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Emergent awareness from minimal 
collectives
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End-to-end backpropagation
▪ «Differentiable programming»: 𝑦 = 𝑓 𝑥; 𝜃 = 𝑓𝜃 𝑥
▪ Computational graph: nodes are variables, edges are 

operations

▪ We want to compute 
𝜕𝑦

𝜕𝜃
→ chain rule!

▪ Reverse-mode automatic differentiation: 𝑦 fixed, 𝜃 
varies (leaf nodes)

▪ Backpropagation → reverse-mode automatic 
differentiation through chain rule

▪ 𝑓: 𝑅𝐼 → 𝑅𝑂 → 𝑂 steps required
▪ 𝑂= 1 for our common case (scalar loss)

▪ That’s why forward-mode is not used
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Backpropagating errors
▪ We have y = f𝜃 x , our differentiable learning model

▪ We measure the prediction error through the loss function 𝐿 𝑦, 𝑑

▪ E.g. MSE: 
1

2
𝑒𝑇𝑒, 𝑒 = 𝑦 − 𝑑

▪ Once ∇𝜃𝐿(𝑦, 𝑑) is computed → SGD, Adam…

▪𝑎𝑙 = 𝑊𝑙ℎ𝑙−1 + 𝑏𝑙 , ℎ𝑙 = 𝜎 𝑎𝑙   → linear activation in output layer

▪ Output layer error: easy

▪
𝝏𝑳

𝝏𝒂𝟑
=

𝜕𝐿

𝜕ℎ3

𝜕ℎ3

𝜕𝑎3
= 𝜹𝟑 = 𝑒

▪
𝜕𝐿

𝜕𝑊3
= 𝛿3

𝜕𝑎3

𝜕𝑊3
= 𝑒 ℎ3

𝑇 

▪ Hidden layers:

▪
𝜕𝐿

𝜕𝑊𝑙
= (( 𝑾𝒍+𝟏

𝑻 𝛿𝑙+1) ∘ 𝜎′ 𝑎𝑙 ) ℎ𝑙
𝑇 , ∀𝑗 = 1, 2
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Very effective, but we don’t like it
▪ BP enabled efficient training of deep architectures
▪ de-facto standard for >20 years, still is

Why don’t we like it?

▪ Lack of modularity
▪ Sparsity is enforced with post-hoc pruning or pre-designed block-wise architectures

▪ «Biologically» unrealistic constraints:
▪ Two learning circuits (forward+backward)

▪ Symmetric weights (weight transport problem)

▪ Non-local information

▪ Not really compatible with neuromorphic/physical implementations
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Weight transport
▪Forward pass: ℎ𝑙 = 𝜎 𝑊𝑙ℎ𝑙−1 + 𝑏𝑙 , ∀ 𝑙 = 2, … , 𝐿

▪ Backward pass: 𝛿𝑙 = (𝑊𝑙+1
𝑇 𝛿𝑙+1) ∘ 𝜎′ 𝑎 ∀ 𝑙 =

1, … , 𝐿 − 1

▪ Two separate computational circuits with symmetric 
information (same units then!)

▪ Transport of weight information across
 forward/backward circuits

▪ Backward circuit does not impact on neural 
activations in the forward circuit (implausible)

Grossberg, S. Competitive learning: from interactive activation 
to adaptive resonance. Cogn. Sci. 11, 23–63 (1987).
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Removing weight alignment
Feedback Alignment

▪ Random feedback weights 𝐵

▪ Decouples the forward and the backward passes

▪ FA pushes the weights in a similar direction
wrt backpropagation (how, why, uuh???)

▪ Still separate circuits (although more easily
implementable)
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Learning with Feedback Alignment
The error is computed at the output layer and then «backpropagated» via the 𝐵𝑙
matrices to lower layers

▪ Output layer → 𝛿3 = 𝑒

▪ Hidden layer → 𝛿𝑙 = 𝑩𝒍𝛿𝑙+1 ∘ 𝜎′(𝑎𝑙)

▪ 𝑊𝑙 aligns with 𝐵𝑙
𝑇

▪ Limited theoretical results
▪ FA makes training error → 0

▪ very restrictive conditions (linear networks, zero-init…)

▪ In general: FA update is not the gradient of any function → cannot guarantee to follow 
any minimization path
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Backward weights influence forward
weights
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Δ𝑊 = 𝑒ℎ𝑇 = 𝑒 𝑊0𝑥 𝑇 = 𝑒𝑥𝑇𝑊0
𝑇

Δ𝑊0 ∝ 𝐵𝑒𝑥𝑇



FA update 
converges 
to BP 
update
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Please, don’t
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(In)Direct Feedback Alignment
Disconnected feedback paths

No sequential backpropagation of errors, random 
propagation through 𝐵, instead

Direct Feedback Alignment

▪ 𝛿𝑙 = (𝐵𝑙𝑒) ∘ 𝜎′ 𝑎𝑙

▪ 𝐵 can even be the same for all layers

Indirect Feedback Alignment

▪ 𝛿1 = (𝐵1𝑒) ∘ 𝜎′(𝑎1)

▪ 𝛿𝑙= (𝑊𝑙𝛿𝑙−1) ∘ 𝜎′(𝑎𝑙)

▪ Feedback goes to the first layer and the proceeds forward
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Deep learning with 
DFA
▪ MLPs on MNIST and CIFAR10/100 →
competitive with BP

▪DFA learns with very deep networks (100 layers)
▪ FA/IFA don’t

▪ BP is clearly better than alternatives with CNNs
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Target Propagation
▪ No symmetric connections and a single computational circuit (both forward and backward)

▪ Layer-wise target → local update
▪ what layer activation would have minimized the loss

▪ Last layer (easy) → correct activation = target = ℎ𝐿

▪ Propagation to previous hidden layers: ℎ𝑙 = 𝜎−1(𝑊𝑙+1
ℎ𝑙+1 + 𝑏𝑙+1)

▪ Straightforward when 𝜎−1 is known
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Invertible neural networks
▪ Linear layer: 𝑦 = 𝑊𝑥 + 𝑏 → x = W−1(𝑦 − 𝑏)
▪ What if 𝑊 not invertible?

▪ Even more difficult for nonlinear networks
▪ Train a layer-wise decoder 𝑔𝑙

▪ 𝑔𝑙 = 𝜎 𝑉𝑙+1ℎ𝑙+1 + 𝑐𝑙+1 ≈ ℎ𝑙 = 𝜎−1 𝑊𝑙+1ℎ𝑙+1 + 𝑏𝑙+1

▪ many variants…

▪ The decoder is used to create layer-wise targets

▪ ℎ𝑙 = 𝜎 𝑉𝑙+1
ℎ𝑙+1 + 𝑐𝑙+1 = 𝑔𝑙(ℎ𝑙+1)
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ℎ𝑙                            ℎ𝑙

ℎ𝑙+1                    ℎ𝑙+1

ℎ𝐿
ℎ𝐿 = 𝑑

𝜎

𝜎

𝑔𝐿−1 ≈ 𝜎−1

𝑔𝑙𝜎−1

𝑎𝑟𝑔𝑚𝑖𝑛𝜃𝐿
ℎ𝐿 − ℎ𝐿

2

𝑎𝑟𝑔𝑚𝑖𝑛𝜃𝑙+1
ℎ𝑙+1 − ℎ𝑙+1

2

𝑎𝑟𝑔𝑚𝑖𝑛𝜃𝑙
ℎ𝑙 − ℎ𝑙

2



Training loss for Target Propagation
▪ Reconstruction loss to train the decoder
▪ 𝐿𝑔 = ||ℎ𝑙−1 − 𝜎(𝑉𝑙𝜎 𝑊𝑙ℎ𝑙−1 + 𝑏𝑙 + 𝑐𝑙)||2

2

▪ The decoder is trained to reconstruct the forward activations

▪ It then generalizes to the target activations (same function – the inverse – different activations)

▪ Forward loss to train the layers

▪ 𝐿ℎ = ||𝜎 𝑊𝑙+1ℎ𝑙 + 𝑏𝑙+1 − ℎ𝑙+1||2
2

▪ Less effective in practice (difficult to scale to deep architectures → underperforms on popular
benchmarks)
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Alternative ways to compute targets
Recall: output layer (easy) → true target 𝑑 = ℎ𝐿

Hidden layers: ℎ𝑙 = 𝜎(𝑉𝑙+1
ℎ𝑙+1 + 𝑐𝑙+1)

▪ Difference Target Propagation: ℎ𝑙 = 𝜎 𝑉𝑙+1
ℎ𝑙+1 + 𝑐𝑙+1 + (ℎ𝑙 − 𝜎(𝑉𝑙+1ℎ𝑙+1 + 𝑐𝑙+1))

▪ Consider the reconstruction error (in case 𝑔 computes an imprecise inverse function)

▪ Penultimate layer still trained with BP

▪ Simplified DTP: ℎ𝐿−1 = 𝜎 𝑉𝐿
ℎ𝐿 + 𝑐𝐿  + (ℎ𝐿−1 − 𝜎(𝑉𝐿ℎ𝐿 + 𝑐𝐿))

▪ Applies DTP also to the penultimate layer
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Not easy to scale – CIFAR10

FA/DFA remain effective

TP cannot compete with BP
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ImageNet – even worse
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Let’s stop for a moment
▪ Removing biologically unrealistic constraints is indeed possible

▪ Scaling to deep learning benchmarks remains challenging

▪ … do we need to? Depends on what you want to achieve!
▪ Engineering → solving tasks, improving performance etc…

▪ Scientific discovery → study a phenomen, testing assumptions, looking for feasibility etc…

▪ They sometimes overlap
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Equilibrium Propagation
A completely different approach

▪ Learning algorithm for (some) dynamical systems
▪ Suitable for neuromorphic/physical implementations (e.g., spiking networks)

▪ You need to know a convenient mathematical model of your system

▪ Intrinsically recurrent

▪ The system itself governs both its evolution and its adaptation

▪ The external input is not a time series
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High-level summary
The system learns on a fixed input 𝑥.

▪ First, free phase: the state evolves following a primitive (potential) function 
Φ 𝑠; 𝜃, 𝑥

ds

𝑑𝑡
= −

𝜕Φ

𝜕𝑠

▪ The system evolves until it reaches a fixed point 𝑠∗

▪ Second, nudging phase: starting from 𝑠∗ and under the same input 𝑥, the 
system now evolves according to 

ds

𝑑𝑡
=

𝜕Φ

𝜕𝑠
− 𝛽

𝑑𝐿

𝑑𝑠

▪ The evolution proceeds until the system reaches a new fixed point 𝑠∗
𝛽

 

▪ Update the parameters 𝜃:
d𝜃

𝑑𝑡
= −

1

𝛽

𝜕Φ

𝜕𝜃
𝑠∗

𝛽
−

𝜕Φ

𝜕𝜃
𝑠∗
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Equilibrium propagation details
▪ The output of the system 𝑦 is read-out from the state 𝑠 (e.g., linear projection)

▪ The derivative of the loss function can be usually computed efficiently in closed form
▪ And implemented physically

▪ MSE loss derivative → 𝑑 − 𝑦

▪ In the limit of 𝛽 → 0, the EP update is similar to the corresponding Backpropagation through 
time update.

▪ Adaptation to LIF networks for neuromorphic implementation!
https://www.sciencedirect.com/science/article/pii/S2589004221001905
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An example network

Input X
Hidden 
State 𝑠1

Hidden 
State 𝑠2

𝑊𝑥1

𝑊21

𝑊12

Hidden 
State 𝑠3

𝑊32

𝑊23

Output
𝑦

𝑊3𝑦

𝑊𝑦3

𝑠0 = 𝑠0
1, 𝑠0

2, 𝑠0
3, 𝑦0 = [0, 0, 0, 0]
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The state update
𝑠0 = 0, 0, 0

∀𝑡 ∈ 1, 𝑇 :
∀𝑙 ∈ 1, 3 :

𝑠𝑡
𝑙 = 𝜎

𝜕Φl

𝜕𝑠𝑙 𝑠𝑡−1  ; If phase 2 → add −𝛽
𝑑𝐿

𝑑𝑠
(𝑠𝑡

𝛽
, 𝑑)

Primitive function:

Φ𝑙 = 𝑠𝑙−1𝑊𝑙−1,𝑙𝑠𝑙

Assume linear activation function in the primitive and put the nonlinearity manually after computing the 
derivative for each layer.
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EP for CNNs – quite involved
Need to consider primitive of convolution and pooling operations
(and their inverse ƿ𝑤 , flipped kernel, and 𝒫−1, unpooling)

Φ 𝑥, 𝑠𝑛 =  σ𝑛∈𝑐𝑜𝑛𝑣 𝑠𝑛+1 ∙ 𝒫 𝑤𝑛+1 ⋆ 𝑠𝑛

+ σ𝑛∈𝑓𝑒𝑒𝑑 𝑠𝑛+1⊤ ⋅ 𝑤𝑛+1 ⋅ 𝑠𝑛

𝑠𝑡+1
𝑛 = 𝜎 𝒫 𝑤𝑛 ⋆ 𝑠𝑡

𝑛−1 + ƿ𝑤𝑛+1 ⋆ 𝒫−1 𝑠𝑡
𝑛+1 , 𝑖𝑓 𝑛 ∈ 𝑐𝑜𝑛𝑣 

𝑠𝑡+1
𝑛 = 𝜎 𝑤𝑛 ⋅ 𝑠𝑡

𝑛−1 + 𝑤𝑛+1
⊤ ⋅ 𝑠𝑡

𝑛+1 , 𝑖𝑓 𝑛 ∈ 𝑓𝑒𝑒𝑑
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Convergence to BPTT update (𝛽 = 0.1)
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Scaling up Equilibrium Propagation
▪ Cross-entropy vs. MSE
▪ Slightly different second phase (derivative of the loss changes)

▪ Separate update rule for 𝑤𝑜𝑢𝑡: − ො𝑦∗
𝛽

− 𝑑 𝑠∗
𝛽

▪ Third phase (symmetric gradient estimate)
▪ First phase: 𝛽 = 0, second phase: 𝛽 = 𝛽1 > 0 (biased), third phase: 𝛽 = −𝛽1 < 0

▪ Weight update: Δ𝑊 =
1

2𝛽

𝜕Φ

𝜕𝜃
𝑠∗

𝛽
−

𝜕Φ

𝜕𝜃
𝑠∗

−𝛽

▪ Bidirectional connections
▪ Distinct parameters for forward connections and backward connections in the network

▪ Easier for physical implementations
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CIFAR-10 with cross-entropy
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EP In Python
With a little help from automatic differentiation tools in PyTorch…

https://github.com/Laborieux-Axel/Equilibrium-
Propagation/blob/93660ed6c5b0ec07978b674a69c169ce32e8cd5f/model_utils.py#L115
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Summary
▪ BP remains the most effective learning algorithm for optimizing on a given task

▪ Feedback alignment removes the need for symmetric connections (weight transport)

▪ Direct feedback alignment only requires propagation of the top error
▪ A single error-projecting area is biologically more sound

▪ Target propagation achieves local updates
▪ But it requires an invertible network or a trained autoencoder

▪ Not easy to imagine in biologically neural networks 

▪ Equilibrium propagation learns from the system dynamics itself

▪ Implemented physically if 
𝜕Φ

𝜕𝜃
can be computed easily
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Evolution in biological life
Charles Darwin’s «On the Origin of Species» (1859)
◦ Seminal book for evolutionary biology

Richard Dawkins’ «The Selfish Gene» (1976)

Daniel Dennett’s «Darwin’s Dangerous Idea» (1995)

Susan Blackmore’s «The Meme Machine» (1999)

ANDREA COSSU - PHD COURSE ON COLLECTIVE INTELLIGENCE - UNIVERSITY OF PISA  
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Evolution by natural selection
Necessary and sufficient conditions for evolution by natural selection

▪ Variation → different traits in a population

▪ Differential reproduction → not all individuals of the population reproduce at the same rate
▪ e.g. due to some property of the environment that favors a certain trait

▪ Survival of individuals that are fit enough (not only the fittest!)

▪ Heredity → traits can be passed on to the next generation

Advantageous traits survive in the population, while others disappear → convergence to a 
homogenous population?
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Digital evolution
Life originated from an iterative process
driven by evolution

▪ Initial conditions, environment

▪ (biological) Evolution algorithm

If we can simulate both we can “create” 
artificial life
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Evolutionary algorithms
Since the 1950s [7, 8], to solve optimization problems, combinatorial problems, rule-based
classifier systems…

We already start from a well-defined process: evolution by natural selection
◦ which may or may not be a sufficiently accurate approximation of the real process

We can simulate the necessary and sufficient conditions

▪ Variation

▪ Differential reproduction

▪ Heredity 

ANDREA COSSU - PHD COURSE ON COLLECTIVE INTELLIGENCE - UNIVERSITY OF PISA  
ANDREACOSSU.COM

41



Skeleton of EAs
Initialize population 𝑃0 of individuals with N features

Evaluate fitness of population 𝑃0

For each step t=1, 2, …:
◦ Select parents from 𝑃0 (e.g., based on the fitness)

◦ Reproduction and recombination of features to get children (not really present in EP)

◦ Apply mutation to features (e.g., at random, adaptive mutation rate)

◦ Evaluate fitness of new population

◦ Select subset of K survived individuals to get 𝑃𝑡 (e.g., random sample weighted by fitness)

Do the parent survive? Do we replace K parents with K children?
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Evolving digital
creatures
Creatures that can move in the space and learn 
to walk / swim / jump [4, 5, 6] (1993-1994)

https://www.karlsims.com/evolved-virtual-
creatures.html
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Occhio agli 
imbrogli
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Different types of Evolutionary
Algorithms

Same structure, different applications/low-level details [9]

▪ Evolutionary Programming / Strategies
▪ Representations are tailored to the problem domain

▪ Randomly mutate + evaluate

▪ Evolutionary Strategies (randomly mutate + evaluate + recombine)

▪ Genetic Algorithms
▪ Mutation is rare, recombination is the main factor (what about diversity?

▪ Fitness is relevant also to select parents

▪ Genetic Programming
▪ Genetic algorithms for code generation
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NEAT
NeuroEvolution through Augmenting Topologies with genetic algorithms
◦ Evolve topology + weights vs. evolving weights for a fixed topology

◦ Applied to RL control

Direct encoding: all node and connections in the genome
◦ Indirect encoding: encode rules on how to build networks

◦ Linear encoding → allows gene alignment for crossover
◦ Also tackles permutations problem

Speciation: divide population into different groups
based on genetic similarity

  Starting from minimal solutions
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Upcoming PhD course on collective
intelligence @ Computer Science dept.
https://dottorato.di.unipi.it/teaching-phd-
courses-a-y-2023-2024/
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