
Condition number of solving linear equations

Let A be a fixed square invertible matrix. What is the variation in
the output of

f (A, y) = (the solution of Ax = y) = A−1y

with respect to its input y?

Consider two systems Ax = y and Ax̃ = ỹ with ỹ ̸= y; let x and x̃
be their solutions. Then,

▶ ∥x̃− x∥ = ∥A−1ỹ − A−1y∥ = ∥A−1(ỹ − y)∥ ≤ ∥A−1∥∥ỹ − y∥,
▶ ∥y∥ = ∥Ax∥ ≤ ∥A∥∥x∥.

Combining the two inequalities, one gets

∥x̃− x∥
∥x∥

≤ ∥A−1∥∥ỹ − y∥
∥y∥
∥A∥

= ∥A∥∥A∥−1 ∥ỹ − y∥
∥y∥

.

This bound holds for all ỹ, hence also in the limit ∥ỹ − y∥ → 0.



Condition number of a matrix

Theorem

The relative condition number of solving linear equations (with A
fixed and y as input) is

κ(A) = ∥A∥∥A−1∥.

This quantity appears often; it is called ‘the condition number of
the matrix A’.

(Slight abuse of terminology, since we should speak of ‘condition
number of a problem’, not ‘of a matrix’.)



Condition number with respect to A

What if one changes A and keeps y fixed?

The relative condition number of the problem Ax = y with respect
to its input A is, again, κ(A) = ∥A∥∥A−1∥.

Slightly different notation: A perturbed to A+∆A, x to x+∆x.

Ax = y, (A+∆A)(x+∆x) = y

We can ignore the second-order term ∆A∆x, getting

y +∆A x+ A∆x+ O(∥∆x∥) = y,

Rearranging,

∆x = −A−1∆A x,
∥∆x∥
∥x∥

≤ ∥A−1∥∥A∥∥∆A∥
∥A∥

.



Example — well-conditioned matrix

>> A = [2 1; 1 1];

>> y = [1;1];

>> cond(A)

ans =

6.8541e+00

>> ytilde = y + [0;1e-6];

>> x = A \ y;

>> xtilde = A \ ytilde;

>> norm(x - xtilde) / norm(x)

ans =

2.2361e-06

>> norm(y - ytilde) / norm(y)

ans =

7.0711e-07

>> norm(y - ytilde) / norm(y) * cond(A)

ans =

4.8466e-06



Example 2 — ill-conditioned matrix

>> A = [1 1; 1 1+1e-5];

>> cond(A)

ans =

4.0000e+05

>> x = A \ y; xtilde = A \ ytilde;

>> norm(x - xtilde) / norm(x)

ans =

1.4142e-01

>> norm(y - ytilde) / norm(y)

ans =

7.0711e-07

‘Ill-conditioned’ = large condition number (where ‘large’ is
subjective; for instance, κ(A) ≈ 106 usually is considered large).



Condition number and SVD

Recall: ∥A∥ = σ1 (largest singular value) (with norm-2).

For a matrix A ∈ Rn×n, with singular values σ1 ≥ · · · ≥ σn, we
have

κ(A) =
σ1
σn

.

Indeed,
∥A∥ = ∥UΣV T∥ = ∥Σ∥ = σ1.

Moreover A−1 = VΣ−1UT , and ∥Σ−1∥ = maxi
1
σi

= 1
σn
.

Another property tells us that matrices with high condition number
are those that are almost singular.



Condition number and distance to singularity

1

κ(A)
= min

Ã singular

∥A− Ã∥
∥A∥

(“relative distance to singularity”)

Recall: the best rank-k approximation is truncated SVD.
The closest singular matrix to A = UΣV T is

Ã = U


σ1

. . .

σn−1

0

V T .

∥Ã−A∥ =

∥∥∥∥∥∥∥∥∥U

0

. . .

0
σn

V T

∥∥∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥∥∥


0

. . .

0
σn


∥∥∥∥∥∥∥∥∥ = σn.



Conditioning of least squares problems

Conditioning of linear least squares is a more complicated problem
than the one for linear systems.
We will not give a full proof:

Theorem (Trefethen, Bau, Theorem 18.1)

Consider the linear least squares problem min∥Ax− y∥, with
A ∈ Rm×n with full column rank. Its relative condition number
with respect to the input y is bounded by

κrel ,y→x ≤
κ(A)

cos θ
,

and with respect to A it is bounded by

κrel ,A→x ≤ κ(A) + κ(A)2 tan θ,

where θ is the angle such that cos θ = ∥Ax∥
∥y∥ .



The geometric picture

y

0

image(A)

Ax

y − Ax

θ

y ‘split’ into two orthogonal components: Ax and y − Ax.
QR and SVD reveal their norms: if A = QR,Q =

[
Q0 Qc

]
or

A = UΣV T , U =
[
U0 Uc

]
(as in their thin versions) then

∥Ax∥ = ∥QT
0 y∥ = ∥UT

0 y∥ = ∥y∥ cos θ,
∥y − Ax∥ = ∥QT

c y∥ = ∥UT
c y∥ = ∥y∥ sin θ.



Some intuition

▶ θ ≈ 90◦: y almost orthogonal to ImA: a small (relative)
change in y causes a large (relative) change in the solution.

▶ κ(A) tells us ‘how well we can extract ImA from A’: for
instance,

A1 =

1 0
0 1
1 0

 and A2 =

30 000 30 000
30 000 30 001
30 000 30 000


have the same image, but a small (relative) perturbation to
A2 alters ImA2 more.

▶ Actually, κ2(A) is the relative distance to the nearest matrix Ã
without full column rank, generalizing the square case.

▶ θ ≈ 0◦ gives more well-behaved problems: the condition
number is ≈ κ(A) instead of ≈ κ(A)2).

Book references: Trefethen-Bau, Lecture 18 (with more detail).


