free prediction** - Estimate the value function of an unknown MDP
 o Monte-Carlo approaches
 o Temporal-Difference learning
 o TD(λ)

✓ **Model-free control** - Optimise the value function of an unknown MDP
 o On-policy Vs Off-policy
 o SARSA(λ)
 o Q-learning
Addons
DP Example

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html
OpenAI Gym

A toolkit for developing and comparing reinforcement learning algorithms
✓ Implementation of the interaction environment
✓ Plug-in your agent with integration of main DL frameworks

```python
import gym

# create the environment
env = gym.make("FrozenLake-v0")
# reset the environment before starting
env.reset()

# loop 10 times
for i in range(10):
    # take a random action
    env.step(env.action_space.sample())
    # render the game
    env.render()

# close the environment
env.close()
```
Step 1 – Prepare a main learning loop

```
# spaces dimension
nA = env.action_space.n
nS = env.observation_space.n

# initializing value function and policy
V = np.zeros(nS)
policy = np.zeros(nS)

# some useful variable
policy_stable = False
it = 0

while not policy_stable:
    policy_evaluation(V, policy)
    policy_stable = policy_improvement(V, policy)
    it += 1

# Learning converged
run_episodes(env, policy)
```

Value function evaluation
Policy improvement on value function

Full code here
def policy_evaluation(V, policy, eps=0.0001):
 '''
 Policy evaluation. Update the value function until it reach a steady state
 '''
 while True:
 delta = 0
 # loop over all states
 for s in range(nS):
 old_v = V[s]
 # update V[s] using the Bellman equation
 V[s] = eval_state_action(V, s, policy[s])
 delta = max(delta, np.abs(old_v - V[s]))
 if delta < eps:
 break

def eval_state_action(V, s, a, gamma=0.99):
 return np.sum([p * (rew + gamma*V[next_s]) for p, next_s, rew, _ in env.P[s][a]])
Policy Update

```python
def policy_improvement(V, policy):
    
    Policy improvement. Update the policy based on the value function
    
    policy_stable = True
    for s in range(nS):
        old_a = policy[s]
        # update the policy with the action that bring to the highest state value
        policy[s] = np.argmax([eval_state_action(V, s, a) for a in range(nA)])
        for a in range(nA)]
        if old_a != policy[s]:
            policy_stable = False
    return policy_stable
```

\[\pi'(s) = \arg \max_{a \in \mathcal{A}} q_{\pi}(s, a) \]
Value Iteration

Full Code Here

\[v_{k+1}(s) = \max_{a \in A} \left(R_s^a + \gamma \sum_{s' \in S} p_{s,s'}^a v_k(s') \right) \]