
Antonio Frangioni

Dipartimento di Informatica, Università di Pisa

Model-Driven Decision-Making Methods (666AA)

AY 2021/22

Outline 1

Decomposition-aware modelling systems

SMS++: design goals

SMS++: basic components

SMS++: existing Block and Solver

SMS++: (some of) the missing pieces

Conclusions

Outline 2

Decomposition-aware modelling systems

SMS++: design goals

SMS++: basic components

SMS++: existing Block and Solver

SMS++: (some of) the missing pieces

Conclusions

Decomposition-aware modelling systems 3

▶ Decomposition is complex, but so is any Branch-and-X

▶ Need general-purpose efficient decomposition software:

▶ Cplex does Benders’, structure automatic or user hints

▶ SCIP[1] does B&C&P (one-level D-W), pricing & reformulation up to the user
(plugins)

▶ GCG[1] extends SCIP with automatic and user-defined (one-level) D-W and
recently also a generic (one-level) Benders’ approach[2]

▶ D-W approaches for two-stage stochastic programs are implemented in DDSIP[3]

and PIPS[4], the latter interfaced with StructJuMP[5]

▶ The BaPCoD B&C&P code has been used to develop Coluna.jl[6], doing
one-level D-W and (alpha) Benders’, multi-level planned

▶ No multi-level C++, so we started one

[1] https://scipopt.org, https://gcg.or.rwth-aachen.de

[2] Maher “Implementing the Branch-and-Cut approach for a general purpose Benders’ decomposition framework” EJOR, 2021

[3] https://github.com/RalfGollmer/ddsip

[4] https://github.com/Argonne-National-Laboratory/PIPS

[5] https://github.com/StructJuMP/StructJuMP.jl

[6] https://github.com/atoptima/Coluna.jl

https://scipopt.org
https://gcg.or.rwth-aachen.de
https://github.com/RalfGollmer/ddsip
https://github.com/Argonne-National-Laboratory/PIPS
https://github.com/StructJuMP/StructJuMP.jl
https://github.com/atoptima/Coluna.jl

Outline 4

Decomposition-aware modelling systems

SMS++: design goals

SMS++: basic components

SMS++: existing Block and Solver

SMS++: (some of) the missing pieces

Conclusions

https://gitlab.com/smspp/smspp-project

Open source (LGPL3)

Public as of February 8, 2021, but some 8+ years in the making

https://gitlab.com/smspp/smspp-project

What SMS++ is 5

▶ A core set of C++-17 classes implementing a modelling system that:

▶ explicitly supports the notion of Block ≡ nested structure

▶ separately provides “semantic” information from “syntactic” details (list of
constraints/variables ≡ one specific formulation among many)

▶ allows exploiting specialised Solver on Block with specific structure

▶ manages any dynamic change in the Block

beyond “just” generation of constraints/variables

▶ supports reformulation/restriction/relaxation of Block

▶ has built-in parallel processing capabilities

▶ should be able to deal with almost anything (bilevel, PDE, . . .)

▶ An hopefully growing set of specialized Block and Solver

▶ In perspective an ecosystem fostering collaboration and code sharing

What SMS++ is not 6

▶ An algebraic modelling language: Block / Solver are C++ code

(although it provides some modelling-language-like functionalities)

▶ For the faint of heart: primarily written for algorithmic experts

(although users may benefit from having many pre-defined Block)

▶ Stable: only version 0.4, lots of further development ahead,

significant changes in interfaces not ruled out, actually expected

(although current Block / Solver very thoroughly tested)

▶ Interfaced with many solvers: only Cplex, SCIP, MCFClass, StOpt

(although the list should hopefully grow)

Outline 7

Decomposition-aware modelling systems

SMS++: design goals

SMS++: basic components

SMS++: existing Block and Solver

SMS++: (some of) the missing pieces

Conclusions

A Crude Schematic 8

Objective

Solver

Modification

Block2

...

Block1

Block

Constraint
SC1 SC2

...DC1 DC2

...
Variable

SV1 SV2

...DV1 DV2

...

{ Modificationi }
{ Solveri }

OF

physical representation

 abstract
representation

Block 9

▶ Block = abstract class representing the general concept of
“a (part of a) mathematical model with a well-understood identity”

▶ Each :Block a model with specific structure
(e.g., MCFBlock:Block = a Min-Cost Flow problem)

▶ Physical representation of a Block: whatever data structure is required to
describe the instance (e.g., G , b, c , u)

▶ Possibly alternative abstract representation(s) of a Block:
▶ one Objective (but possibly vector-valued)

▶ any # of groups of (static) Variable

▶ any # of groups of std::list of (dynamic) Variable

▶ any # of groups of (static) Constraint

▶ any # of groups of std::list of (dynamic) Constraint

groups of Variable/Constraint can be single (std::list) or
std::vector (. . .) or boost::multi array

▶ Any # of sub-Blocks (recursively), possibly of specific type
(e.g., Block::MMCFBlock has k Block::MCFBlock inside)

Variable 10

▶ Abstract concept, thought to be extended (a matrix, a function, . . .)

▶ Does not even have a value

▶ Knows which Block it belongs to

▶ Can be fixed and unfixed to/from its current value (whatever that is)

▶ Influences a set of Constraint/Objective/Function
(actually, a set of ThinVarDepInterface)

▶ Fundamental design decision: “name” of a Variable = its memory address
=⇒ copying a Variable makes a different Variable =⇒ dynamic
Variables always live in std::lists

▶ VariableModification:Modification (fix/unfix)

ThinVarDepInterface 11

▶ Generic concept of “something depending on a set of Variable”

▶ Specific implementation demanded to derived classes for efficiency

▶ “Abstract” STL-like iterator and const-iterator for access

▶ Other specific methods to describe/search the set

▶ Specific twist: a :ThinVarDepInterface is constructed after and destructed
before “its” Variable, clear() method to avoid un-necessary data structure
updating during destruction

ThinComputeInterface 12

▶ Generic concept of “something that can take time to evaluate”

▶ Specific provisions for the fact that the computation can:

▶ end in several ways (OK, error, stopped, . . .) and be resumed

▶ be influenced by int/double/std::string parameters (scalar or vector)
which can be gathered in a ComputeConfig:Configuration object (flexible)

▶ be influenced by events happening at specific points

▶ have a State that can be saved and reloaded

▶ Defaults so that “simple” objects with no parameter do nothing

▶ Clear rules about effect of changes in the underlying object during and after
compute() to allow for “reoptimization”

▶ Changes may be “explicit” (a Modification issued) or “implicit” (changing
a Variable value do not trigger a Modification)

▶ compute async() for asynchronous computation returning a std::future

Constraint 13

▶ Abstract concept, thought to be extended (any algebraic constraint, a matrix
constraint, a PDE constraint, bilevel program, . . .)

▶ Depends from a set of Variable (:ThinVarDepInterface)

▶ Either satisfied or not by the current value of the Variable,

checking it possibly costly (:ThinComputeInterface)

▶ Knows which Block it belongs to

▶ Can be relaxed and enforced

▶ Fundamental design decision: “name” of a Constraint = its memory
address =⇒ copying a Constraint makes a different Constraint =⇒
dynamic Constraints always live in std::lists

▶ ConstraintModification:Modification (relax/enforce)

Objective 14

▶ Abstract concept, does not specify its return value (vector, set, . . .)

▶ Either minimized or maximized

▶ Depends from a set of Variable (:ThinVarDepInterface)

▶ Must be evaluated w.r.t. the current value of the Variable,

possibly a costly operation (:ThinComputeInterface)

▶ RealObjective:Objective implements “value is an extended real”

▶ Knows which Block it belongs to

▶ Same fundamental design decision . . .
(but there is no such thing as a dynamic Objective)

▶ ObjectiveModification:Modification (change verse)

Function 15

▶ Real-valued Function

▶ Depends from a set of Variable (:ThinVarDepInterface)

▶ Must be evaluated w.r.t. the current value of the Variable,

possibly a costly operation (:ThinComputeInterface)

▶ Approximate computation supported in a quite general way
(since :ThinComputeInterface, and that does)

▶ FunctionModification[Variables] for “easy” changes =⇒ reoptimization
(shift, adding/removing “quasi separable” Variable)

C05Function and C15Function 16

▶ C05Function/C15Function deal with 1st/2nd order information
(not necessarily continuous)

▶ General concept of “linearization” (gradient, convex/concave subgradient,
Clarke subgradient, . . .)

▶ Multiple linearizations produced at each evaluation (local pool)

▶ Global pool of linearizations for reoptimization:

▶ convex combination of linearizations

▶ “important linearization” (at optimality)

▶ C05FunctionModification[Variables/LinearizationShift] for “easy”
changes =⇒ reoptimization (linearizations shift, some linearizations entries
changing in simple ways)

▶ C15Function supports (partial) Hessians

▶ Arbitrary hierarchy of :Function possible/envisioned,
any one that makes sense for application and/or solution method

Closer to the ground 17

▶ ColVariable:Variable: “value = one single real” (possibly ∈ Z)

▶ RowConstraint:Constraint: “l ≤ a real ≤ u” =⇒
has dual variable (single real) attached to it

▶ OneVarConstraint:RowConstraint: “a real” =

a single ColVariable ≡ bound constraints

▶ FRowConstraint:RowConstraint: “a real” given by a Function

▶ FRealObjective:RealObjective: “value” given by a Function

▶ LinearFunction:Function: a linear form in ColVariable

▶ DQuadFunction:Function: a separable quadratic form

▶ Many things missing (AlgebraicFunction, DenseLinearFunction,
Matrix/VectorVariable, . . .)

Block and Solver 18

▶ Any # of Solver attached to a Block to solve it

▶ :Solver for a specific :Block can use the physical representation
=⇒ no need for explicit Constraint
=⇒ abstract representation of Block only constructed on demand

▶ However, Variable are always present to interface with Solver

(this may change thanks to methods factory)

▶ A general-purpose Solver uses the abstract representation

▶ Dynamic Variable/Constraint can be generated on demand
(user cuts/lazy constraints/column generation)

▶ For a Solver attached to a Block:

▶ Variable not belonging to the Block are constants

▶ Constraint not belonging to the Block are ignored

(belonging = declared there or in any sub-Block recursively)

▶ Objective of sub-Blocks summed to that of father Block if has same verse,
otherwise min/max

Solver 19

▶ Solver = interface between a Block and algorithms solving it

▶ Each Solver attached to a single Block, from which it picks all the data, but
any # of Solver can be attached to the same Block

▶ Solutions are written directly into the Variable of the Block

▶ Individual Solver can be attached to sub-Block of a Block

▶ Tries to cater for all the important needs:
▶ optimal and sub-optimal solutions, provably unbounded/unfeasible

▶ time/resource limits for solutions, but restarts (reoptimization)

▶ any # of multiple solutions produced on demand

▶ lazily reacts to changes in the data of the Block via Modification

▶ Slanted towards RealObjective (≈optimality = up/low bounds)

▶ CDASolver:Solver is “Convex Duality Aware”: bounds are associated to
dual solutions (possibly, multiple)

▶ Provides general events mechanism (ThinComputeInterface does)

Block and Modification 20

▶ Most Block components can change, but not all:
▶ set of sub-Block

▶ # and shape of groups of Variable/Constraint

▶ Any change is communicated to each interested Solver (attached to the
Block or any of its ancestor) via a Modification object

▶ anyone there() ≡ ∃ interested Solver (Modification needed)

▶ However, two different kinds of Modification (what changes):

▶ physical Modification, only specialized Solver concerned

▶ abstract Modification, only Solver using it concerned

▶ Abstract Modification used to keep both representations in sync
=⇒ a single change may trigger more than one Modification
=⇒ concerns Block() mechanism to avoid this to repeat
=⇒ parameter in changing methods to avoid useless Modification

▶ Specialized Solver disregard abstract Modification and vice-versa

▶ A Block may refuse to support some changes (explicitly declaring it)

Modification 21

▶ Almost empty base class, then everything has its own derived ones

▶ Heavy stuff can be attached to a Modification

(e.g., added/deleted dynamic Variable/Constraint)

▶ Each Solver has the responsibility of cleaning up its list of Modification
(smart pointers → memory eventually released)

▶ Solver supposedly reoptimize to improve efficiency, which is easier if you can
see all list of changes at once (lazy update)

▶ GroupModification to (recursively) pack many Modification together =⇒
different “channels” in Block

▶ Modification processed in the arrival order to ensure consistency

▶ A Solver may optimize the changes (Modifications may cancel each outer
out . . .), but its responsibility

Support to (coarse-grained) Parallel Computation 22

▶ Block can be (r/w) lock()-ed and read lock()-ed

▶ lock()-ing a Block automatically lock()s all inner Block

▶ lock() (but not read lock()) sets an owner and records its
std::thread::id; other lock() from the same thread fail (std::mutex
would not work there)

▶ Similar mechanism for read lock(), any # of concurrent reads

▶ Write starvation not handled yet

▶ A Solver can be “lent an ID” (solving an inner Block)

▶ The list of Modification of Solver is under an “active guard”
(std::atomic)

▶ Distributed computation under development, can exploit general
serialize/deserialize Block capabilities, Cray/HPE “Fugu” framework

Solution 23

▶ Block produces Solution object, possibly using its sub-Blocks’

▶ Solution can read() its own Block and write() itself back

▶ Solution is Block-specific rather than Solver-specific

▶ Solution may save dual information

▶ Solution may save only a specific subset of primal/dual information

▶ Linear combination of Solution supported =⇒ “less general”

Solution may (automatically) convert in “more general” ones

▶ Solution can be serialised and deserialised (=⇒ have a factory)

▶ ColVariableSolution:Solution uses the abstract representation of any
Block that only have (std::vector or boost::multi array of)
(std::list of) ColVariables to read/write the solution

▶ RowConstraintSolution:Solution same for dual information
(RowConstraint), ColRowSolution for both

Configuration 24

▶ Block a tree-structured complex object =⇒
Configuration for them a (possibly) tree-structured complex object

▶ But also SimpleConfiguration<T>:Configuration

(T an int, a double, a std::pair<>, . . .)

▶ Configuration can be serialised and deserialised (=⇒ have a factory)

▶ [C/O/R]BlockConfiguration:Configuration set [recursively]:

▶ which dynamic Variable/Constraint are generated, how
(Solver, time limit, parameters . . .)

▶ which Solution is produced (what is saved)

▶ the ComputeConfiguration:Configuration of any Constraint/Objective
that needs one

▶ a bunch of other Block parameters

▶ [R]BlockSolverConfiguration:Configuration set [recursively] which
Solver are attached to the Block and their
ComputeConfiguration:Configuration

▶ Can be clear()-ed for cleanup

R3Block 25

▶ Often reformulation crucial, but also relaxation or restriction:
get R3 Block() produces one, possibly using sub-Blocks’

▶ Obvious special case: copy (clone) should always work

▶ Available R3Blocks :Block-specific, a :Configuration needed

▶ R3Block completely independent (new Variable/Constraint),
useful for algorithmic purposes (branch, fix, solve, . . .)

▶ Solution of R3Block useful to Solver for original Block:
map back solution() (best effort in case of dynamic Variable)

▶ Sometimes keeping R3Block in sync with original necessary:
map forward Modification(), task of original Block

▶ map forward solution() and map back Modification() useful, e.g.,
dynamic generation of Variable/Constraint in the R3Block

▶ :Block is in charge of all this, thus decides what it supports

A lot of other support stuff 26

▶ Most objects (Block, Configuration, Solver, Solution, State) have
methods to serialize/deserialize themselves to netCDF files =⇒ have an
(almost) automatic factory

▶ A methods factory for changing the physical representation without knowing
of which :Block it exactly is (standardised interface)

▶ AbstractBlock for constructing a model a-la algebraic language, can be
derived for “general Block + specific part”

▶ PolyhedralFunction[Block], very useful for decomposition

▶ AbstractPath for indexing any Constranit/Variable in a Block

▶ FakeSolver:Solver stashes away all Modification,
UpdateSolver:Solver immediately forwards/R3Bs them

▶ . . .

Outline 27

Decomposition-aware modelling systems

SMS++: design goals

SMS++: basic components

SMS++: existing Block and Solver

SMS++: (some of) the missing pieces

Conclusions

Main Existing :Block 28

▶ MCFBlock/MMCFBlock: single/multicommodity flow (p.o.c.)

▶ UCBlock for UC, abstract UnitBlock with several concrete
(ThermalUnitBlock, HydroUnitBlock, . . .), abstract NetworkBlock with a
few concrete (DCNetworkBlock)

▶ LagBFunction:{C05Function,Block} transforms any Block (with
appropriate Objective) into its dual function

▶ BendersBFunction:{C05Function,Block} transforms any Block (with
appropriate Constraint) into its value function

▶ StochasticBlock implements realizations of scenarios into any Block (using
methods factory)

▶ SDDPBlock represents multi-stage stochastic programs suitable for Stochastic
Dual Dynamic Programming

Main “Basic” :Solver 29

▶ MCFSolver: templated p.o.c. wrapper to MCFClass[7] for MCFBlock

▶ DPSolver for ThermalUnitBlock (still needs serious work)

▶ MILPSolver: constructs matrix-based representation of any “LP” Block:
ColVariable, FRowConstraint, FRealObjective with LinearFunction or
DQuadFunction

▶ CPXMILPSolver:MILPSolver and SCIPMILPSolver:MILPSolver wrappers
for Cplex and SCIP (to be improved)

▶ BundleSolver:CDASolver: SMS++-native version of[8] (still shares some
code, dependency to be removed), optimizes any (sum of) C05Function,
several (but not all) state-of-the-art tricks

▶ SDDPSolver: wrapper for SDDP solver StOpt[9] using StochasticBlock,
BendersBFunction and PolyhedralFunction

▶ SDDPGreedySolver: greedy forward simulator for SDDPBlock

[7] https://github.com/frangio68/Min-Cost-Flow-Class

[8] https://gitlab.com/frangio68/ndosolver_fioracle_project

[9] https://gitlab.com/stochastic-control/StOpt

https://github.com/frangio68/Min-Cost-Flow-Class
https://gitlab.com/frangio68/ndosolver_fioracle_project
https://gitlab.com/stochastic-control/StOpt

Our Masterpiece: LagrangianDualSolver 30

▶ Works for any Block with natural block-diagonal structure: no Objective or
Variable, all Constraint linking the inner Block

▶ Using LagBFunction stealthily constructs the Lagrangian Dual w.r.t. linking
Constraint, R3B-ing or “stealing” the inner Block

▶ Solves the Lagrangian Dual with appropriate CDASolver (e.g., but not
necessarily, BundleSolver), provides dual and “convexified” solution in
original Block

▶ Can attach LagrangianDualSolver and (say) :MILPSolver to same Block,
solve in parallel!

▶ Weeks of work in days/hours (if Block of the right form already)

▶ Hopefully soon BendersDecompositionSolver (crucial component
BendersBFunction existing and tested)

▶ Multilevel nested parallel heterogeneous decomposition by design
(but I’ll believe it when I’ll see it running)

Outline 31

Decomposition-aware modelling systems

SMS++: design goals

SMS++: basic components

SMS++: existing Block and Solver

SMS++: (some of) the missing pieces

Conclusions

The many things that we do not have (yet) 32

▶ A relaxation-agnostic Branch-and-X Solver (could recycle OOBB?)

▶ Many other forms of (among many other things):

▶ Variable (Vector/MatrixVariable, FunctionVariable, . . .)

▶ Constraint (SOCConstraint, SDPConstraint, PDEConstraint,
BilevelConstraint, EquilibriumConstraint, . . .)

▶ Objective (RealVectorObjective, . . .)

▶ Function (AlgebraicFunction, . . .)

▶ Better handling of many things (groups of stuff, Modification, . . .)

▶ Interfaces with many other general-purpose solvers (GuRoBi,
OSISolverInterface, Couenne, OR-tools CP-SAT Solver, . . .)

▶ Many many many more :Block and their specialised :Solver

▶ Translation layers from real modelling languages (AMPL, JuMP, . . .)

▶ In a word: users/mindshare – chicken-and-egg problem

Outline 33

Decomposition-aware modelling systems

SMS++: design goals

SMS++: basic components

SMS++: existing Block and Solver

SMS++: (some of) the missing pieces

Conclusions

Conclusions and (a lot of) future work 34

▶ SMS++ is there, actively developed

▶ Perhaps already useful for some fringe use cases

▶ Could become really useful after having attracted mindshare, self-reinforcing
loop (very hard to start)

▶ Hefty, very likely rather unrealistic, sough-after impacts:

▶ improve collaboration and code reuse, reduce huge code waste
(I ♡ coding, breaks my ♡)

▶ significantly increase the addressable market of decomposition

▶ a much-needed step towards higher uptake of parallel methods

▶ the missing marketplace for specialised solution methods

▶ a step towards a reformulation-aware modelling system[10]

▶ Luckily not the only game in town, but aiming for a slice of the cake

which is not a lie

▶ Lots of fun to be had, all contributions welcome

[10] F., Perez Sanchez “Transforming Mathematical Models Using Declarative Reformulation Rules” LNCS, 2011

Conclusions and (a lot of) future work 34

▶ SMS++ is there, actively developed

▶ Perhaps already useful for some fringe use cases

▶ Could become really useful after having attracted mindshare, self-reinforcing
loop (very hard to start)

▶ Hefty, very likely rather unrealistic, sough-after impacts:

▶ improve collaboration and code reuse, reduce huge code waste
(I ♡ coding, breaks my ♡)

▶ significantly increase the addressable market of decomposition

▶ a much-needed step towards higher uptake of parallel methods

▶ the missing marketplace for specialised solution methods

▶ a step towards a reformulation-aware modelling system[10]

▶ Luckily not the only game in town, but aiming for a slice of the cake

which is not a lie

▶ Lots of fun to be had, all contributions welcome

[10] F., Perez Sanchez “Transforming Mathematical Models Using Declarative Reformulation Rules” LNCS, 2011

Conclusions and (a lot of) future work 34

▶ SMS++ is there, actively developed

▶ Perhaps already useful for some fringe use cases

▶ Could become really useful after having attracted mindshare, self-reinforcing
loop (very hard to start)

▶ Hefty, very likely rather unrealistic, sough-after impacts:

▶ improve collaboration and code reuse, reduce huge code waste
(I ♡ coding, breaks my ♡)

▶ significantly increase the addressable market of decomposition

▶ a much-needed step towards higher uptake of parallel methods

▶ the missing marketplace for specialised solution methods

▶ a step towards a reformulation-aware modelling system[10]

▶ Luckily not the only game in town, but aiming for a slice of the cake

which is not a lie

▶ Lots of fun to be had, all contributions welcome

[10] F., Perez Sanchez “Transforming Mathematical Models Using Declarative Reformulation Rules” LNCS, 2011

Conclusions and (a lot of) future work 34

▶ SMS++ is there, actively developed

▶ Perhaps already useful for some fringe use cases

▶ Could become really useful after having attracted mindshare, self-reinforcing
loop (very hard to start)

▶ Hefty, very likely rather unrealistic, sough-after impacts:

▶ improve collaboration and code reuse, reduce huge code waste
(I ♡ coding, breaks my ♡)

▶ significantly increase the addressable market of decomposition

▶ a much-needed step towards higher uptake of parallel methods

▶ the missing marketplace for specialised solution methods

▶ a step towards a reformulation-aware modelling system[10]

▶ Luckily not the only game in town, but aiming for a slice of the cake

which is not a lie

▶ Lots of fun to be had, all contributions welcome

[10] F., Perez Sanchez “Transforming Mathematical Models Using Declarative Reformulation Rules” LNCS, 2011

Conclusions and (a lot of) future work 34

▶ SMS++ is there, actively developed

▶ Perhaps already useful for some fringe use cases

▶ Could become really useful after having attracted mindshare, self-reinforcing
loop (very hard to start)

▶ Hefty, very likely rather unrealistic, sough-after impacts:

▶ improve collaboration and code reuse, reduce huge code waste
(I ♡ coding, breaks my ♡)

▶ significantly increase the addressable market of decomposition

▶ a much-needed step towards higher uptake of parallel methods

▶ the missing marketplace for specialised solution methods

▶ a step towards a reformulation-aware modelling system[10]

▶ Luckily not the only game in town, but aiming for a slice of the cake

which is not a lie

▶ Lots of fun to be had, all contributions welcome

[10] F., Perez Sanchez “Transforming Mathematical Models Using Declarative Reformulation Rules” LNCS, 2011

	Decomposition-aware modelling systems
	SMS++: design goals
	SMS++: basic components
	SMS++: existing Block and Solver
	SMS++: (some of) the missing pieces
	Conclusions

