Normalizing Flow

INTELLIGENT SYSTEMS FOR PATTERN RECOGNITION (ISPR)

DAVIDE BACCIU – DIPARTIMENTO DI INFORMATICA - UNIVERSITA' DI PISA

DAVIDE.BACCIU@UNIPI.IT

Lecture Outline

- Introduction
 - Change of variable
 - Flows fundamentals
 - From 1D to multi-dimensional flows
- Neural flow layers
 - Coupling flows
 - Masking & squeezing
 - Invertible convolutions
 - Autoregressive flows
- Normalizing flows and deep generative models wrap-up

A Taxonomy

Adapted from I. Goodfellow, Tutorial on Generative Adversarial Networks, 2017

3

Normalizing Flow Fundamentals

Normalizing Flow (NF) – The Intuition

- Learn a probabilistic model by transforming a simple distribution into the complex data generating distribution using a deep network
 - Easy to sample and evaluate the probability
 - Requires a specialized architecture where each layer must be invertible

Probabilistic Change of Variable

- Take a tractable base distribution
 P(z) over latent variable z and a
 model density P(x) over data x
- Apply a change of variable function (possibly learned with parameters θ)

$$x = f(z;\theta)$$

• In addition, we are going to require

that *f* is invertible

$$z = f^{-1}(z;\theta)$$

Linear 1D Change of Variable

NF define complex densities by transforming a base one by invertible mappings (bijections)

• Simplest case in 1D is a univariate Gaussian base density

 $z \sim \mathcal{N}(0,1)$

• Simplest change of variable (forward) by linear transformation

$$x = f(z; \mu, \sigma) = \mu + z\sigma$$

• Inverse then (under $\sigma \neq 0$)

$$z = f^{-1}(x; \mu, \sigma) = (x - \mu)/\sigma$$

• With P(z) known we want to find P(x)

Linear 1D – Mass conservation

The volume may change but the density must be preserved

Linear 1D – Iterated forward pass

$$P(x) = P(z) \left| \frac{dx}{dz} \right|^{-1}$$
 Forward transformation equation

• Sample *x* through 2 mappings (transformations)

$$z_0 \sim P(z)$$
 $z_1 = f_1(z_0)$ $x = f_2(z_1)$

• Density obtained by composing forward transformations

$$P(x) = P(z_0) \left| \frac{dz^1}{dz^0} \right|^{-1} \left| \frac{dx}{dz^1} \right|^{-1}$$

Linear 1D – Inverse Flow

- We may be interested in estimating the density of a given input sample *x*
- Requires building the inverse flow ($g = f^{-1}$)

$$z_1 = f_2^{-1}(x) = g_2(x)$$
 $z_0 = f_1^{-1}(z_1) = g_1(z_1)$

• And computing the density accordingly

$$P(x) = \left| \frac{dz^1}{dx} \right| \left| \frac{dz^0}{dz^1} \right| P(z_0)$$

Multidimensional flow

- Extend the approach to multi-dimensional case 0
 - x, z vectorial RVs with density P(z) and P(x)
 - Flow f(z) invertible and differentiable (closed under composition)
- Transformation $\mathbf{x} = f(\mathbf{z})$ leads to the probability 0 change

$$P(\mathbf{x}) = P(\mathbf{z}) \left| \det \frac{\partial f(\mathbf{z})}{\partial \mathbf{z}} \right|^{-1}$$

Determinant Jacobian
Provides information on the rate of change of
the volume affected by the *f* transformation

of

General Multistep Case

13

Some considerations & desiderata

• Can use log densities for stability and learning

$$\log P(\mathbf{x}) = \log P(\mathbf{z}_0) + \sum_{i=1}^{N} \log \left| \det J_{\mathbf{z}_{i-1}}(f_i^{-1}) \right| = \log P(\mathbf{z}_0) - \sum_{i=1}^{N} \log \left| \det J_{\mathbf{z}_i}(f_i) \right|$$

- Can optimize the parameters θ of the $f_i(\cdot; \theta)$ by gradient based optimization of the log-likelihood above
 - f_i needs to be invertible and differentiable (and remain so throughout learning)
 - f_i composition needs to be expressive enough to map Normal into arbitrary distributions
 - Need to compute determinant easily (e.g. Jacobian diagonal or triangular matrix)
 - Computation of f_i needs to be efficient for sampling
 - Computation of f_i^{-1} needs to be efficient for learning
 - Computation of f_i needs to be stable numerically

Neural Flow Layers

Flows as invertible neural layers

• Affine flows (not sufficiently expressive)

f(z) = b + Wz

• Pointwise nonlinear where *f* are piecewise linear or smooth splines (nonlinear and easy to compute)

$$\boldsymbol{f}(\boldsymbol{z}) = \left[f(\boldsymbol{z}^{(1)}, \boldsymbol{\theta}), f(\boldsymbol{z}^{(2)}, \boldsymbol{\theta}), \dots, f(\boldsymbol{z}^{(D)}, \boldsymbol{\theta}) \right]$$

- Pointwise does not allow capturing correlations between dimensions
- Coupling flows: arguably most popular neural layer design

Coupling Flows

DAVIDE BACCIU - ISPR COURSE

Non-linear Independent Components Estimation (NICE)

L Dinh et al, Non-linear Independent Components Estimation (NICE), ICLR-WS 2014

UNIVERSITÀ DI PISA

NICE – Stacked Coupling Flows

Random shuffle allows more general transformations than between only elements in 1st and 2nd half

(Not so) NICE Results

L Dinh et al, Non-linear Independent Components Estimation (NICE), ICLR-WS 2014

RealNVP – Multiscale Nonlinear Flow

UNIVERSITÀ DI PISA

Multiscale Flows

RealNVP – Masking and Squeezing

$\mathbf{z}' = \mathbf{b} \odot \mathbf{z} + (1 - \mathbf{b}) \odot \{ \exp(\mathbf{\theta}_A(\mathbf{b} \odot \mathbf{z})) \odot \mathbf{z} + \mathbf{\theta}_B(\mathbf{b} \odot \mathbf{z}) \}$

RealNVP Results

dataset

L Dinh et al, Density Estimation using real NVP, ICLR 2017

sampled

UNIVERSITÀ DI PISA

DAVIDE BACCIU - ISPR COURSE

GLOW – Multiscale Coupling Flow with Invertible 1x1 Convolutions

- Start with RGB tensor
- Split channels in 2 halves
- Run 1x1 convolutions
 parameterized with an LU
 decomposition (channel
 mixing/permutation)
- Affine transform each spatial position in second half
- Multiscale & periodic
 squeeze

Kingma & Dhariwal, P, Glow: Generative flow with invertible 1x1 convolutions, NeurIPS 2018

GLOW Results - Sampling

Kingma & Dhariwal, P, Glow: Generative flow with invertible 1x1 convolutions, NeurIPS 2018 Increasing temperature

GLOW Results - Interpolation

UNIVERSITÀ DI PISA

Kingma & Dhariwal, P, Glow: Generative flow with invertible 1x1 convolutions, NeurIPS 2018

GLOW Results - Manipulation

(a) Smiling

(c) Blond Hair

Kingma & Dhariwal, P, Glow: Generative flow with invertible 1x1 convolutions, NeurIPS 2018

(e) Young

(f) Male

Autoregressive Flows

Generalization of coupling flows that treats each input dimension as a separate block

 Forward and inverse directions have different costs (parallel/sequential)

G. Papamakarios et al, Masked Autoregressive Flow for Density Estimation, NeurIPS 2017

Masked Autoregressive Flow

Autoregressive model as a transformation f $\boldsymbol{\theta}(\boldsymbol{x}_{1:i-1})$ from the space of random vectors z to space of data x μ_i $P(x_i | x_{1:i-1}) = \mathcal{N}(\mu_i, (\exp(s_i))^2)$ **f** is easily invertible, Jacobian is triangular and $f(z_i; \boldsymbol{\theta}(\boldsymbol{x}_{1:i-1}))$ easily computable determinant $z_i = f^{-1}(x_i) = (x_i - \mu_i) \exp(-s_i)$ $x_i = \mu_i + z_i \exp(s_i)$ $\left|\det\left(\frac{\partial f^{-1}}{\partial z}\right)\right| = \exp{-\sum_{i} s_{i}}$ $z_i \sim \mathcal{N}(0,1)$

Wrap-Up

Implementations & Libraries

- Normalizing flows are natively supported by Tensorflow (through the TF Probability module)
 - tf.probability.distribution (for base distributions)
 - tf.probability.bijector (for predefined layers, e.g. masked autoregressive)
 - Chain() (to chain bijectors and compose complex modules)
 - You can of course define you own bijectors according to a template
- Normflows PyTorch package for Normalizing Flows
- Flowtorch PyRo based Pytorch library for Normalizing Flows

Take Home Messages

- Normalizing flows as an effective and tractable way to generate new samples (efficient) and to evaluate the likelihood of samples (not so efficient)
- Universality property The flow can learn any target density to any required precision given sufficient capacity and data
 - Flow can be used to generate samples that approximate a density easy to evaluate but difficult to sample
- Normalizing flow design needs to take care of
 - Keeping flow invertible and efficient
 - Making the determinant of the Jacobian easy to compute
- Normalizing flows can be made continuous using a neural ODE scheme

Generative DL Summary (I) - Sampling

Generative adversarial networks

- Adversarial learning as a general and effective principle
- Effective and efficient in generating high quality samples
- Do not learn sample likelihood
- GANs generally more unstable than other deep generative models

Variational Autoencoders

- ELBO trained and imposing standard normal structure
- Encoder-Decoder scheme with latent variables of any dimension
- Can be integrated with adversarial, diffusion and flow approaches
- Useful to study representation learning aspects but bad at sampling

Diffusion models

- Generate data from noise through a learned incremental denoising with fixed steps
- A hierarchical VAE with fixed encoder and no explicit density
- Easy to train, scalable to parallel hardware and generate high quality samples (though can be slow)

Generative DL Summary (II) - Density

Autoregressive

- Generate data by sampling based on the chain rule factorization (e.g. PixelRNN)
- Effective density estimators, but sampling is very costly and impractical for high dimensional data

Normalizing flows

- Can learn arbitrary distributions for high-dimensional data in a tractable way using change of variable
- Can handle efficient sampling and interpolation
- Generalize and make tractable autoregressive modeling
- Require bijective transformations and "well-behaved" Jacobians

Energy-based models

- Neural networks trained in a generative fashion as Markov Random Fields
- Does not require that all components are distributions
- Need to be trained by MCMC (due to the usual partition function term)

Coming-up next

• Deep learning for graphs (2 lectures)

- Processing graph structured data in neural network
- Learning tasks on graphs
- Foundational neural models for graphs
- Information propagation on graphs
- Generative learning and graphs

Tuesday 20th: No Lecture (Giro d'Italia)

