
Alternatives to
backpropagation training
of (deep) neural models
ANDREA COSSU – ANDREA.COSSU@DI.UNIPI.IT

mailto:andrea.cossu@di.unipi.it

Once upon a time…
Here I am!

Bachelor Degree in Computer Science @ UniPisa

Master Degree in Computer Science – AI curriculum @ UniPisa

PhD in Data Science @ SNS

ANDREA COSSU - UNIVERSITY OF PISA - HTTPS://WWW.ANDREACOSSU.COM/ 2

Once upon a time…
Here I am!

Bachelor Degree in Computer Science @ UniPisa

Master Degree in Computer Science – AI curriculum @ UniPisa

PhD in Data Science @ SNS

Continual / Lifelong learning

ANDREA COSSU - UNIVERSITY OF PISA - HTTPS://WWW.ANDREACOSSU.COM/ 3

https://www.continualai.org/

https://www.continualai.org/

Once upon a time…
Here I am!

Bachelor Degree in Computer Science @ UniPisa

Master Degree in Computer Science – AI curriculum @ UniPisa

PhD in Data Science @ SNS

Post-doc researcher @ CS department, UniPisa

RTD-A @ CS department, UniPisa

ANDREA COSSU - UNIVERSITY OF PISA - HTTPS://WWW.ANDREACOSSU.COM/ 4

Once upon a time…
Here I am!

Bachelor Degree in Computer Science @ UniPisa

Master Degree in Computer Science – AI curriculum @ UniPisa

PhD in Data Science @ SNS

Post-doc researcher @ CS department, UniPisa

RTD-A @ CS department, UniPisa

ANDREA COSSU - UNIVERSITY OF PISA - HTTPS://WWW.ANDREACOSSU.COM/ 5

https://eic-emerge.eu/

https://eic-emerge.eu/

Emergent awareness from minimal
collectives

ANDREA COSSU - UNIVERSITY OF PISA - HTTPS://WWW.ANDREACOSSU.COM/ 6

End-to-end backpropagation
▪ «Differentiable programming»: 𝑦 = 𝑓 𝑥; 𝜃 = 𝑓𝜃 𝑥
▪ Computational graph: nodes are variables, edges are

operations

▪ We want to compute
𝜕𝑦

𝜕𝜃
→ chain rule!

▪ Reverse-mode automatic differentiation: 𝑦 fixed, 𝜃
varies (leaf nodes)

▪ Backpropagation → reverse-mode automatic
differentiation through chain rule

▪ 𝑓: 𝑅𝐼 → 𝑅𝑂 → 𝑂 steps required
▪ 𝑂= 1 for our common case (scalar loss)

▪ That’s why forward-mode is not used

ANDREA COSSU - UNIVERSITY OF PISA - HTTPS://WWW.ANDREACOSSU.COM/ 7

Backpropagating errors
▪ We have y = f𝜃 x , our differentiable learning model

▪ We measure the prediction error through the loss function 𝐿 𝑦, 𝑑

▪ E.g. MSE:
1

2
𝑒𝑇𝑒, 𝑒 = 𝑦 − 𝑑

▪ Once ∇𝜃𝐿(𝑦, 𝑑) is computed → SGD, Adam…

▪𝑎𝑙 = 𝑊𝑙ℎ𝑙−1 + 𝑏𝑙 , ℎ𝑙 = 𝜎 𝑎𝑙 → linear activation in output layer

▪ Output layer error: easy

▪
𝝏𝑳

𝝏𝒂𝟑
=

𝜕𝐿

𝜕ℎ3

𝜕ℎ3

𝜕𝑎3
= 𝜹𝟑 = 𝑒

▪
𝜕𝐿

𝜕𝑊3
= 𝛿3

𝜕𝑎3

𝜕𝑊3
= 𝑒 ℎ3

𝑇

▪ Hidden layers:

▪
𝜕𝐿

𝜕𝑊𝑙
= ((𝑾𝒍+𝟏

𝑻 𝛿𝑙+1) ∘ 𝜎′ 𝑎𝑙) ℎ𝑙
𝑇 , ∀𝑗 = 1, 2

ANDREA COSSU - UNIVERSITY OF PISA - HTTPS://WWW.ANDREACOSSU.COM/ 8

Very effective, but we don’t like it
▪ BP enabled efficient training of deep architectures
▪ de-facto standard for >20 years, still is

Why don’t we like it?

▪ Lack of modularity
▪ Sparsity is enforced with post-hoc pruning or pre-designed block-wise architectures

▪ «Biologically» unrealistic constraints:
▪ Two learning circuits (forward+backward)

▪ Symmetric weights (weight transport problem)

▪ Non-local information

▪ Not really compatible with neuromorphic/physical implementations

ANDREA COSSU - UNIVERSITY OF PISA - HTTPS://WWW.ANDREACOSSU.COM/ 9

Weight transport
▪Forward pass: ℎ𝑙 = 𝜎 𝑊𝑙ℎ𝑙−1 + 𝑏𝑙 , ∀ 𝑙 = 2, … , 𝐿

▪ Backward pass: 𝛿𝑙 = (𝑊𝑙+1
𝑇 𝛿𝑙+1) ∘ 𝜎′ 𝑎 ∀ 𝑙 =

1, … , 𝐿 − 1

▪ Two separate computational circuits with symmetric
information (same units then!)

▪ Transport of weight information across
 forward/backward circuits

▪ Backward circuit does not impact on neural
activations in the forward circuit (implausible)

Grossberg, S. Competitive learning: from interactive activation
to adaptive resonance. Cogn. Sci. 11, 23–63 (1987).

ANDREA COSSU - UNIVERSITY OF PISA - HTTPS://WWW.ANDREACOSSU.COM/ 10

Removing weight alignment
Feedback Alignment

▪ Random feedback weights 𝐵

▪ Decouples the forward and the backward passes

▪ FA pushes the weights in a similar direction
wrt backpropagation (how, why, uuh???)

▪ Still separate circuits (although more easily
implementable)

ANDREA COSSU - UNIVERSITY OF PISA - HTTPS://WWW.ANDREACOSSU.COM/ 11

Learning with Feedback Alignment
The error is computed at the output layer and then «backpropagated» via the 𝐵𝑙
matrices to lower layers

▪ Output layer → 𝛿3 = 𝑒

▪ Hidden layer → 𝛿𝑙 = 𝑩𝒍𝛿𝑙+1 ∘ 𝜎′(𝑎𝑙)

▪ 𝑊𝑙 aligns with 𝐵𝑙
𝑇

▪ Limited theoretical results
▪ FA makes training error → 0

▪ very restrictive conditions (linear networks, zero-init…)

▪ In general: FA update is not the gradient of any function → cannot guarantee to follow
any minimization path

ANDREA COSSU - UNIVERSITY OF PISA - HTTPS://WWW.ANDREACOSSU.COM/ 12

Backward weights influence forward
weights

ANDREA COSSU - UNIVERSITY OF PISA - HTTPS://WWW.ANDREACOSSU.COM/ 13

Δ𝑊 = 𝑒ℎ𝑇 = 𝑒 𝑊0𝑥 𝑇 = 𝑒𝑥𝑇𝑊0
𝑇

Δ𝑊0 ∝ 𝐵𝑒𝑥𝑇

FA update
converges
to BP
update

ANDREA COSSU - UNIVERSITY OF PISA - HTTPS://WWW.ANDREACOSSU.COM/ 14

Please, don’t

ANDREA COSSU - UNIVERSITY OF PISA - HTTPS://WWW.ANDREACOSSU.COM/ 16

(In)Direct Feedback Alignment
Disconnected feedback paths

No sequential backpropagation of errors, random
propagation through 𝐵, instead

Direct Feedback Alignment

▪ 𝛿𝑙 = (𝐵𝑙𝑒) ∘ 𝜎′ 𝑎𝑙

▪ 𝐵 can even be the same for all layers

Indirect Feedback Alignment

▪ 𝛿1 = (𝐵1𝑒) ∘ 𝜎′(𝑎1)

▪ 𝛿𝑙= (𝑊𝑙𝛿𝑙−1) ∘ 𝜎′(𝑎𝑙)

▪ Feedback goes to the first layer and the proceeds forward

ANDREA COSSU - UNIVERSITY OF PISA - HTTPS://WWW.ANDREACOSSU.COM/ 17

Deep learning with
DFA
▪ MLPs on MNIST and CIFAR10/100 →
competitive with BP

▪DFA learns with very deep networks (100 layers)
▪ FA/IFA don’t

▪ BP is clearly better than alternatives with CNNs

ANDREA COSSU - UNIVERSITY OF PISA - HTTPS://WWW.ANDREACOSSU.COM/ 18

MNIST

Target Propagation
▪ No symmetric connections and a single computational circuit (both forward and backward)

▪ Layer-wise target → local update
▪ what layer activation would have minimized the loss

▪ Last layer (easy) → correct activation = target = ℎ𝐿

▪ Propagation to previous hidden layers: ℎ𝑙 = 𝜎−1(𝑊𝑙+1
ℎ𝑙+1 + 𝑏𝑙+1)

▪ Straightforward when 𝜎−1 is known

ANDREA COSSU - UNIVERSITY OF PISA - HTTPS://WWW.ANDREACOSSU.COM/ 19

Invertible neural networks
▪ Linear layer: 𝑦 = 𝑊𝑥 + 𝑏 → x = W−1(𝑦 − 𝑏)
▪ What if 𝑊 not invertible?

▪ Even more difficult for nonlinear networks
▪ Train a layer-wise decoder 𝑔𝑙

▪ 𝑔𝑙 = 𝜎 𝑉𝑙+1ℎ𝑙+1 + 𝑐𝑙+1 ≈ ℎ𝑙 = 𝜎−1 𝑊𝑙+1ℎ𝑙+1 + 𝑏𝑙+1

▪ many variants…

▪ The decoder is used to create layer-wise targets

▪ ℎ𝑙 = 𝜎 𝑉𝑙+1
ℎ𝑙+1 + 𝑐𝑙+1 = 𝑔𝑙(ℎ𝑙+1)

ANDREA COSSU - UNIVERSITY OF PISA - HTTPS://WWW.ANDREACOSSU.COM/ 20

ANDREA COSSU - UNIVERSITY OF PISA - HTTPS://WWW.ANDREACOSSU.COM/ 21

ℎ𝑙 ℎ𝑙

ℎ𝑙+1 ℎ𝑙+1

ℎ𝐿
ℎ𝐿 = 𝑑

𝜎

𝜎

𝑔𝐿−1 ≈ 𝜎−1

𝑔𝑙𝜎−1

𝑎𝑟𝑔𝑚𝑖𝑛𝜃𝐿
ℎ𝐿 − ℎ𝐿

2

𝑎𝑟𝑔𝑚𝑖𝑛𝜃𝑙+1
ℎ𝑙+1 − ℎ𝑙+1

2

𝑎𝑟𝑔𝑚𝑖𝑛𝜃𝑙
ℎ𝑙 − ℎ𝑙

2

Training loss for Target Propagation
▪ Reconstruction loss to train the decoder
▪ 𝐿𝑔 = ||ℎ𝑙−1 − 𝜎(𝑉𝑙𝜎 𝑊𝑙ℎ𝑙−1 + 𝑏𝑙 + 𝑐𝑙)||2

2

▪ The decoder is trained to reconstruct the forward activations

▪ It then generalizes to the target activations (same function – the inverse – different activations)

▪ Forward loss to train the layers

▪ 𝐿ℎ = ||𝜎 𝑊𝑙+1ℎ𝑙 + 𝑏𝑙+1 − ℎ𝑙+1||2
2

▪ Less effective in practice (difficult to scale to deep architectures → underperforms on popular
benchmarks)

ANDREA COSSU - UNIVERSITY OF PISA - HTTPS://WWW.ANDREACOSSU.COM/ 22

Alternative ways to compute targets
Recall: output layer (easy) → true target 𝑑 = ℎ𝐿

Hidden layers: ℎ𝑙 = 𝜎(𝑉𝑙+1
ℎ𝑙+1 + 𝑐𝑙+1)

▪ Difference Target Propagation: ℎ𝑙 = 𝜎 𝑉𝑙+1
ℎ𝑙+1 + 𝑐𝑙+1 + (ℎ𝑙 − 𝜎(𝑉𝑙+1ℎ𝑙+1 + 𝑐𝑙+1))

▪ Consider the reconstruction error (in case 𝑔 computes an imprecise inverse function)

▪ Penultimate layer still trained with BP

▪ Simplified DTP: ℎ𝐿−1 = 𝜎 𝑉𝐿
ℎ𝐿 + 𝑐𝐿 + (ℎ𝐿−1 − 𝜎(𝑉𝐿ℎ𝐿 + 𝑐𝐿))

▪ Applies DTP also to the penultimate layer

ANDREA COSSU - UNIVERSITY OF PISA - HTTPS://WWW.ANDREACOSSU.COM/ 23

Not easy to scale – CIFAR10

FA/DFA remain effective

TP cannot compete with BP

ANDREA COSSU - UNIVERSITY OF PISA - HTTPS://WWW.ANDREACOSSU.COM/ 24

ImageNet – even worse

ANDREA COSSU - UNIVERSITY OF PISA - HTTPS://WWW.ANDREACOSSU.COM/ 25

Let’s stop for a moment
▪ Removing biologically unrealistic constraints is indeed possible

▪ Scaling to deep learning benchmarks remains challenging

▪ … do we need to? Depends on what you want to achieve!
▪ Engineering → solving tasks, improving performance etc…

▪ Scientific discovery → study a phenomen, testing assumptions, looking for feasibility etc…

▪ They sometimes overlap

ANDREA COSSU - UNIVERSITY OF PISA - HTTPS://WWW.ANDREACOSSU.COM/ 26

Equilibrium Propagation
A completely different approach

▪ Learning algorithm for (some) dynamical systems
▪ Suitable for neuromorphic/physical implementations (e.g., spiking networks)

▪ You need to know a convenient mathematical model of your system

▪ Intrinsically recurrent

▪ The system itself governs both its evolution and its adaptation

▪ The external input is not a time series

ANDREA COSSU - UNIVERSITY OF PISA - HTTPS://WWW.ANDREACOSSU.COM/ 27

High-level summary
The system learns on a fixed input 𝑥.

▪ First, free phase: the state evolves following a primitive (potential) function
Φ 𝑠; 𝜃, 𝑥

ds

𝑑𝑡
= −

𝜕Φ

𝜕𝑠

▪ The system evolves until it reaches a fixed point 𝑠∗

▪ Second, nudging phase: starting from 𝑠∗ and under the same input 𝑥, the
system now evolves according to

ds

𝑑𝑡
=

𝜕Φ

𝜕𝑠
− 𝛽

𝑑𝐿

𝑑𝑠

▪ The evolution proceeds until the system reaches a new fixed point 𝑠∗
𝛽

▪ Update the parameters 𝜃:
d𝜃

𝑑𝑡
= −

1

𝛽

𝜕Φ

𝜕𝜃
𝑠∗

𝛽
−

𝜕Φ

𝜕𝜃
𝑠∗

ANDREA COSSU - UNIVERSITY OF PISA - HTTPS://WWW.ANDREACOSSU.COM/ 28

Equilibrium propagation details
▪ The output of the system 𝑦 is read-out from the state 𝑠 (e.g., linear projection)

▪ The derivative of the loss function can be usually computed efficiently in closed form
▪ And implemented physically

▪ MSE loss derivative → 𝑑 − 𝑦

▪ In the limit of 𝛽 → 0, the EP update is similar to the corresponding Backpropagation through
time update.

▪ Adaptation to LIF networks for neuromorphic implementation!
https://www.sciencedirect.com/science/article/pii/S2589004221001905

ANDREA COSSU - UNIVERSITY OF PISA - HTTPS://WWW.ANDREACOSSU.COM/ 29

https://www.sciencedirect.com/science/article/pii/S2589004221001905

An example network

Input X
Hidden
State 𝑠1

Hidden
State 𝑠2

𝑊𝑥1

𝑊21

𝑊12

Hidden
State 𝑠3

𝑊32

𝑊23

Output
𝑦

𝑊3𝑦

𝑊𝑦3

𝑠0 = 𝑠0
1, 𝑠0

2, 𝑠0
3, 𝑦0 = [0, 0, 0, 0]

ANDREA COSSU - UNIVERSITY OF PISA - HTTPS://WWW.ANDREACOSSU.COM/ 30

The state update
𝑠0 = 0, 0, 0

∀𝑡 ∈ 1, 𝑇 :
∀𝑙 ∈ 1, 3 :

𝑠𝑡
𝑙 = 𝜎

𝜕Φl

𝜕𝑠𝑙 𝑠𝑡−1 ; If phase 2 → add −𝛽
𝑑𝐿

𝑑𝑠
(𝑠𝑡

𝛽
, 𝑑)

Primitive function:

Φ𝑙 = 𝑠𝑙−1𝑊𝑙−1,𝑙𝑠𝑙

Assume linear activation function in the primitive and put the nonlinearity manually after computing the
derivative for each layer.

ANDREA COSSU - UNIVERSITY OF PISA - HTTPS://WWW.ANDREACOSSU.COM/ 31

EP for CNNs – quite involved
Need to consider primitive of convolution and pooling operations
(and their inverse ƿ𝑤 , flipped kernel, and 𝒫−1, unpooling)

Φ 𝑥, 𝑠𝑛 = σ𝑛∈𝑐𝑜𝑛𝑣 𝑠𝑛+1 ∙ 𝒫 𝑤𝑛+1 ⋆ 𝑠𝑛

+ σ𝑛∈𝑓𝑒𝑒𝑑 𝑠𝑛+1⊤ ⋅ 𝑤𝑛+1 ⋅ 𝑠𝑛

𝑠𝑡+1
𝑛 = 𝜎 𝒫 𝑤𝑛 ⋆ 𝑠𝑡

𝑛−1 + ƿ𝑤𝑛+1 ⋆ 𝒫−1 𝑠𝑡
𝑛+1 , 𝑖𝑓 𝑛 ∈ 𝑐𝑜𝑛𝑣

𝑠𝑡+1
𝑛 = 𝜎 𝑤𝑛 ⋅ 𝑠𝑡

𝑛−1 + 𝑤𝑛+1
⊤ ⋅ 𝑠𝑡

𝑛+1 , 𝑖𝑓 𝑛 ∈ 𝑓𝑒𝑒𝑑

ANDREA COSSU - UNIVERSITY OF PISA - HTTPS://WWW.ANDREACOSSU.COM/ 32

Convergence to BPTT update (𝛽 = 0.1)

ANDREA COSSU - UNIVERSITY OF PISA - HTTPS://WWW.ANDREACOSSU.COM/ 33

Scaling up Equilibrium Propagation
▪ Cross-entropy vs. MSE
▪ Slightly different second phase (derivative of the loss changes)

▪ Separate update rule for 𝑤𝑜𝑢𝑡: − ො𝑦∗
𝛽

− 𝑑 𝑠∗
𝛽

▪ Third phase (symmetric gradient estimate)
▪ First phase: 𝛽 = 0, second phase: 𝛽 = 𝛽1 > 0 (biased), third phase: 𝛽 = −𝛽1 < 0

▪ Weight update: Δ𝑊 =
1

2𝛽

𝜕Φ

𝜕𝜃
𝑠∗

𝛽
−

𝜕Φ

𝜕𝜃
𝑠∗

−𝛽

▪ Bidirectional connections
▪ Distinct parameters for forward connections and backward connections in the network

▪ Easier for physical implementations

ANDREA COSSU - UNIVERSITY OF PISA - HTTPS://WWW.ANDREACOSSU.COM/ 34

CIFAR-10 with cross-entropy

ANDREA COSSU - UNIVERSITY OF PISA - HTTPS://WWW.ANDREACOSSU.COM/ 35

EP In Python
With a little help from automatic differentiation tools in PyTorch…

https://github.com/Laborieux-Axel/Equilibrium-
Propagation/blob/93660ed6c5b0ec07978b674a69c169ce32e8cd5f/model_utils.py#L115

ANDREA COSSU - UNIVERSITY OF PISA - HTTPS://WWW.ANDREACOSSU.COM/ 36

https://github.com/Laborieux-Axel/Equilibrium-Propagation/blob/93660ed6c5b0ec07978b674a69c169ce32e8cd5f/model_utils.py#L115
https://github.com/Laborieux-Axel/Equilibrium-Propagation/blob/93660ed6c5b0ec07978b674a69c169ce32e8cd5f/model_utils.py#L115

Summary
▪ BP remains the most effective learning algorithm for optimizing on a given task

▪ Feedback alignment removes the need for symmetric connections (weight transport)

▪ Direct feedback alignment only requires propagation of the top error
▪ A single error-projecting area is biologically more sound

▪ Target propagation achieves local updates
▪ But it requires an invertible network or a trained autoencoder

▪ Not easy to imagine in biologically neural networks

▪ Equilibrium propagation learns from the system dynamics itself

▪ Implemented physically if
𝜕Φ

𝜕𝜃
can be computed easily

ANDREA COSSU - UNIVERSITY OF PISA - HTTPS://WWW.ANDREACOSSU.COM/ 37

Evolution in biological life
Charles Darwin’s «On the Origin of Species» (1859)
◦ Seminal book for evolutionary biology

Richard Dawkins’ «The Selfish Gene» (1976)

Daniel Dennett’s «Darwin’s Dangerous Idea» (1995)

Susan Blackmore’s «The Meme Machine» (1999)

ANDREA COSSU - PHD COURSE ON COLLECTIVE INTELLIGENCE - UNIVERSITY OF PISA
ANDREACOSSU.COM

38https://evolution.berkeley.edu/

https://evolution.berkeley.edu/

Evolution by natural selection
Necessary and sufficient conditions for evolution by natural selection

▪ Variation → different traits in a population

▪ Differential reproduction → not all individuals of the population reproduce at the same rate
▪ e.g. due to some property of the environment that favors a certain trait

▪ Survival of individuals that are fit enough (not only the fittest!)

▪ Heredity → traits can be passed on to the next generation

Advantageous traits survive in the population, while others disappear → convergence to a
homogenous population?

ANDREA COSSU - PHD COURSE ON COLLECTIVE INTELLIGENCE - UNIVERSITY OF PISA
ANDREACOSSU.COM

39

Digital evolution
Life originated from an iterative process
driven by evolution

▪ Initial conditions, environment

▪ (biological) Evolution algorithm

If we can simulate both we can “create”
artificial life

ANDREA COSSU - PHD COURSE ON COLLECTIVE INTELLIGENCE - UNIVERSITY OF PISA
ANDREACOSSU.COM

40

Evolutionary algorithms
Since the 1950s [7, 8], to solve optimization problems, combinatorial problems, rule-based
classifier systems…

We already start from a well-defined process: evolution by natural selection
◦ which may or may not be a sufficiently accurate approximation of the real process

We can simulate the necessary and sufficient conditions

▪ Variation

▪ Differential reproduction

▪ Heredity

ANDREA COSSU - PHD COURSE ON COLLECTIVE INTELLIGENCE - UNIVERSITY OF PISA
ANDREACOSSU.COM

41

Skeleton of EAs
Initialize population 𝑃0 of individuals with N features

Evaluate fitness of population 𝑃0

For each step t=1, 2, …:
◦ Select parents from 𝑃0 (e.g., based on the fitness)

◦ Reproduction and recombination of features to get children (not really present in EP)

◦ Apply mutation to features (e.g., at random, adaptive mutation rate)

◦ Evaluate fitness of new population

◦ Select subset of K survived individuals to get 𝑃𝑡 (e.g., random sample weighted by fitness)

Do the parent survive? Do we replace K parents with K children?

ANDREA COSSU - PHD COURSE ON COLLECTIVE INTELLIGENCE - UNIVERSITY OF PISA
ANDREACOSSU.COM

42

Evolving digital
creatures
Creatures that can move in the space and learn
to walk / swim / jump [4, 5, 6] (1993-1994)

https://www.karlsims.com/evolved-virtual-
creatures.html

ANDREA COSSU - PHD COURSE ON COLLECTIVE INTELLIGENCE - UNIVERSITY OF PISA
ANDREACOSSU.COM 43

https://www.karlsims.com/evolved-virtual-creatures.html
https://www.karlsims.com/evolved-virtual-creatures.html

Occhio agli
imbrogli

ANDREA COSSU - UNIVERSITÀ DI PISA - HTTPS://WWW.ANDREACOSSU.COM 44

Different types of Evolutionary
Algorithms

Same structure, different applications/low-level details [9]

▪ Evolutionary Programming / Strategies
▪ Representations are tailored to the problem domain

▪ Randomly mutate + evaluate

▪ Evolutionary Strategies (randomly mutate + evaluate + recombine)

▪ Genetic Algorithms
▪ Mutation is rare, recombination is the main factor (what about diversity?

▪ Fitness is relevant also to select parents

▪ Genetic Programming
▪ Genetic algorithms for code generation

ANDREA COSSU - PHD COURSE ON COLLECTIVE INTELLIGENCE - UNIVERSITY OF PISA
ANDREACOSSU.COM

45

NEAT
NeuroEvolution through Augmenting Topologies with genetic algorithms
◦ Evolve topology + weights vs. evolving weights for a fixed topology

◦ Applied to RL control

Direct encoding: all node and connections in the genome
◦ Indirect encoding: encode rules on how to build networks

◦ Linear encoding → allows gene alignment for crossover
◦ Also tackles permutations problem

Speciation: divide population into different groups
based on genetic similarity

 Starting from minimal solutions

ANDREA COSSU - PHD COURSE ON COLLECTIVE INTELLIGENCE - UNIVERSITY OF PISA
ANDREACOSSU.COM

46

Upcoming PhD course on collective
intelligence @ Computer Science dept.
https://dottorato.di.unipi.it/teaching-phd-
courses-a-y-2023-2024/

ANDREA COSSU - UNIVERSITY OF PISA - HTTPS://WWW.ANDREACOSSU.COM/ 47

https://dottorato.di.unipi.it/teaching-phd-courses-a-y-2023-2024/
https://dottorato.di.unipi.it/teaching-phd-courses-a-y-2023-2024/

References
S. Duan and J. C. Príncipe, “Training Deep Architectures Without End-to-End Backpropagation: A Survey on the Provably Optimal Methods,” IEEE
Computational Intelligence Magazine, vol. 17, no. 4, pp. 39–51, Nov. 2022, doi: 10.1109/MCI.2022.3199624.

T. P. Lillicrap, D. Cownden, D. B. Tweed, and C. J. Akerman, “Random synaptic feedback weights support error backpropagation for deep learning,”
Nature Communications, vol. 7, no. 1, Art. no. 1, Nov. 2016, doi: 10.1038/ncomms13276.

A. Nøkland, “Direct Feedback Alignment Provides Learning in Deep Neural Networks,” in Advances in Neural Information Processing Systems 29, D. D.
Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, Eds., Curran Associates, Inc., 2016, pp. 1037–1045. http://papers.nips.cc/paper/6441-
direct-feedback-alignment-provides-learning-in-deep-neural-networks.pdf

S. Bartunov, A. Santoro, B. Richards, L. Marris, G. E. Hinton, and T. Lillicrap, “Assessing the Scalability of Biologically-Motivated Deep Learning
Algorithms and Architectures,” in Advances in Neural Information Processing Systems 31, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, Eds., Curran Associates, Inc., 2018, pp. 9368–9378. http://papers.nips.cc/paper/8148-assessing-the-scalability-of-biologically-
motivated-deep-learning-algorithms-and-architectures.pdf empirical evaluation on target propagation, with references to several papers that
explored it first.

A. Laborieux, M. Ernoult, B. Scellier, Y. Bengio, J. Grollier, and D. Querlioz, “Scaling Equilibrium Propagation to Deep ConvNets by Drastically Reducing
Its Gradient Estimator Bias,” Frontiers in Neuroscience, vol. 15, 2021. https://www.frontiersin.org/articles/10.3389/fnins.2021.633674

B. Scellier and Y. Bengio, “Equilibrium Propagation: Bridging the Gap between Energy-Based Models and Backpropagation,” Frontiers in
Computational Neuroscience, vol. 11, 2017. https://www.frontiersin.org/articles/10.3389/fncom.2017.00024

W. M. Spears, K. A. De Jong, T. Bäck, D. B. Fogel, and H. de Garis, “An overview of evolutionary computation,” in Machine Learning: ECML-93, P. B.
Brazdil, Ed., Berlin, Heidelberg: Springer, 1993, pp. 442–459. doi: 10.1007/3-540-56602-3_163.

K. O. Stanley and R. Miikkulainen, “Evolving Neural Networks through Augmenting Topologies,” Evolutionary Computation, vol. 10, no. 2, pp. 99–127,
Jun. 2002, doi: 10.1162/106365602320169811.

ANDREA COSSU - UNIVERSITY OF PISA - HTTPS://WWW.ANDREACOSSU.COM/ 48

https://doi.org/10.1109/MCI.2022.3199624
https://doi.org/10.1038/ncomms13276
http://papers.nips.cc/paper/6441-direct-feedback-alignment-provides-learning-in-deep-neural-networks.pdf
http://papers.nips.cc/paper/6441-direct-feedback-alignment-provides-learning-in-deep-neural-networks.pdf
http://papers.nips.cc/paper/8148-assessing-the-scalability-of-biologically-motivated-deep-learning-algorithms-and-architectures.pdf
http://papers.nips.cc/paper/8148-assessing-the-scalability-of-biologically-motivated-deep-learning-algorithms-and-architectures.pdf
https://www.frontiersin.org/articles/10.3389/fnins.2021.633674
https://www.frontiersin.org/articles/10.3389/fncom.2017.00024
https://doi.org/10.1007/3-540-56602-3_163
https://doi.org/10.1162/106365602320169811

	Slide 1: Alternatives to backpropagation training of (deep) neural models
	Slide 2: Once upon a time…
	Slide 3: Once upon a time…
	Slide 4: Once upon a time…
	Slide 5: Once upon a time…
	Slide 6: Emergent awareness from minimal collectives
	Slide 7: End-to-end backpropagation
	Slide 8: Backpropagating errors
	Slide 9: Very effective, but we don’t like it
	Slide 10: Weight transport
	Slide 11: Removing weight alignment
	Slide 12: Learning with Feedback Alignment
	Slide 13: Backward weights influence forward weights
	Slide 14: FA update converges to BP update
	Slide 16: Please, don’t
	Slide 17: (In)Direct Feedback Alignment
	Slide 18: Deep learning with DFA
	Slide 19: Target Propagation
	Slide 20: Invertible neural networks
	Slide 21
	Slide 22: Training loss for Target Propagation
	Slide 23: Alternative ways to compute targets
	Slide 24: Not easy to scale – CIFAR10
	Slide 25: ImageNet – even worse
	Slide 26: Let’s stop for a moment
	Slide 27: Equilibrium Propagation
	Slide 28: High-level summary
	Slide 29: Equilibrium propagation details
	Slide 30: An example network
	Slide 31: The state update
	Slide 32: EP for CNNs – quite involved
	Slide 33: Convergence to BPTT update (beta equals 0.1)
	Slide 34: Scaling up Equilibrium Propagation
	Slide 35: CIFAR-10 with cross-entropy
	Slide 36: EP In Python
	Slide 37: Summary
	Slide 38: Evolution in biological life
	Slide 39: Evolution by natural selection
	Slide 40: Digital evolution
	Slide 41: Evolutionary algorithms
	Slide 42: Skeleton of EAs
	Slide 43: Evolving digital creatures
	Slide 44: Occhio agli imbrogli
	Slide 45: Different types of Evolutionary Algorithms
	Slide 46: NEAT
	Slide 47: Upcoming PhD course on collective intelligence @ Computer Science dept.
	Slide 48: References

