Computational Mathematics for Learning and Data Analysis: introduction to the course

Antonio Frangioni

Department of Computer Science University of Pisa https://www.di.unipi.it/~frangio mailto:frangio@di.unipi.it

Computational Mathematics for Learning and Data Analysis Master in Computer Science – University of Pisa

A.Y. 2024/25

Outline

Logistic

Motivation

Contents

Wrap up

Course Organization

- 1 course (9 CFU/ECTS)
- 1 program
- 1 exam
- ▶ 2 related but \neq areas of computational mathematics \implies 2 lecturers:

Federico Poloni (Numerical methods)

Dipartimento di Informatica, room 343 050 2213143, mailto:federico.poloni@unipi.it https://www.di.unipi.it/~fpoloni Office hours (ricevimento): upon request

Antonio Frangioni (Optimization)

Dipartimento di Informatica, room 327 050 2212789, mailto:frangio@di.unipi.it https://www.di.unipi.it/~frangio Office hours (ricevimento): Tuesday 9:00 - 11:00

Basic information

- Course Schedule
 - Wed 16:00 18:00 (Fib. C1)
 - Thu 11:00 13:00 (Fib. C)
 - Fri 11:00 13:00 (Fib. M1)
- Web page: https://elearning.di.unipi.it/course/view.php?id=990
- Team for lectures: https://teams.microsoft.com/l/team/19% 3AXKHW23QFLHIctHJWqDjeYPQVhmqbXwhkVG_jRiw196o1%40thread.tacv2/ conversations?groupId=cb04d09e-0aae-419a-a3d2-9be2e9afe1c5& tenantId=c7456b31-a220-47f5-be52-473828670aa1
- Exam: project (groups of 2) + oral exam Projects either "ML" or "no-ML", but no difference in work and grading

Outline

Logistic

Motivation

Contents

Wrap up

Why this course

- Huge amounts of data is generated and collected, but one has to make sense of it in order to use it: that's what learning is
- Take something big (data) and therefore unwieldy and produce something small and nimble that can be used in its stead ("actionable")
- That's a (mathematical) model
- Word comes from "modulus", diminutive from "modus" = "measure": "small measure", "measure in the small" (small is good)
- Known uses in architecture: proving beforehand that the real building won't collapse (e.g., Filippo Brunelleschi for the Cupola of the Cathedral of Florence)
- Countless many physical models afterwards (planes, cars, ...), but mathematics is cheaper than bricks / wood / iron ...
- Yet, mathematical problems can be difficult, too, for various reasons (and, of course, only truly viable after computers)
- Most of them will (likely) remain difficult for quantum computers https://www.smbc-comics.com/comic/the-talk-3

How a mathematical model should be:

- How a mathematical model should be:
 - 1. accurate (describes well the process at hand)

- How a mathematical model should be:
 - 1. accurate (describes well the process at hand)
 - 2. computationally inexpensive (gives answers rapidly)

- How a mathematical model should be:
 - 1. accurate (describes well the process at hand)
 - 2. computationally inexpensive (gives answers rapidly)
 - 3. general (can be applied to many different processes)

- How a mathematical model should be:
 - 1. accurate (describes well the process at hand)
 - 2. computationally inexpensive (gives answers rapidly)
 - 3. general (can be applied to many different processes)

Typically impossible to have all three \implies choice crucial!

- How a mathematical model should be:
 - 1. accurate (describes well the process at hand)
 - 2. computationally inexpensive (gives answers rapidly)
 - 3. general (can be applied to many different processes)

Typically impossible to have all three \implies choice crucial!

- Two fundamentally different model building approaches:
 - analytic: model each component of the system separately + their interactions, (≈)accurate but hard to construct (need system access + technical knowledge)
 - data-driven / synthetic: don't expect the model to closely match the underlying system, just to be simple and to (≈)accurately reproduce its observed behaviour

- How a mathematical model should be:
 - 1. accurate (describes well the process at hand)
 - 2. computationally inexpensive (gives answers rapidly)
 - 3. general (can be applied to many different processes)

Typically impossible to have all three \implies choice crucial!

- Two fundamentally different model building approaches:
 - analytic: model each component of the system separately + their interactions, (≈)accurate but hard to construct (need system access + technical knowledge)
 - data-driven / synthetic: don't expect the model to closely match the underlying system, just to be simple and to (≈)accurately reproduce its observed behaviour
- All models are approximate (the map is not the world), but for different reasons
- Analytic models: flexible shape, (relatively) few "hand-chosen" parameters
- Synthetic models: rigid shape, (very) many automatically chosen parameters
- Fitting: find the parameters of the model that best represents the phenomenon, clearly some sort of optimization problem (often a computational bottleneck)
- ► However, ML ≫ fitting: fitting minimizes training error ≡ empirical risk, but ML aims at minimizing test error ≡ risk ≡ generalization error!

Example 1: Linear Estimation

- A phenomenon measured by one number y is believed to depend on a vector x = [x₁, ..., x_n] of other numbers
- Available (hopefully, large) set of observations $(y^1, x^1), \ldots, (y^m, x^m)$

► Horribly optimistic assumption: the dependence is linear, i.e., $y = \sum_{i=1}^{n} w_i x_i + w_0 = wx + w_0$ for fixed n + 1 real parameters $w = [w_0, w_+ = [w_1, \dots, w_n]]$

▶ But $y^h = w_+ x^h + w_0$ for all h = 1, ..., m is not really true for any w and w_0

Find the w for which it is less untrue (Linear Least Squares):

$$y = \begin{bmatrix} y^{1} \\ \vdots \\ y^{m} \end{bmatrix} , X = \begin{bmatrix} 1 & x^{1} \\ \vdots & \vdots \\ 1 & x^{m} \end{bmatrix} , \min_{w} \mathcal{L}(w) = ||y - Xw||$$

▶ Minimize loss function $\mathcal{L}(w) = ||y - Xw|| \equiv \text{empirical risk} \equiv \text{how much}$ the model fails the predict the phenomenon on the available observations

• Simple closed formula: $X^T X w = X^T y \implies w = (X^T X)^{-1} X^T y$

Linear Estimation (cont.d)

6

Linear Estimation (cont.d)

In Matlab, this is just c = y / X

- \blacktriangleright Trade-off: very simple fitting for exceedingly crude model \implies high risk
- Then, of course Nonlinear Estimation

6

Example 2: Low-rank approximation

- A (large, sparse) matrix M ∈ ℝ^{n×m} describes a phenomenon depending on pairs (e.g., objects chosen from customers)
- Find "tall and thin" A ∈ ℝ^{n×k} and "fat and large" B ∈ ℝ^{k×m} (k ≪ n, m) s.t. M ≈ AB ≡ find a few features that describe most of users' choices

$$M \approx \left[A \right] \cdot \boxed{B} \quad , \quad \min_{A,B} \mathcal{L}(A, B) = \left| \left| M - AB \right| \right|$$

- ▶ Minimize loss $\mathcal{L}(A, B) = || M AB || \equiv$ "amount of unexplained choices"
- Many applications (neural networks, community analysis, ...)
- A, B can be obtained from eigenvectors of $M^T M$ and $MM^T \dots$

Example 2: Low-rank approximation

- A (large, sparse) matrix M ∈ ℝ^{n×m} describes a phenomenon depending on pairs (e.g., objects chosen from customers)
- Find "tall and thin" A ∈ ℝ^{n×k} and "fat and large" B ∈ ℝ^{k×m} (k ≪ n, m) s.t. M ≈ AB ≡ find a few features that describe most of users' choices

$$M \approx \left[A \right] \cdot \boxed{B} \quad , \quad \min_{A,B} \mathcal{L}(A, B) = \left| \left| M - AB \right| \right|$$

- ▶ Minimize loss $\mathcal{L}(A, B) = || M AB || \equiv$ "amount of unexplained choices"
- Many applications (neural networks, community analysis, ...)
- A, B can be obtained from eigenvectors of M^T M and MM^T...
 ... but that's a huge, possibly dense matrix
- Efficiently solving this problem requires:
 - 1. low-complexity computation (of course)
 - 2. avoiding ever explicitly forming $M^T M$ and MM^T (too much memory)
 - 3. exploiting structure of M (sparsity, similar columns, ...)
 - 4. ensuring the solution is numerically stable

Black/white image $\equiv M$ with color intensities $\in [0, 1]$

Original (512 \times 512)

$$k = 1$$
 $k = 10$

$$k = 25 \qquad \qquad k = 50 \qquad \qquad k = 100$$

Black/white image $\equiv M$ with color intensities $\in [0, 1]$

Original (512 \times 512)

$$k = 10$$

$$k = 25$$
 $k = 50$ $k = 100$

Black/white image $\equiv M$ with color intensities $\in [0, 1]$

Original (512 \times 512)

k = 1

k = 10

$$k = 25 \qquad \qquad k = 50 \qquad \qquad k = 100$$

Black/white image $\equiv M$ with color intensities $\in [0, 1]$

Original (512 \times 512)

k = 25

k = 1

k = 10

k = 50

k = 100

Black/white image $\equiv M$ with color intensities $\in [0, 1]$

Original (512 \times 512)

k = 1

k = 25

k = 50

k = 100

Black/white image $\equiv M$ with color intensities $\in [0, 1]$

Original (512×512)

k = 25

k = 1

k = 50

k = 100

▶ Same setting as Example 1 but $y^h \in \{1, -1\}$ (have cancer or not)

Same setting as Example 1 but $y^h \in \{1, -1\}$ (have cancer or not)

- Want to linearly separate the two sets (diagnose the next patient)
- Countless many applications (medical diagnosis, OCR, spam filtering, fraud detection, marketing, image processing ...)

Same setting as Example 1 but $y^h \in \{1, -1\}$ (have cancer or not)

- Want to linearly separate the two sets (diagnose the next patient)
- Countless many applications (medical diagnosis, OCR, spam filtering, fraud detection, marketing, image processing ...)
- But which hyperplane do we choose?

Same setting as Example 1 but $y^h \in \{1, -1\}$ (have cancer or not)

- Want to linearly separate the two sets (diagnose the next patient)
- Countless many applications (medical diagnosis, OCR, spam filtering, fraud detection, marketing, image processing ...)
- But which hyperplane do we choose?
- Intuitively, the margin is important (and theory supports the intuition)

Same setting as Example 1 but $y^h \in \{1, -1\}$ (have cancer or not)

- Want to linearly separate the two sets (diagnose the next patient)
- Countless many applications (medical diagnosis, OCR, spam filtering, fraud detection, marketing, image processing ...)
- But which hyperplane do we choose?
- Intuitively, the margin is important (and theory supports the intuition)
- ► Larger margin ⇒ more "robust" classification

Support Vector Machines (cont.d)

- ▶ Distance of // hyperplanes (w_+ , w_0) and (w_+ , w_0') is | $w_0 w_0' | / || w_+ ||$
- ► Can always take the hyperplane in "the middle" + scale w $\implies w_+x^h - w_0 \ge 1$ if $y^h = 1$, $w_+x^h - w_0 \le -1$ if $y^h = -1$
- The maximum margin separating hyperplane is the solution of min_w { || w₊ ||² : y^h(w₊x^h − w₀) ≥ 1 h = 1,..., m } (margin = 2 / || w₊ ||, "²" because I say so), assuming any exists
- ▶ What if it does not? Support Vector Machine (SVM-P) $\min_{w} \left\{ ||w_{+}||^{2} + C\mathcal{L}(w) = \sum_{h=1}^{m} \max\{1 - y^{h}(w_{+}x^{h} - w_{0}), 0\} \right\}$
- ▶ $|| w_+ || \approx$ model complexity, the less the more chances it generalises well ⇒ C weighs $\mathcal{L}() = loss$ (of separation) on current data w.r.t. (hopefully) on future data: bias/variance dilemma (not really our business)
- ► \mathcal{L} convex but nondifferentiable: reformulation with (many linear) constraints (SVM-P) min_{w,ξ} || w_+ ||² + $C \sum_{h=1}^{m} \xi_h$ $y^h(w_+x^h - w_0) \ge 1 - \xi_h$, $\xi_h \ge 0$ h = 1, ..., m

(Approximate) linear separability

(Approximate) linear separability rare, (approximate) linear regression weak

- (Approximate) linear separability rare, (approximate) linear regression weak
- Idea: embed in larger space

- (Approximate) linear separability rare, (approximate) linear regression weak
- ► Idea: embed in larger space

- (Approximate) linear separability rare, (approximate) linear regression weak
- Idea: embed in larger space nonlinearly, then

(Approximate) linear separability rare, (approximate) linear regression weak

▶ Idea: embed in larger space nonlinearly, then linear function may work

(Approximate) linear separability rare, (approximate) linear regression weak

- ▶ Idea: embed in larger space nonlinearly, then linear function may work
- Doing this effectivey (how to embed) and efficiently nontrivial

Support Vector Machines: the magic of duality

Equivalently, one can solve the dual problem (??? what ???)

(SVM-D)
$$\max_{\alpha} \sum_{h=1}^{m} \alpha_h - \frac{1}{2} \sum_{h=1}^{m} \sum_{k=1}^{m} \alpha_h \langle x^h, x^k \rangle \alpha_k$$
$$\sum_{i=1}^{m} y^h \alpha_h = 0$$
$$0 \le \alpha_h \le C \qquad \qquad h = 1, \dots, m$$

a convex constrained quadratic program, but with "simple constraints"

- ► Solve one problem by solving an apparently different one: α^* optimal for (SVM-D) $\implies w_+^* = \sum_{h=1}^m \alpha_h^* y^h x^h$ optimal for (SVM-P)
- ► Dual formulation \implies kernel trick: input space \rightsquigarrow (larger) feature space $\langle x^h, x^k \rangle \rightsquigarrow \langle \phi(x^h), \phi(x^k) \rangle$

where points are hopefully "more linearly separable"

- Feature space can be infinite-dimensional, provided that scalar product can be (efficiently) computed
- Efficient algorithms: (SVM-P) or (SVM-D) (or both), complexity, ...

▶ $X = [x^i \in \mathbb{R}^h]_{i \in I}$ inputs, no outputs available \equiv each x^i "looks the same"

► $X = [x^i \in \mathbb{R}^h]_{i \in I}$ inputs, no outputs available \equiv each x^i "looks the same"

Given k ∈ N (K = {1,..., k}), find X = ⋃_{p∈K} X^p ≡ partition of X in clusters s.t. Xⁱ that are homogeneous (??) and well separated (??)

▶ $X = [x^i \in \mathbb{R}^h]_{i \in I}$ inputs, no outputs available \equiv each x^i "looks the same"

Given k ∈ N (K = {1,..., k}), find X = U_{p∈K} X^p ≡ partition of X in clusters s.t. Xⁱ that are homogeneous (??) and well separated (??)

▶ $X = [x^i \in \mathbb{R}^h]_{i \in I}$ inputs, no outputs available \equiv each x^i "looks the same"

Given k ∈ N (K = {1,..., k}), find X = U_{p∈K} X^p ≡ partition of X in clusters s.t. Xⁱ that are homogeneous (??) and well separated (??)

▶ $X = [x^i \in \mathbb{R}^h]_{i \in I}$ inputs, no outputs available \equiv each x^i "looks the same"

► Many ≠ possible variants

Simplest: define k centroids
$$c^p$$

 \equiv "archetypes" of each $x^i \in X^p$

Given k ∈ N (K = {1,..., k}), find X = U_{p∈K} X^p ≡ partition of X in clusters s.t. Xⁱ that are homogeneous (??) and well separated (??)

▶ $X = [x^i \in \mathbb{R}^h]_{i \in I}$ inputs, no outputs available \equiv each x^i "looks the same"

- Many \neq possible variants

•
$$X^p = \{ x^i : \text{closer to } c^p \text{ than} \\ \text{to any other } c^q \}$$

- Clusters (may) depend on the chosen norm ≡ topology of ℝ^h
- Clusters in L₂

Given k ∈ N (K = {1,..., k}), find X = ⋃_{p∈K} X^p ≡ partition of X in clusters s.t. Xⁱ that are homogeneous (??) and well separated (??)

▶ $X = [x^i \in \mathbb{R}^h]_{i \in I}$ inputs, no outputs available \equiv each x^i "looks the same"

- Many \neq possible variants
- Simplest: define k centroids c^p ≡ "archetypes" of each xⁱ ∈ X^p

$$X^{p} = \{ x^{i} : \text{closer to } c^{p} \text{ than} \\ \text{to any other } c^{q} \}$$

Clusters (may) depend on the chosen norm ≡ topology of ℝ^h

• Clusters in
$$L_2 \neq$$
 in L_1

Given k ∈ N (K = {1, ..., k}), find X = U_{p∈K} X^p ≡ partition of X in clusters s.t. Xⁱ that are homogeneous (??) and well separated (??)

► $X = [x^i \in \mathbb{R}^h]_{i \in I}$ inputs, no outputs available \equiv each x^i "looks the same"

- ► Many ≠ possible variants

•
$$X^p = \{ x^i : \text{closer to } c^p \text{ than} \\ \text{to any other } c^q \}$$

- Clusters (may) depend on the chosen norm ≡ topology of ℝ^h
- Clusters in $L_2 \neq$ in $L_1 \neq$ in L_{∞}

Given k ∈ N (K = {1,..., k}), find X = ⋃_{p∈K} X^p ≡ partition of X in clusters s.t. Xⁱ that are homogeneous (??) and well separated (??)

Optimization models for (L_2) clustering

►
$$c = [c^p]_{p \in K} \in \mathbb{R}^{hk}$$
, nonconvex and nonsmooth unconstrained model
 $\min\{f(c) = \sum_{i \in I} \min_{p \in K} || c^p - x^i ||_2^2 : c \in \mathbb{R}^{hk}\}$

Reformulation I: nonconvex, smooth, combinatorial, constrained model

$$\min \sum_{i \in I} \sum_{p \in K} z_{ip} \| c^p - x^i \|_2^2$$

$$\sum_{p \in K} z_{ip} = 1 \qquad i \in I$$

$$z_{ip} \in \mathbb{N} \ [\equiv \{0, 1\}] \qquad p \in K, \ i \in I$$

 z_{ip} "logical" variables: 1 if x^i "assigned" to cluster p, 0 otherwise

- Two sources of nonconvexity: products zc in objective, integrality constraints
- ► But perfect structure for alternating minimization approaches: convex (≡ easy) in z if c fixed, convex in c if z fixed
- ► z fixed, $I(z, p) = \{i \in I : z_{pi} = 1\} \implies (c^p)^* = \sum_{i \in I(z, p)} x^i / \#I(z, p)$ optimal centroid \equiv mean of the points in the cluster

Immediately \rightsquigarrow the *k*-means algorithm

procedure
$$c = k$$
-means (X, c, ε) // note: k implicit from size of c
for $(v \leftarrow \infty; ;)$ do
for each $(p \in K)$ do $I(p) \leftarrow \emptyset$;
for each $(i \in I)$ do $\bar{p} \leftarrow \operatorname{argmin}\{ || c^p - x^i ||_2^2 : p \in K \}; I(\bar{p}) \leftarrow I(\bar{p}) \cup \{i\};$
for each $(p \in K)$ do $c^p \leftarrow \sum_{i \in I(p)} x^i / \#I(p);$ // note: $I(p) = \emptyset$ happens
 $\bar{v} \leftarrow \sum_{p \in K} \sum_{i \in I(p)} || c^p - x^i ||_2^2;$
if $(v - \bar{v} \leq \varepsilon)$ then break; else $v \leftarrow \bar{v}$;

- Special case of (block) Gauss-Seidel approach: f(x¹, x²,..., x^k), iteratively optimize over each individual (group of) variable(s) x^p keeping the other variables fixed ⇒ can work in parallel
- Convenient if f convex over each x^p individually but not jointly on all x
- Can be proven to "work" (converge), ends in finitely many iterations
- ► Local approach to nonconvex problem ⇒ no guarantee of global optimality ⇒ initial centroids relevant issue in practice (attraction basin)

Outline

Logistic

Motivation

Contents

Wrap up

Welcome to the course

... of Computational Mathematics for Learning and Data Analysis

Welcome to the course

... of Computational Magic for Learning and Data Analysis

Welcome to the Magic Academy

Main quests and side quests

- There are two main quests in the course:
 - get a general understanding of several different classes of numerical algorithms and their underlying mathematical principles
 - 2. be able to actually implement, debug, and tune a few of them
- Algorithms are mathematical objects reasoning about algorithms often is proving theorems (+ some hand-waving)
- All the more when the algorithms deal with nontrivial mathematical objects
- This is (mostly) done in the optional "Mathematically speaking" slides
- Learning theorems' proofs by heart is not a subject of the exam, not even the few (very simple) ones we'll actually see in details during lectures
- But you will have a lot more fun if you face side quests seriously
- Exercises are there for the same reason

Syllabus

- Linear algebra and calculus background
- Unconstrained optimization and systems of equations
- Direct and iterative methods for linear systems and least-squares
- Numerical methods for unconstrained optimization
- Iterative methods for computing eigenvalues
- Constrained optimization and systems of equations
- Duality (Lagrangian, linear, quadratic, conic, ...)
- Numerical methods for constrained optimization
- Software tools for numerical computations (Matlab, Octave, ...)
- Sparse hints to AI/ML applications

Course material

- Slides prepared by the lecturers + recording of lectures
- Matlab programs + data
- L.N. Trefethen, D. Bau Numerical Linear Algebra, SIAM, 1997
- ▶ J. Demmel Applied Numerical Linear Algebra, SIAM, 1996
- S. Boyd, L. Vandenberghe Convex optimization, Cambridge Un. Press, 2008 (http://web.stanford.edu/~boyd/cvxbook/)
- L. Eldén Matrix Methods in Data Mining and Pattern Recognition, SIAM, 2007
- M.S. Bazaraa, H.D. Sherali, C.M. Shetty Nonlinear programming: theory and algorithms, Wiley & Sons, 2006
- D.G. Luenberger, Y. Ye Linear and Nonlinear Programming, Springer International Series in Operations Research & Management Science, 2008
- J. Nocedal, S. Wright Numerical Optimization, Springer Series in Operations Research and Financial Engineering, 2006
- Lecture notes for the optimization forthcoming, at least partly available soon

Outline

Logistic

Motivation

Contents

Wrap up

Wrap up: what's this course about

- Learning as a computational, hence mathematical, process
- Mathematical foundations of many important learning processes
 = nonlinear optimization and numerical analysis techniques
- Easy problems (linear, quadratic, conic, convex) or local optima, because size is huge (hard because large, not hard because hard)
- Besides, in ML the global optimal solution can be bad!
- Emphasis on what can be done by linear algebra
- Focus on methods and software tools, theory only as needed to understand
- Applications to be seen in "Machine Learning" and/or "Data Mining" (in parallel, you can/are supposed to do it, we talk to each other)