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Lecture Outline
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○ Introduction
● Change of variable

● Flows fundamentals

● From 1D to multi-dimensional flows

○ Neural flow layers
● Coupling flows

● Masking & squeezing

● Invertible convolutions

● Autoregressive flows

○ Normalizing flows and deep generative models wrap-up



A Taxonomy
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Adapted from I. Goodfellow, Tutorial on Generative Adversarial Networks, 2017

Generative DL

Explicit Implicit

Visible Latent

Variational Stochastic

Direct Stochastic

Variational AEs
Diffusion Model

Boltzmann 
Machines

Generative 
Adversarial 
Networks

Generative 
Stochastic 
Networks

Tractable 
densities

Intractable 
densities
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Sampling RNN
Flow-based



Normalizing Flow 
Fundamentals



Normalizing Flow (NF) – The Intuition
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○ Learn a probabilistic model by transforming a simple distribution 
into the complex data generating distribution using a deep 
network

● Easy to sample and evaluate the probability

● Requires a specialized architecture where each layer must be invertible

… …

……

forward/generative

inverse/normalizing



Probabilistic Change of Variable
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○ Take a tractable base distribution 
𝑃 𝑧 over latent variable 𝑧 and a  
model density 𝑃 𝑥 over data 𝑥

○ Apply a change of variable function 
(possibly learned with parameters 
𝜃)

𝑥 = 𝑓 𝑧; 𝜃

○ In addition, we are going to require 
that 𝑓 is invertible 

𝑧 = 𝑓−1 𝑧; 𝜃

𝑥 = 𝑓(𝑧)

𝑧
=
𝑓
−
1(𝑥

)

Measuring the 
probability through 
the change of variable 
requires some 
additional thinking 



Linear 1D Change of Variable
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NF define complex densities by transforming a base one by invertible 
mappings (bijections)

○ Simplest case in 1D is a univariate Gaussian base density

𝑧 ~𝒩(0,1)

○ Simplest change of variable (forward) by linear transformation

𝑥 = 𝑓 𝑧; 𝜇, 𝜎 = 𝜇 + 𝑧𝜎

○ Inverse then (under 𝜎 ≠ 0)

𝑧 = 𝑓−1 𝑥; 𝜇, 𝜎 = (𝑥 − 𝜇)/𝜎

○ With P(𝑧) known we want to find P(x)



Linear 1D – Mass conservation
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The volume may change but the density must be preserved

P(𝑧)

𝑧

P 𝑧 𝑑𝑧

P 𝑥 𝑑𝑥P(𝑥)

The necessary condition for this is 
P 𝑧 𝑑𝑧 = 𝑃 𝑥 𝑑𝑥

The probability of data x under the 
transformed distribution is 

𝑃 𝑥 = 𝑃 𝑧
𝑑𝑥

𝑑𝑧

−1

=
𝑃(𝑧)

𝜎

Change of volume

𝑥 = 𝜇 + 𝜎𝑧

𝑥 − 𝜇

𝜎

𝑥 ~𝒩(𝜇, 𝜎2 )



Linear 1D – Iterated forward pass
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○ Sample 𝑥 through 2 mappings (transformations)

𝑧0~𝑃 𝑧 𝑧1 = 𝑓1 𝑧0 𝑥 = 𝑓2(𝑧1)

○ Density obtained by composing forward transformations

𝑃 𝑥 = 𝑃(𝑧0)
𝑑𝑧1

𝑑𝑧0

−1
𝑑𝑥

𝑑𝑧1

−1

𝑃 𝑥 = 𝑃 𝑧
𝑑𝑥

𝑑𝑧

−1
Forward transformation 
equation



Linear 1D – Inverse Flow
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○ We may be interested in estimating the density of a given input 
sample 𝑥

○ Requires building the inverse flow (𝑔 = 𝑓−1)

𝑧1 = 𝑓2
−1 𝑥 = 𝑔2 𝑥 𝑧0 = 𝑓1

−1 𝑧1 = 𝑔1 𝑧1
○ And computing the density accordingly

𝑃 𝑥 =
𝑑𝑧1

𝑑𝑥

𝑑𝑧0

𝑑𝑧1
𝑃(𝑧0)



Multidimensional flow
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○ Extend the approach to multi-dimensional case

● 𝒙, 𝒛 vectorial RVs with density P(𝒛) and P(𝒙)

● Flow f(𝒛) invertible and differentiable (closed under 
composition)

○ Transformation 𝐱 = f(𝒛) leads to the probability 
change

𝑃 𝒙 = 𝑃 𝒛 𝑑𝑒𝑡
𝜕𝑓(𝒛)

𝜕𝒛

−1

Determinant Jacobian

Provides information on the rate of change of 
the volume affected by the 𝑓 transformation

Area of this field can be 

computed with vector calculus 

and turns out to be the 

Jacobian determinant



General Multistep Case
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𝑓2
−1 ⋅𝑓1

−1 ⋅ 𝑓3
−1 ⋅

𝑓2 ⋅𝑓1 ⋅ 𝑓3 ⋅

𝑃 𝒙 = 𝑃 𝒛0 ෑ

𝑖=1

𝑁

𝑑𝑒𝑡
𝜕𝑓𝑖(𝒛𝒊−𝟏)

𝜕𝒛𝑖−𝟏

−1

𝑃 𝒛0 ෑ

𝑖=1

𝑁

det 𝐽𝒛𝑖−1 𝑓𝑖
−1

𝑃 𝒙 = 𝑃 𝒛0 ෑ

𝑖=1

𝑁

𝑑𝑒𝑡
𝜕𝑓𝑖

−1(𝒛𝑖)

𝜕𝒛𝑖
= 𝑃 𝒛0 ෑ

𝑖=1

𝑁

det 𝐽𝒛𝑖 𝑓𝑖
−1

Density of the sample
Used for sampling

𝒛0 ~𝑃 𝒛0

Density of the input
Used to “know” the likelihood 
(e.g. learning, anomaly 
detection)
𝒛0 = 𝑓1

−1 𝒛1

𝒛𝑁 = 𝒙
𝒛0 = 𝒛

𝒛𝑁 = 𝒙
𝒛0 = 𝒛



Some considerations & desiderata
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○ Can use log densities for stability and learning

log𝑃 𝒙 = log𝑃 𝒛0 +

𝑖=1

𝑁

log det 𝐽𝒛𝑖−1 𝑓𝑖
−1 = log𝑃 𝒛0 −

𝑖=1

𝑁

log det 𝐽𝒛𝑖 𝑓𝑖

○ Can optimize the parameters 𝜃 of the 𝑓𝑖(⋅ ; 𝜃) by gradient based optimization 
of the log-likelihood above

● 𝑓𝑖 needs to be invertible and differentiable (and remain so throughout learning)

● 𝑓𝑖 composition needs to be expressive enough to map Normal into arbitrary distributions

● Need to compute determinant easily (e.g. Jacobian diagonal or triangular matrix) 

● Computation of 𝑓𝑖 needs to be efficient for sampling 

● Computation of 𝑓𝑖
−1 needs to be efficient for learning

● Computation of 𝑓𝑖 needs to be stable numerically 



Neural Flow Layers



Flows as invertible neural layers
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○ Affine flows (not sufficiently expressive)

𝒇(𝒛) = 𝒃 +𝑾𝒛

○ Pointwise nonlinear where 𝑓 are piecewise linear or smooth 
splines (nonlinear and easy to compute)

𝒇 𝒛 = 𝑓 𝑧 1 , 𝜃 , 𝑓 𝑧 2 , 𝜃 , … , 𝑓 𝑧 𝐷 , 𝜃

○ Pointwise does not allow capturing correlations between 
dimensions

○ Coupling flows: arguably most popular neural layer design 



Coupling Flows
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𝒛1

𝒛2

𝒛

𝒛1
′

𝒛2
′

𝒛′

𝜃(𝒛1)

𝒇(𝐳2; 𝜃(𝒛1))

Neural 
network that 
generates 
parameters 
𝜃 for the 
invertible 
function

copy

Simple invertible flow
(e.g. elementwise flow)

𝒛1

𝒛2

𝒛

𝒛1
′

𝒛2
′

𝒛′

𝜃(𝒛1
′ )

𝒇−𝟏(𝐳2
′ ; 𝜃(𝒛1

′ ))

copy

Forward Inverse



Non-linear Independent Components 
Estimation (NICE)
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𝑰

𝐳2
′ = 𝒛2 + 𝜽(𝒛1)

𝑰

𝟎

Jacobian

𝒛1

𝒛2

𝒛

𝒛1
′

𝒛2
′

𝒛′

𝜃(𝒛1)

𝒇(𝐳2; 𝜃(𝒛1))

copy Copy Shift

𝜕𝜽 𝒛1
𝜕𝒛1

First example of 
coupling layer
• Simple affine 

transformation

𝒛2 = 𝒛2
′ − 𝜽(𝒚1)

Inverse

L Dinh et al, Non-linear Independent Components Estimation (NICE), ICLR-WS 2014

5 ReLU layers NN with 
1000 units 



NICE – Stacked Coupling Flows
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𝒛1

𝒛2

𝒛

𝒛1
′

𝒛2
′

𝒛′

𝜃(𝒛1)

𝒇(𝐳2; 𝜃(𝒛1))

𝒛1
′

𝒛2
′

𝒛′

𝒛1
′′

𝒛2
′′

𝒛′′

𝜃(𝒛1)

𝒇(𝐳2; 𝜃(𝒛1))

Layer 1 Layer 2

…

S
h
u
ff

le

Random shuffle allows more general transformations than between only elements in 1st and 2nd half



(Not so) NICE Results
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L Dinh et al, Non-linear Independent Components Estimation (NICE), ICLR-WS 2014



RealNVP – Multiscale Nonlinear Flow
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𝑰

𝐳2
′ = exp 𝜽𝐴(𝒛1) ⊙ 𝒛2 + 𝜽𝐵(𝒛1)

𝑑𝑖𝑎𝑔 exp 𝜽𝐴(𝒛1)

𝟎

Jacobian

𝒛1

𝒛2

𝒛

𝒛1
′

𝒛2
′

𝒛′

𝜃(𝒛1)

𝒇(𝐳2; 𝜃(𝒛1))

copy

(Forward)

Scale Shift

𝜕𝜽𝑏 𝒛1
𝜕𝒛1

𝐳𝟐 =
𝐳2
′ − 𝜽𝐵(𝒛1

′ )

exp 𝜽𝐴(𝒛1
′ )

(Inverse)

Rectified convolutions 
(size preserving with 
no zero-padding) + 

residual connections + 
batch normalization

L Dinh et al, Density Estimation using real NVP, ICLR 2017



Multiscale Flows
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𝑓1(⋅ ; 𝜽𝟏)

𝑓2(⋅ ; 𝜽𝟐)

𝑓3(⋅ ; 𝜽𝟑)

𝑓4(⋅ ; 𝜽𝟒)



RealNVP – Masking and Squeezing
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Partitioning 
with checkerboard pattern Squeezing

followed by channel-wise masking

Multiscale flow implemented by 
alternating binary masking (𝑏𝑖
∈ {0,1}) and squeezing
• Pixel masking before squeeze
• Channel masking after 

squeeze

𝒛′ = 𝒃⊙ 𝒛 + (1 − 𝒃)⊙ {exp 𝜽𝐴(𝒃⊙ 𝒛 )⊙ 𝒛 + 𝜽𝐵(𝒃⊙ 𝒛)}

𝑠 × 𝑠 × 𝑐
𝑠
2 ×

𝑠
2 × 4𝑐

Squeezing

𝟎

𝟏

L Dinh et al, Density Estimation using real NVP, ICLR 2017



RealNVP Results
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dataset sampled

L Dinh et al, Density Estimation using real NVP, ICLR 2017



GLOW – Multiscale Coupling Flow with 
Invertible 1x1 Convolutions
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GLOW

○ Start with RGB tensor

○ Split channels in 2 halves

○ Run 1x1 convolutions
parameterized with an LU 
decomposition (channel 
mixing/permutation)

○ Affine transform each spatial 
position in second half

○ Multiscale & periodic 
squeeze

Kingma & Dhariwal, P,  Glow: Generative flow with invertible 1x1 convolutions, NeurIPS 2018

𝐳2
′ = exp 𝜽𝐴(𝒛1) ⊙ 𝒛2 + 𝜽𝐵(𝒛1)

𝑾 rotation LU-factorized 

for det(J) efficiency



GLOW Results - Sampling
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Kingma & Dhariwal, P,  Glow: 
Generative flow with invertible 
1x1 convolutions, NeurIPS 2018

Increasing temperature



GLOW Results - Interpolation
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Kingma & Dhariwal, P,  Glow: Generative flow with invertible 1x1 
convolutions, NeurIPS 2018



GLOW Results - Manipulation
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Kingma & Dhariwal, 
P,  Glow: 
Generative flow 
with invertible 1x1 
convolutions, 
NeurIPS 2018



Autoregressive Flows
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𝑧1

𝑧2

𝒛 𝒛′

𝜃(𝑧1)

𝑧3

𝑧4

𝑧1
′

𝑧2
′

𝑧3
′

𝑧4
′

𝑓(z1; 𝜃)

𝑓(z2; 𝜃(𝑧1))

𝜃(𝑧1:2)

𝑓(z3; 𝜃(𝑧1:2))
𝜃(𝑧1:3)

𝑓(z4; 𝜃(𝑧1:3))

Generalization of coupling 
flows that treats each 
input dimension as a 
separate block
• Forward and inverse 

directions have 
different costs 
(parallel/sequential)

Forward



Masked Autoregressive Flow
Autoregressive model as a transformation 𝒇
from the space of random vectors 𝒛 to space 
of data 𝒙

DAVIDE BACCIU - ISPR COURSE 30

𝑓(𝑧i; 𝜽(𝒙1:𝑖−1 ))

𝜽(𝒙1:𝑖−1 )

𝜇𝑖 𝑠𝑖

𝑥𝑖 = 𝜇𝑖 + 𝑧𝑖 exp(𝑠𝑖)

𝑧𝑖~𝒩(0,1)

𝑃 𝑥𝑖 𝒙1:𝑖−1 = 𝒩(𝜇𝑖 , (exp 𝑠𝑖 )
2)

𝒇 is easily invertible, Jacobian is triangular and 
easily computable determinant

𝑧𝑖 = 𝑓−1 𝑥𝑖 = (𝑥𝑖 − 𝜇𝑖) exp(−𝑠𝑖)

det
𝜕𝑓−1

𝜕𝑧
= exp−

𝑖
𝑠𝑖

G. Papamakarios et al, 
Masked Autoregressive Flow 
for Density Estimation, 
NeurIPS 2017



Wrap-Up



Implementations & Libraries
○ Normalizing flows are natively supported by Tensorflow (through 

the TF Probability module)
● tf.probability.distribution (for base distributions)

● tf.probability.bijector (for predefined layers, e.g. masked 
autoregressive)

● Chain() (to chain bijectors and compose complex modules)

● You can of course define you own bijectors according to a template

○ Normflows - PyTorch package for Normalizing Flows

○ Flowtorch – PyRo based Pytorch library for Normalizing Flows
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https://github.com/VincentStimper/normalizing-flows
https://flowtorch.ai/


Take Home Messages 
○ Normalizing flows as an effective and tractable way to generate new samples 

(efficient) and to evaluate the likelihood of samples (not so efficient)

○ Universality property - The flow can learn any target density to any required 
precision given sufficient capacity and data

● Flow can be used to generate samples that approximate a density easy to 
evaluate but difficult to sample

○ Normalizing flow design needs to take care of
● Keeping flow invertible and efficient

● Making the determinant of the Jacobian easy to compute

○ Normalizing flows can be made continuous using a neural ODE scheme
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Generative DL Summary (I) - Sampling
Generative adversarial networks

● Adversarial learning as a general and effective principle
● Effective and efficient in generating high quality samples
● Do not learn sample likelihood
● GANs generally more unstable than other deep generative models

Variational Autoencoders
● ELBO trained and imposing standard normal structure
● Encoder-Decoder scheme with latent variables of any dimension
● Can be integrated with adversarial, diffusion and flow approaches
● Useful to study representation learning aspects but bad at sampling

Diffusion models
● Generate data from noise through a learned incremental denoising with fixed steps
● A hierarchical VAE with fixed encoder and no explicit density
● Easy to train, scalable to parallel hardware and generate high quality samples (though can be slow)
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Generative DL Summary (II) - Density
Autoregressive

● Generate data by sampling based on the chain rule factorization (e.g. PixelRNN)

● Effective density estimators, but sampling is very costly and impractical for high dimensional data

Normalizing flows

● Can learn arbitrary distributions for high-dimensional data in a tractable way using change of variable

● Can handle efficient sampling and interpolation 

● Generalize and make tractable autoregressive modeling

● Require bijective transformations and “well-behaved” Jacobians

Energy-based models

● Neural networks trained in a generative fashion as Markov Random Fields 

● Does not require that all components are distributions

● Need to be trained by MCMC (due to the usual partition function term) 
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Coming-up next
○ Deep learning for graphs (2 lectures) 

● Processing graph structured data in neural network

● Learning tasks on graphs

● Foundational neural models for graphs

● Information propagation on graphs

● Generative learning and graphs

Tuesday 20th: No Lecture (Giro d’Italia)
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