Fundamentals of (Deep) Reinforcement Learning

INTELLIGENT SYSTEMS FOR PATTERN RECOGNITION (ISPR)

DAVIDE BACCIU – DIPARTIMENTO DI INFORMATICA - UNIVERSITA' DI PISA

DAVIDE.BACCIU@UNIPI.IT

Lecture Outline

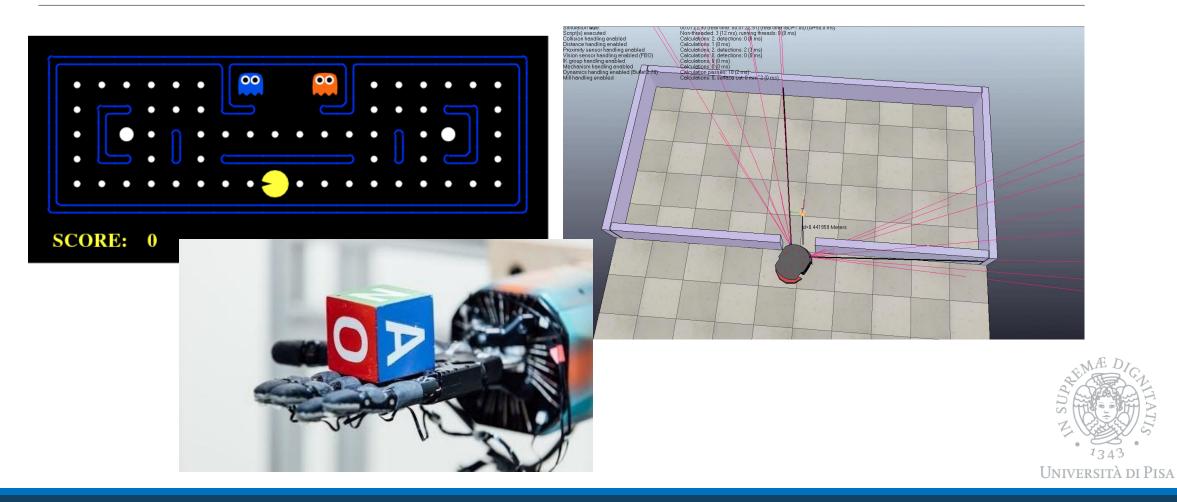
- RL Fundamentals
- Model based RL
- Model free RL
- Hints of deep reinforcement learning

Introduction & Formal Model

What characterizes Reinforcement Learning (vs other ML tasks)?

- No supervisor: only a *reward* signal
- Delayed asynchronous feedback
- Time matters (sequential data, continual learning)
- Agent's actions affect the subsequent data it receives (inherent non-stationarity)

(Some) RL Tasks



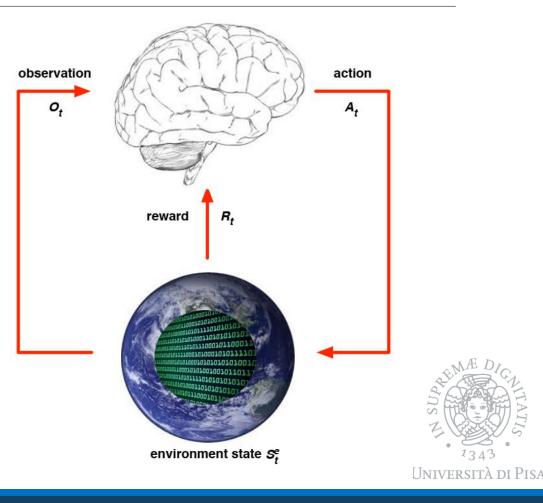
DAVIDE BACCIU - ISPR COURSE

Rewards

- A reward R_t is a scalar feedback signal
- Indicates how well agent is doing at step t
- The agent's job is to maximise cumulative reward
- Reinforcement learning is based on the reward hypothesis
- All goals can be described by the maximisation of expected cumulative reward

Agents and Environments

- S_t^e is the environment e private representation at time t
- S_t^a the internal representation owned by agent a
- Full observability \Rightarrow Agent directly observes the environment state $O_t = S_t^a = S_t^e$
- Formally this is a Markov Decision Process (MDP)



Markov Decision Process

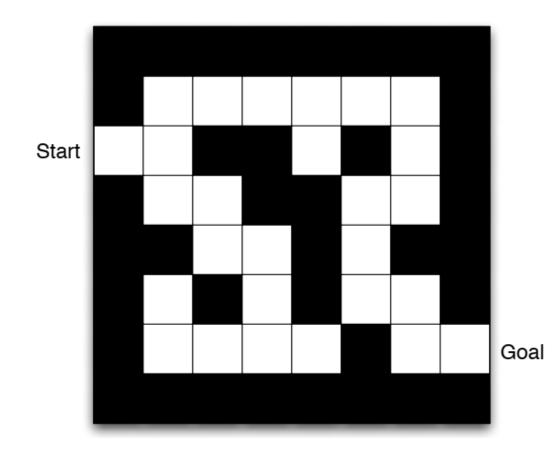
A Markov Decision Process (MDP) is a Markov chain with rewards and actions. It is an environment in which all states are Markov

Definition (Markov Decision Process)

A Markov Decision Process is a tuple $\langle S, A, P, \mathcal{R}, \gamma \rangle$

- \circ *S* is a finite set of states
- $\circ \mathcal{A}$ is a finite set of actions a
- **P** is a state transition matrix, s.t. $P_{ss'}^a = P(S_{t+1} = s' | S_t = s, A_t = a)$
- \mathcal{R} is a reward function, s.t. $\mathcal{R}_s^a = \mathbb{E}[R_{t+1}|S_t = s, A_t = a]$
- γ is a discount factor, $\gamma \in [0,1]$

A Forever Classic - The Maze Example



- **Rewards:** -1 per time-step
- Actions: N, E, S, W
- States: Agent location

DAVIDE BACCIU - ISPR COURSE

RL Goal - Return Maximization

Definition (Return)

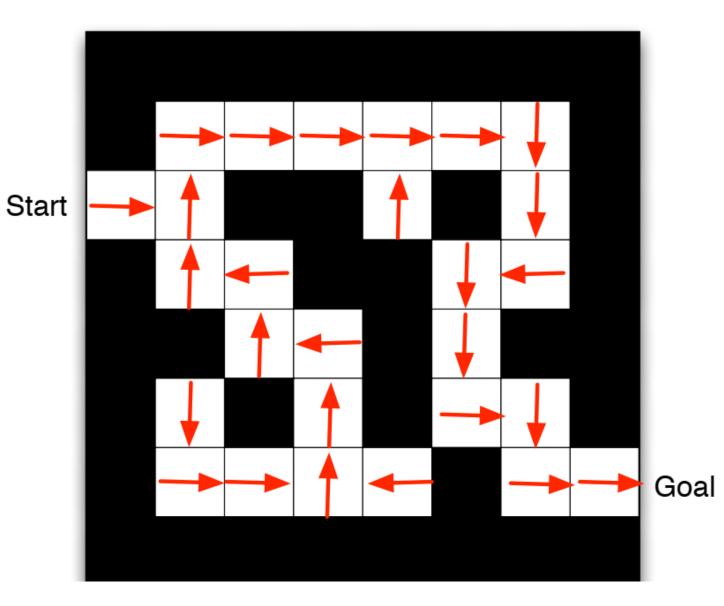
The return G_t is the total discounted reward from time-step t

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

- The value of receiving reward R after k + 1 timesteps is $\gamma^k R$
- \circ γ values immediate reward Vs delayed reward
 - $\gamma \approx 0$ leads to "myopic" evaluation
 - $\gamma \approx 1$ leads to "far-sighted" evaluation

Policy – At the core of an RL agent

- A policy π is the agent's behaviour
- It is a map from state *s* to action *a*
 - Deterministic policy: $a = \pi(s)$
 - Stochastic policy: $\pi(a|s) = P(A_t = a|S_t = s)$
- $_\circ~$ A policy π is a distribution over actions a given states



Maze Example (Policy)

Arrows represent policy $\pi(s)$ for each state s

DAVIDE BACCIU - ISPR COURSE

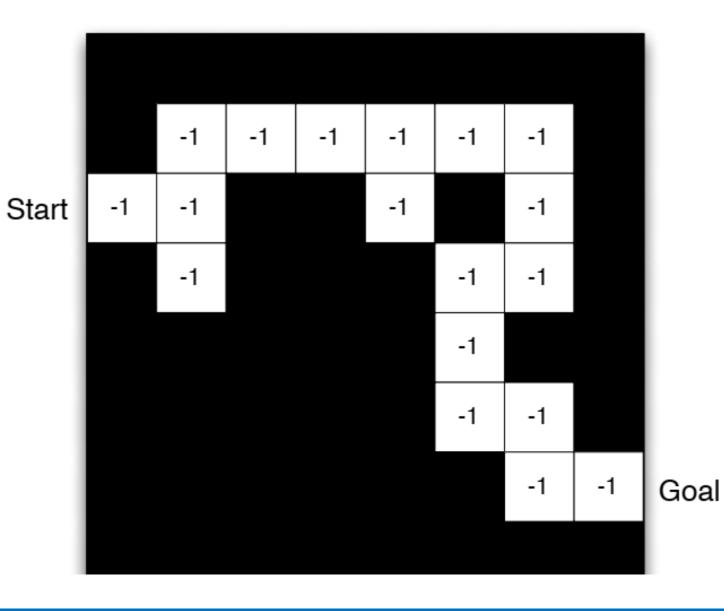
Model

- A model predicts what the environment will do next
- Predict next state s' following an action a

$$\mathcal{P}^{a}_{ss'} = P(S_{t+1} = s' | S_t = s, A_t = a)$$

• Predict next reward

$$\mathcal{R}_s^a = \mathbb{E}[R_{t+1}|S_t = s, A_t = a]$$



Maze Example (Model)

- Agent may have an internal (imperfect) model of the environment
 - How actions change the state
 - How much reward from each state
- Grid Layout: transition
- model $\mathcal{P}^{a}_{ss'}$
- Numbers: immediate reward model \mathcal{R}_s^a

Value Function

- The state-value function $v_{\pi}(s)$ of a Markov Decision Process is the expected return starting from state and following policy π $v_{\pi}(s) = \mathbb{E}_{\pi}[G_t|S_t = s]$
- The value function $v_{\pi}(S_t)$ can be decomposed into two parts
 - Immediate reward R_{t+1}
 - Discounted value of successor state $\gamma v_{\pi}(S_{t+1})$

$$v_{\pi}(s) = \mathcal{R}_{s} + \gamma \sum_{s'} P_{ss'} v_{\pi}(s')$$

The expected statevalue of being in any state reachable from s

		-14	-13	-12	-11	-10	-9		
Start	-16	-15			-12		-8		
		-16	-17			-6	-7		
			-18	-19		-5			
		-24		-20		-4	-3		
		-23	-22	-21	-22		-2	-1	Goal

Maze Example (Value Function)

Numbers denote the value $v_{\pi}(s)$ for each s

Expected time to reach the goal

DAVIDE BACCIU - ISPR COURSE

Action-Value Function

The action-value function $q_{\pi}(s, a)$ is the expected return starting from state s, taking action a, and then following policy π

$$q_{\pi}(s,a) = \mathbb{E}_{\pi}[G_t|S_t = s, A_t = a] = \mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} P_{ss'}^a v_{\pi}(s')$$

Also the value function can be written in terms of the action-value function

$$v_{\pi}(s) = \mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1})|S_t = s] = \sum_{a \in \mathcal{A}} \pi(a|s)q_{\pi}(s,a)$$

Bellman Expectation

$$v_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(\mathcal{R}_{s}^{a} + \gamma \sum_{s' \in \mathcal{S}} P_{ss'}^{a} v_{\pi}(s') \right)$$

The expected return of being in a state reachable from *s* through action *a* and then continue following policy

$$q_{\pi}(s,a) = \mathcal{R}_{s}^{a} + \gamma \sum_{s' \in \mathcal{S}} P_{ss'}^{a} \sum_{a' \in \mathcal{A}} \pi(a'|s') q_{\pi}(s',a')$$

The expected return of any action a' taken from states reachable from *s* through action *a* (and then follow policy)

Finding an Optimal Policy

An optimal policy can be found by maximising over $q_*(s, a)$

$$\pi_*(a|s) = \begin{cases} 1 & \text{if } a = \arg \max_{a \in \mathcal{A}} q_*(s, a) \\ 0 & \text{otherwise} \end{cases}$$

- There is always a deterministic optimal policy for any MDP
- If we know $q_*(s, a)$, we straightforwardly find the optimal policy

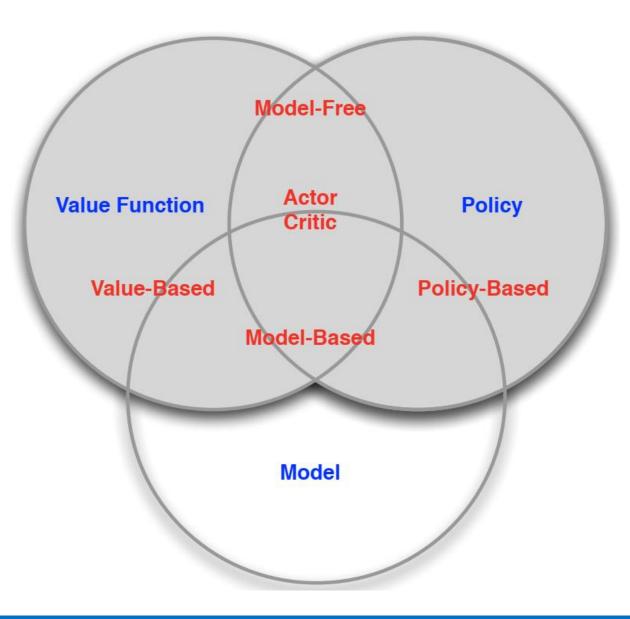
Bellman Optimality Equations

Optimal value functions are recursively related Bellman-style

$$v_*(s) = \max_{a \in \mathcal{A}} q_*(s, a) = \max_{a \in \mathcal{A}} \mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} P_{ss'}^a v_*(s')$$

$$q_*(s,a) = \mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} P_{ss'}^a v_*(s') = \mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} P_{ss'}^a \max_{a' \in \mathcal{A}} q_*(s',a')$$

RL approaches



A Taxonomy

DAVIDE BACCIU - ISPR COURSE

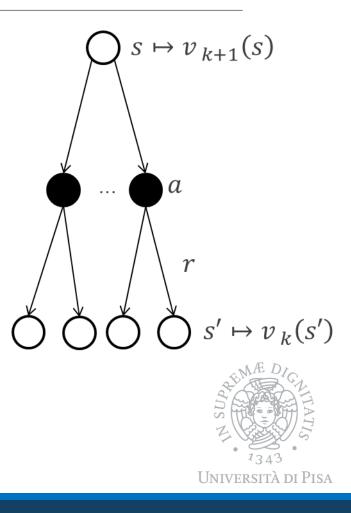
Model Based - Iterative Policy Evaluation

- Problem: evaluate a given policy π
- Solution: iterative application of Bellman expectation backup

$$v_1 \to v_2 \to \cdots \to v_\pi$$

- Using synchronous backups
 - 1. At each iteration k + 1
 - 2. For all states $s \in S$
 - 3. Update $v_{k+1}(s)$ from $v_k(s')$ where s' is a successor state of s

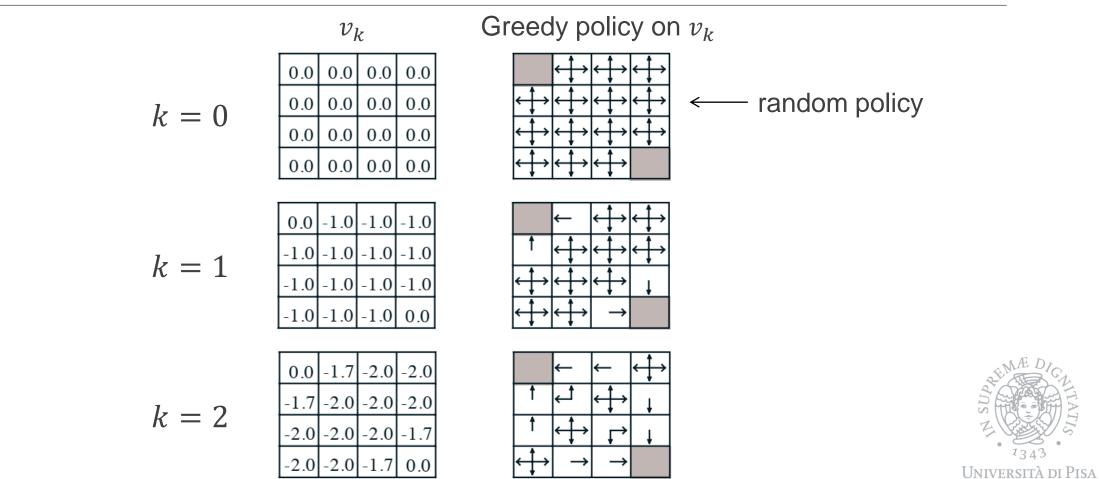
$$v_{k+1}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} P_{ss'}^a v_k(s') \right)$$



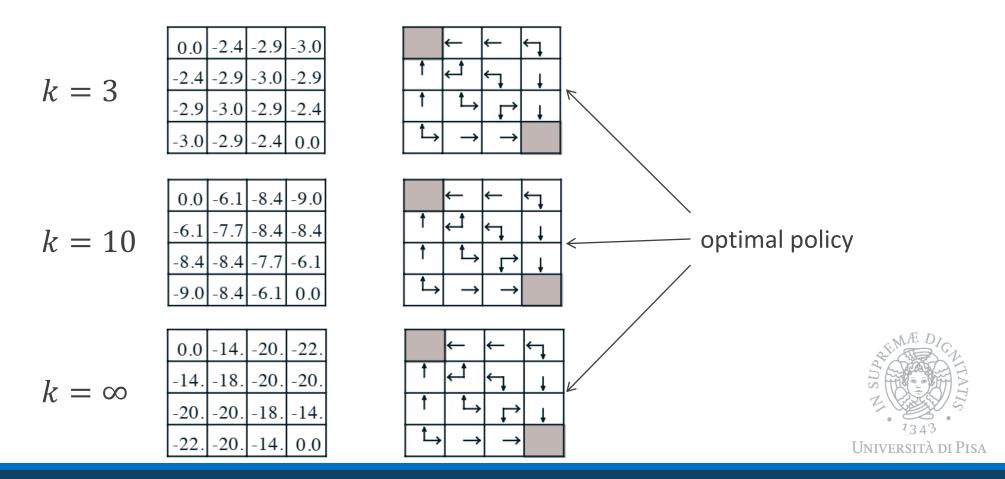
Model Based – Policy Iteration

- $_\circ~$ Given policy π
 - Evaluate the policy π $v_{\pi}(s) = \mathbb{E}_{\pi} [R_{t+1} + \gamma R_{t+2} + \cdots | S_t = s]$
 - Improve the policy by acting greedily with respect to v_{π} $\pi' = greedy(\pi) \Rightarrow \pi'(s) = \arg \max_{a \in A} q_{\pi}(s, a)$
- In general, need more iterations of improvement / evaluation
- $_{\circ}~$ But this process of policy iteration always converges to the optimal policy π_{*}

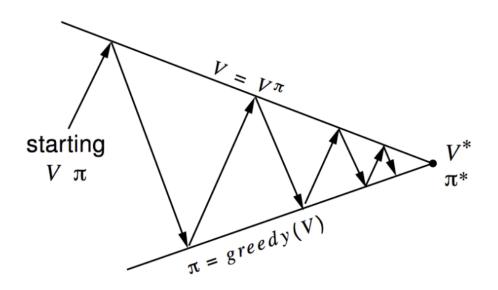
Policy Iteration Example (I)



Policy Iteration Example (II)

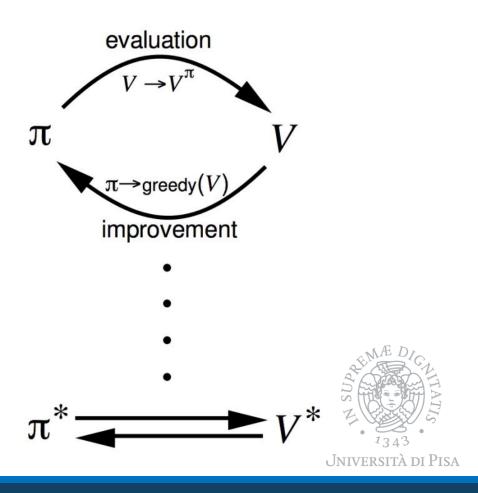


Policy Iteration



✓ Policy evaluation - Estimate v_{π} ✓ Iterative policy evaluation

✓ Policy improvement - Generate $\pi' \ge \pi$ ✓ Greedy policy improvement



Model Based - Value Iteration

 $S \mapsto v_{k+1}(s)$ $\cdots \qquad a$ r r $S \mapsto v_k(s')$

Using Bellman optimality in place of Bellman expectation

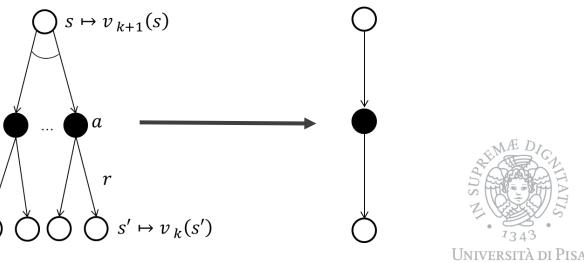
$$v_{k+1}(s) = \max_{a \in \mathcal{A}} \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} P_{ss'}^a v_k(s') \right)$$

DAVIDE BACCIU - ISPR COURSE

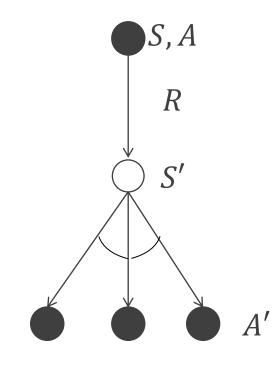
Model-Free Reinforcement Learning

- So far: solve a known MDP (states, transition, rewards, actions)
- Model free
 - No environment model
 - No knowledge of MDP transition/rewards
- Solution is to use sample updates

Using sample rewards and sample transitions (S, A, R, S')



Q-Learning – Off-policy RL



Greedy policy improvement on Q(S,A) is model-free

$$Q(S,A) \leftarrow Q(S,A) + \alpha \left(R + \max_{a'} \gamma Q(S',a') - Q(S,A)\right)$$

Temporal difference error

• The target policy
$$\pi$$
 is greedy w.r.t. $Q(S, A)$
 $\pi(S) = \arg \max_{a'} Q(S', a')$

• Off policy - We choose which action A to execute based on an ϵ -greedy policy

$$\pi'(a|s) = \begin{cases} \epsilon/m + (1-\epsilon) & \text{if } a^* = \arg \max_{a \in \mathcal{A}} Q(s,a) \\ \epsilon/m & \text{otherwise} \end{cases}$$

Q-Learning Algorithm for Off-policy Control

I Iniversità di Pisa

Value Function Approximation

So far V(s)/Q(s, a) =lookup table

- An entry for every state *s* or state-action pair *s*, *a*
- Large MDPs \Rightarrow too many states and/or actions to store in memory
- Too slow to learn the value of each state individually
- Generalization issues

The *new* approach

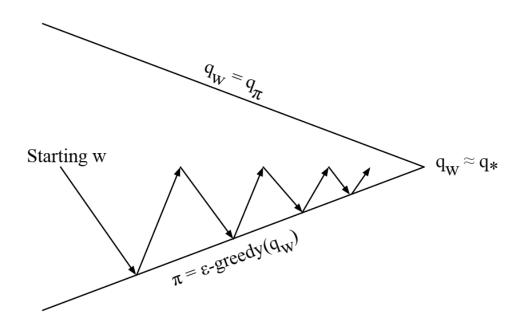
• Estimate value function with function approximation

 $\hat{v}(s; \mathbf{w}) \approx v_{\pi}(s)$ $\hat{Q}(s, a; \mathbf{w}) \approx Q_{\pi}(s, a)$

- Generalise from seen states to unseen states
- Update parameters w using Q-learning



Learning with Value Function Approximation



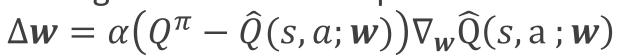
• Policy evaluation -Approximate policy evaluation, $\widehat{Q}(\cdot,\cdot; w) \approx Q_{\pi}(\cdot,\cdot)$

Policy improvement - ε-greedy
 policy improvement

Supervised Learning of Action-Value

Given a dataset of states and target temporal-difference targets $\mathcal{D} = \{ \langle S_1, R_1 + \max_{a'} \gamma Q(S_1, a') \rangle, \langle S_2, R_2 + \max_{a'} \gamma Q(S_2, a') \rangle, \dots, \langle S_T, R_T + \max_{a'} \gamma Q(S_T, a') \rangle \}$ Given a differentiable approximator $\hat{Q}(s, a; w)$ train it by SGD following

- 1. Sample state, value from experience $\langle s, Q^{\pi} \rangle \sim \mathcal{D}$
- 2. Apply stochastic gradient descent update $\widehat{O}(\alpha, \alpha, \mu) = \widehat{O}(\alpha, \mu) = \widehat{O}$



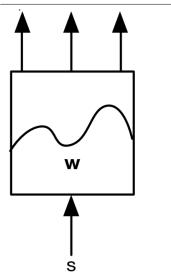
Deep Q-Networks (DQN)

- DQN uses experience replay and fixed Q-targets
- Take action a_t according to ϵ -greedy policy
- Store transition $(s_t, a_t, r_{t+1}, s_{t+1})$ in replay memory \mathcal{D}
- Sample random mini-batch of transitions (s, a, r, s') from \mathcal{D}
- Compute Q-learning targets with respect to old fixed parameters w^-
- Optimise MSE between Q-network and Q-learning targets

$$\mathcal{L}_{i}(w_{i}) = \mathbb{E}_{s,a,r,s'\sim\mathcal{D}_{i}}\left[\left(r + \gamma \max_{a'} Q(s',a';w_{i}^{-}) - Q(s,a;w_{i})\right)\right]$$

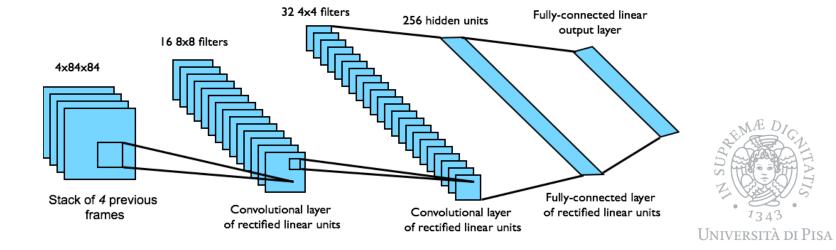
Using variant of stochastic gradient descent

Atari-DQN



- End-to-end learning of values Q(s, a) from pixels s
- Input state *s* is stack of raw pixels from last 4 frames
- Output is Q(s, a) for 18 joystick/button positions
- Reward is change in score for that step

Network architecture and hyperparameters fixed across all games



Policy-Based Reinforcement Learning

Previously

- Approximate value or action-value function using parameters θ $V_{\theta}(s) \approx V^{\pi}(s)$ $Q_{\theta}(s,a) \approx Q^{\pi}(s,a)$
- Generate policy from the value function (e.g. using ϵ -greedy)

Now

• Parametrise the policy

$$\pi_{\theta}(s,a) = P(a|s,\theta)$$

• Focus again on model-free reinforcement learning

Policy-Based RL – Pros and Cons

Advantages

- Better convergence properties
- Effective in high-dimensional or continuous action spaces
- Can learn stochastic policies
- Disadvantages
 - Typically converge to a local rather than global optimum
 - Evaluating a policy is typically inefficient and high variance

Deep Policy Networks

- Represent policy by deep network with weights u $a = \pi_u(a|s)$ or $\pi_u(s)$
- Define objective function as total discounted reward $J(u) = \mathbb{E}[r_1 + \gamma r_2 + \gamma^2 r_3 \dots | u]$
- Optimise objective end-to-end by stochastic gradient descent
- $_{\circ}$ Adjust policy parameters u to achieve more reward

Policy Gradient

How to make high-value actions more likely

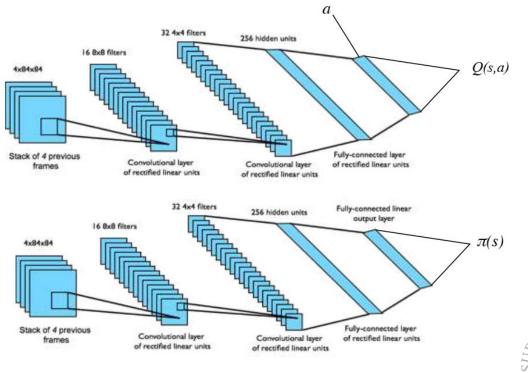
- The gradient of a stochastic policy $\pi(a|s, \mathbf{u})$ is given by $\nabla_u J(u) = \mathbb{E}_{\pi}[\nabla_u \log \pi_u(a|s) Q^{\pi}(s, a)]$
- The gradient of a deterministic policy a = $\pi(s)$ is given by $\nabla_u J(u) = \mathbb{E}_{\pi} [\nabla_a Q^{\pi}(s, a) \nabla_u a]$
- Assuming a continuous and Q differentiable

(Deep) Actor-Critic Architectures

- Estimate value function $Q_w(s,a) \approx Q^{\pi_{\theta}}(s,a)$
- Update policy parameters u by stochastic gradient ascent

$$\frac{\partial J(u)}{\partial u} = \frac{\partial \log \pi_u(a|s)}{\partial u} Q_w(s,a)$$

- \circ $% P_{a}^{(1)}$ Two separate CNNs are used for Q and π
- Policy π is adjusted in direction that most improves Q



Wrap Up

Useful Libraries

A toolkit for developing and comparing reinforcement learning algorithms

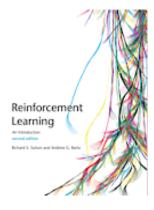
- Implementation of the interaction environment
- Plug-in your agent with integration of main DL frameworks

Stable Baselines

Reliable implementations of reinforcement learning algorithms in PyTorch

 Integration with Weights & Biases, Hugging Face and Gymnasium

A classic book if you want to know more



Richard S. Sutton and Andrew G. Barto, Reinforcement Learning: An Introduction, Second Edition, MIT Press (<u>available online</u>)

Take home messages

- Reinforcement learning is a general-purpose framework for decision-making
- MDP are a formalism to describe a fully-observable environment for RL
 - Can be relaxed to infinite and continuous actions/state and partially observable environments
- Model based Solve a known MDP
 - Policy iteration Re-define the policy at each step and compute the value according to this new policy until the policy converges
 - Value iteration Computes the optimal state value function by iteratively improving the estimate of V(s)
- Model free Optimise the value/policy of an unknown MDP
 - Value-based Smoother learning task with deterministic policy
 - Policy-based Faster convergence and stochastic policies
 - Actor-critic Learn the value function to reduce variance of policy gradient
- ...and much more (including planning with learned model (AlphaX))

Next Lectures

- An introduction to causality and causal learning
 - Guest lecture by Riccardo Massidda
 - Tuesday 21/05 h. 11-13 (RECOVERY LECTURE ROOM C)
- ✓ Final lecture
 - ✓ With full exam information
 - ✓ Wednesday 22/05 h. 16-18 (RECOVERY LECTURE ROOM C1)

Al Governance Workshop

Sala Gerace, Dipartimento di Informatica, University of Pisa. Pisa, 20 May 2024.

Organized by the FAIR - "Future AI Research" partnership.

Program

Openings Prof. Davide Bacciu, University of Pisa Prof. Humberto Marques, Pontifical Catholic University of Minas Gerais	15:25 🕓
Viewing Algorithms as Emerging Institutions Prof. Virgilio Almeida, Universidade Federal de Minas Gerais, and Berkman Klein Center at Harvard University	15:30 🕓
Responsible AI for Social Media Governance: the GPAI Project. Prof. Dino Pedreschi, University of Pisa	16:00 🕓
Governance Issues for Foundation Models and Generative AI Prof. Raja Chatila, ISIR - CNRS, and Pierre and Marie Curie University	16:30 🕓
Panel, Debate, and Conclusions Moderator: Prof.ssa Fosca Giannotti, Scuola Normale Superiore	17:00 🕓
Closing and Future Work	17:40 🕓

https://waigov.github.io/workshop/

DAVIDE BACCIU - ISPR COURSE