
Ethereum Smart contracts
development
With Javascript (2022)

Andrea Lisi, andrealisi.12lj@gmail.com

mailto:andrealisi.12lj@gmail.com

Part 1
Solidity overview
A brief summary of a Solidity smart contract

Smart contracts: structure
A smart contract is similar to a Java
class

It is composed by:
● Declaration
● A State (attributes)
● A list of functions (methods)

3

contract MyContract {
 // State
 uint public value;

 // Functions
 constructor() public {
 value = 1;
 }
 function increase() public {
 value = value+1;
 }
}

State variables determine the state of that smart contract

Solidity supports various data types:
● Fixed length

○ bool, (u)int, bytes32, address
● Variable length

○ bytes, string
● array, mapping(key_type => value_type)

Smart contracts: state

4

Smart contracts: state
Array
● Fixed length or dynamic length, can be iterated over
● Removing an element requires a decision

○ Leaving a blank hole, replacing with last element (breaks
ordering), shifting elements (costly)

Mapping(key => value)
● All non-assigned values are Zero (false for bool, 0 for uint, etc)
● Support random access, it is not possible to iterate over the keys

unless you keep a separate list of all the keys with significant value
5

Smart contracts: functions
Functions compose the code of the smart contract

Functions have labels that declare how they interact with the state:
● A view function only reads the state;
● A pure function does not read or write the state
● Otherwise, the function writes (and reads) the state

○ The state modification will be placed in a transaction
○ It will be written on the blockchain
○ Therefore, it costs a fee to the user

6

Smart contracts: functions

7

 uint public counter;

 function increment() public {
 counter = counter + 1;
 }

 function getSquare() public view returns(uint) {
 return counter**2;
 }

 function computeSquareOf(uint _a) public pure returns(uint) {
 return _a**2;
 }

Smart contracts: visibility
State variables and functions can have different visibilities
● Private

○ A private state variable or function is exposed only to the
contract itself

● Public
○ A public function is exposed to other contracts; a public state is

a shortcut that creates a getter function with the name of the
variable

8

State variables and functions can have different visibilities
● Internal

○ An internal state variable or function is exposed to child
contracts and the contract itself

● External
○ (Only functions) An external function is exposed only to other

contracts. They are more efficient with large inputs
■ Warning: foo() does not work; this.foo() does
■ https://ethereum.stackexchange.com/questions/19380/external-vs-public-best-practices

Smart contracts: visibility

9

https://ethereum.stackexchange.com/questions/19380/external-vs-public-best-practices

Smart contracts: functions
Private does not mean “hidden” or “secret”
● It means a function cannot be called by other smart contracts

○ Only by the contract itself

Remember a Solidity smart contract lives on the Ethereum blockchain,
that is visible by anyone
● Can be explored online with explorers

○ Etherscan is one example

10

Smart contracts: functions

11
https://etherscan.io/tx/0xdbc5b21b0e67731b07dde8fe882975f7d24bd62a76c766d99c414626c189ac4e

Signature of invoked
function

Input sent (1847883)

See? Input is visible
(econded in bytes)

https://etherscan.io/tx/0xdbc5b21b0e67731b07dde8fe882975f7d24bd62a76c766d99c414626c189ac4e

In Ethereum any entity (account) has associated
● An address: e.g 0x5B38Da6a701c568545dCfcB03FcB875f56beddC4

● A balance in Ether greater or equal than 0

The two types of accounts are:
● Contract Accounts: are controlled by code, and a transaction

activates its code
● Externally Owned Accounts (EOA): are controlled by private keys

and sign transactions

Accounts

12

Solidity defines various global variables and functions
● Ether units: wei, gwei, szabo, …
● Time units: seconds, minutes, …
● Functions: keccak256, abi.encode, abi.decode, …
● Transaction data: msg

○ msg.sender: the transaction sender (address)
○ msg.value: the transaction associated ETH (uint)

● ...
https://docs.soliditylang.org/en/v0.8.3/units-and-global-variables.html

Global variables

13

https://docs.soliditylang.org/en/v0.8.3/units-and-global-variables.html

Fees and gas
A function modifying the state writes data on the
blockchain
● It requires a transaction

Each transaction costs a fee to the user
● The fee is proportional to the required amount

of computation (EVM OPCODES)
● Each OPCODE has a costs named gas

14

Fees and gas
Each transaction costs a fee to the user
● Before each transaction, a user can set in their

wallet:
○ The gas price: i.e. how much Ether they are

willing to pay for each unit of gas
○ The gas limit: i.e. how many units of gas

they are willing to consume for that
transaction

15

A function can be labelled as payable if it *expects* to receive Ether
● Once received the Ether the contract’s balance is automatically

increased, unless the transaction does not revert
● msg.value stores the received Ether (uint)

Smart contracts: receive Ether

16

 function foo() public payable {
 address payer = msg.sender; // Who sent the Ether
 uint received = msg.value; // How much *in wei*
 uint current = address(this).balance; // The current balance of the contract
 }

If a smart contract receives plain Ether, i.e. a transaction to the contract
does not invoke a function:
● Trigger the receive function (>= Solidity 0.6.*)

If a transaction invokes a function that does not match any of the
functions exposed by the contract, or as before but receive is not
implemented:
● Trigger the fallback function

As before, but neither receive nor fallback are implemented
● Throws exception

Smart contracts: receive Ether

17

Smart contracts: receive Ether
contract Example {
 // “address payable” labels an address meant to receive ETH from this contract
 address payable known_receiver;
 function forward() public payable {
 known_receiver.transfer(msg.value);
 }

 // All of them have in their body at most 2300 units of gas of computation available if
called by send() or transfer() (see next slide)
 receive() external payable {} // receive function
 fallback() external payable {} // fallback function Solidity >= 0.6.*
 function() public payable {} // fallback function Solidity < 0.6.*
}

18

If the contract has balance > 0, then it can send Ether as well
● Solutions that gives the receiver a gas limit of only 2300 units

○ address.send(amount) Send amount to address, returns True if
everything goes well, False Otherwise

○ address.transfer(amount) Throws exception if it fails
● Solution with customizable gas limit

○ address.call{options}(data bytes) Returns True or False
○ (bool result,) = address.call{gas: 123123, value: msg.value}("");

Smart contracts: send Ether

19

Send/transfer: pros & cons
● A fixed gas limit prevents the receiver to execute too much code

○ It may consume too much gas to the original transaction sender
○ The receiver can execute malicious code, attempting an attack

(e.g. reentrancy attack)
● Future updates to the gas associated to OPCODES (e.g. Istanbul

fork) may break contracts already deployed working with limits of
2300 units of gas

https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/

Smart contracts: send Ether

20

https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/

Smart contracts: events

contract Example {
 event click();
 event executed(address sender);

 function press_click() public {
 emit click();
 emit executed(msg.sender);
 } }

21

It is possible to declare an event in Solidity similarly to a function, and it
can be fired with the emit keyword
● Events are placed in the transaction log, useful for client apps

References
Solidity documentation V 0.8.13: https://docs.soliditylang.org/en/v0.8.13/index.html

Accounts: https://ethereum.org/en/whitepaper/#ethereum-accounts

Sending Ether:

https://medium.com/daox/three-methods-to-transfer-funds-in-ethereum-by-means-of-solidity-5719944ed6e9

https://vomtom.at/solidity-0-6-4-and-call-value-curly-brackets/

Best practices: https://consensys.github.io/smart-contract-best-practices/

Data management: https://blog.openzeppelin.com/ethereum-in-depth-part-2-6339cf6bddb9/
22

https://docs.soliditylang.org/en/v0.8.13/index.html
https://ethereum.org/en/whitepaper/#ethereum-accounts
https://medium.com/daox/three-methods-to-transfer-funds-in-ethereum-by-means-of-solidity-5719944ed6e9
https://consensys.github.io/smart-contract-best-practices/
https://blog.openzeppelin.com/ethereum-in-depth-part-2-6339cf6bddb9/

Smart contracts: development
It is possible to implement Ethereum smart contracts with the Solidity
programming language

Smart contracts can be developed and executed within:
● The browser IDE Remix, https://remix.ethereum.org/

● The CLI tool Truffle, https://www.trufflesuite.com/truffle

23

https://remix.ethereum.org/
https://www.trufflesuite.com/truffle

Extra
Advanced Solidity functionalities

Abi functions

25

The contract Abi (Application Binary Interface) is the standard
contract-to-contract communication in Ethereum, to encode and decode
functions, parameters, etc in known data, in bytes, to:
● Call a function of an external contract;
● Pass input arguments;
● And more.

https://docs.soliditylang.org/en/v0.8.4/abi-spec.html

https://docs.soliditylang.org/en/v0.8.4/units-and-global-variables.html#abi-encoding-and-de

coding-functions

https://docs.soliditylang.org/en/v0.8.4/abi-spec.html
https://docs.soliditylang.org/en/v0.8.4/units-and-global-variables.html#abi-encoding-and-decoding-functions
https://docs.soliditylang.org/en/v0.8.4/units-and-global-variables.html#abi-encoding-and-decoding-functions

Abi functions
contract Decoder {

 function encodeArgs(uint _a, bool _b) public pure returns(bytes memory) {
 bytes memory data = abi.encode(_a, _b);
 return data;
 }

 function decodeArgs(bytes memory data) public pure returns(uint, bool) {
 (uint _a, bool _b) = abi.decode(data, (uint, bool));
 return (_a, _b);
 }

}

26

Abi functions
contract HashContract {

 function encodeArgs(uint _a, bool _b) public pure returns(bytes memory) {
 bytes memory data = abi.encode(_a, _b);
 return data;
 }
 // The hash of arbitrary data can be computed with bytes32 hash =
kekkack256(abi.encode(param1, param2, ...));
 function computeHash(bytes memory data) public pure returns(bytes32) {
 bytes32 hash = keccak256(data);
 return hash;
 }
}

27

Calling contract functions

28

How to call a function of another smart contract?
● If you have the source code, you can import it on your Solidity file.

Therefore, you have visibility of the contract’s type and functions,
and the compiler understands them

● If you DO NOT have the source code, you can use a low-level call to
a function of a smart contract with the function’s selector as input
○ The selector are the first 4 bytes of the hash of the function

signature, i.e. functionName(param1, param2, ...)

Calling contract functions: import

29

contract External {

 uint public c;

 function increment() public {
 c = c + 1;
 }

 function increment(uint _a) public {
 c = c + _a;
 }

}

import "External.sol"
contract Caller {
 External contractExternal;
 constructor(address _c) public {
 contractExternal = External(_c);
 }
 function increment() public {
 contractExternal.increment();
 }
 function increment(uint _a) public {
 contractExternal.increment(_a);
 }
}

Calling contract functions: .call()

30

contract External {

 uint public c;

 function increment() public {
 c = c + 1;
 }

 function increment(uint _a) public {
 c = c + _a;
 }

}

contract Caller {
 address contractExternal;
 constructor(address _c) public {
 contractExternal = _c;
 }
 function increment() public {
 bytes4 selector =
bytes4(keccak256("increment()"));
 bytes memory data =
abi.encodeWithSelector(selector);
 (bool outcome,) =
contractExternal.call(data);
 if(!outcome) revert(); } }

Calling contract functions: .call()

31

contract External {

 uint public c;

 function increment() public {
 c = c + 1;
 }

 function increment(uint _a) public {
 c = c + _a;
 }

}

contract Caller {
 address contractExternal;
 constructor(address _c) public {
 contractExternal = _c;
 }
 function increment(uint _a) public {
 bytes4 selector =
bytes4(keccak256("increment(uint)"));
 bytes memory data =
abi.encodeWithSelector(selector, _a);
 (bool outcome,) =
contractExternal.call(data);
 if(!outcome) revert(); } }

Part 2
The Web3 library
An interface to interact with smart contracts

Web3
Web3 is a library to interact with the Ethereum network nodes with the
RPC protocol, Remote Procedure Call
● Communications are asynchronous

Software importing Web3 are able to communicate with smart contracts

33

Web3
Src: http://www.dappuniversity.com/articles/web3-js-intro

34

http://www.dappuniversity.com/articles/web3-js-intro

Web3

35

x = f();
contract.foo(x); Async RPC

contract.foo(x);

Process function

Wait for it to be
mined

return
receipt

return
receipt

User Software
with Web3

EVM Node

wait for transaction
receipt

Web3 implementations
[W1] web3Js: JavaScript

[W2] web3J: Java

[W3] web3py: Python

[W4] web3.php: Php

[W5] hs-web3: Haskell

36

NodeJs and Npm
In this tutorial we are going to use an environment based on Javascript
We need NodeJs and Npm (Node Package Manager)

37

Requirements: NodeJs
NodeJs is an environment to execute Javascript code on your machine
instead on the browser:
● Write server-side Javascript code
● Modern frameworks for web development (ReactJs, AngularJs etc…)
● And Javascript desktop applications (ElectronJs)
● Install NodeJs

○ https://nodejs.org/en/docs/

38

https://nodejs.org/en/docs/

Requirements: Npm
Npm (Node Package Manager) is the tool to install NodeJs packages
● Local packages are installed in the ./node_modules/ directory

○ Libraries and utilities for a single project
● Global packages are all installed in a single folder in your system

○ CLI tools to be reused among many projects
● It is installed with NodeJs

○ https://www.npmjs.com/get-npm

○ https://docs.npmjs.com/

39

https://www.npmjs.com/get-npm
https://docs.npmjs.com/

References, Web3
[W1] Web3Js: https://github.com/ethereum/web3.js

[W2] Web3J: https://github.com/web3j/web3j

[W3] Web3Py: https://github.com/ethereum/web3.py

[W4] Web3.php: https://github.com/sc0Vu/web3.php

[W5] hs-Web3: https://github.com/airalab/hs-web3

40

https://github.com/ethereum/web3.js
https://github.com/web3j/web3j
https://github.com/ethereum/web3.py
https://github.com/sc0Vu/web3.php
https://github.com/airalab/hs-web3

