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Lecture Outline

• Understand basic concepts of machine learning (ML)
• Differentiate between learning paradigms and fundamental ML 

tasks
• Discuss data types and their roles in ML
• Statistical Learning Theory:  Learn about generalization, 

bias/variance tradeoff, and regularization
• Model Selection: How to evaluate a model and robustly assess its 

generalization



Introduction to Machine Learning



What is Machine Learning?

• Machine learning or Learning from 
Data

• Classical Computing: Data & Program 
→ Results

• (Supervised) Machine Learning: Data & 
Results → Program

• In more formal terms, a program is 
some unknown function for which we 
can observe data (and corresponding 
results)

• Key Components: 
• Data
• Model
• Learning Algorithm

Statistics

Artificial Intelligence

Data
Science

Data Mining

Database

Pattern
Recognition

Machine
Learning

Deep
Learning

Computational
Neuro Science



What is Learning?

Tom Mitchell, 1997:
A computer program is said to learn from experience E with respect to some 
class of tasks T and performance measure P, if its performance at tasks in T, 
as measured by P, improves with experience E.

Three key components
• Task → a problem we would like to solve
• Experience → data to learn from
• Performance Measure → a measure of how well we learned



ML Lifecycle
Learning Data

A collection of relevant samples to train the ML model. Depending 
on task,  should include ground truth predictions for example 

inputs.

Models & 
Algorithms

ML models are trained on 
available data using 

optimization algorithms 
that can modify 

predictions and knowledge 
captured by the model

Trained Model
A trained model can 
provide predictions 

and/or identify patterns 
in fresh data

Task 
Characterization

Characterize the problem 
to be solved by a ML 

model
• No «algorithmic» 

solution
• Excessive 

computational cost
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Learning Paradigms

Supervised 
Learning

Learn an unknown 
function predicting an 
output in response to 

an input
• Diagnose disease 

given patient 
profile

Unsupervised 
Learning

Identification of structures, 
regularities associations, 

distribution and anomalies 
in the data

• Signaling anomalous 
physiological 

measurements

Reinforcement Learning
Learning of a policy or complex 

behaviour while being allowed to 
observe only partial responses 

from the interaction with the 
environment or the user

• Personalized treatment policy 
for a patient

(𝑥, 𝑦) (𝑥) (𝑠, 𝑎, 𝑟)
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And much… much more (semi-supervised, weakly supervised, continual, …)



Supervised Tasks: Classification and 
Regression
• Definition: Learning from labeled data to make predictions about 

categorical or continuous outcomes
• Classification:

• Binary or multi-class.
• Example: Predicting disease presence.

• Regression:
• Predicting continuous variables.
• Example: Forecasting patient survival times.



Unsupervised Tasks: Clustering

• Definition: Grouping similar data points
• Common Algorithms:

• k-Means Clustering.
• Hierarchical Clustering.
• DBSCAN.

• Applications:
• Identifying subtypes of cancer from genetic profiles (stratification)



Unsupervised Tasks: Dimensionality 
Reduction
• Definition: simplifying data representation (e.g., for visualizing 

high-dimensional data)
• Common Algorithms:

• Principal Component Analysis (PCA).
• t-SNE.

• Applications:
• Genomics data analysis.
• Visualizing patient features and their similarity



Data Vs Learning Models
The nature of data deeply influences the choice of the learning 
model and its efficacy

Type Distribution

Categorical

ContinuousOrdinal

Mixed

Separability

Relational
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Which data for which tasks?

A general distinction:
• Unstructured data: e.g., tabular data. Features do not have particular 

relationships one another.
• Structured data: e.g., images, sequences. Features are related to one 

another (e.g., sequences have a temporal dimension).
The type of data influences the choice of the learning model:
• E.g. convolutional networks for images.
• Data help us identify inductive biases for models

Inductive Bias

The incorporation of domain knowledge in model design (which influences its 
effectiveness on certain data types)



Data Types

• Tabular Data
• Rows represent samples; columns represent features
• Typically mix features of heterogenous type and scale
• Example: Patient data with age, weight, and diagnosis.

• Vectors
• Numerical arrays representing features 
• Apparently similar to tabular (but different from a fine-grained math perspective)
• Example: spectral features of an EEG.

• Images
• Pixel grids represented as matrices/tensors.
• Example: X-ray images for disease diagnosis.

• Sequential Data
• Ordered data with temporal or logical sequence.
• Example: EEG signals, medical records across time

• …and more



Vectorial/Tabular
• A D-dimensional numerical array

• Continuous, categorical or mixed values
• Describes an individual of our world of 

interest, e.g. patients in a biomedical 
application

• The single dimensions 𝑑 are called 
features and numerically represent an 
attribute of the individual
• E.g. if 𝒙 describes a patient, 𝒙 𝑑 (or 𝑥𝑑) can 

be his/her age
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𝒙

𝒙
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Images
Images are matrices of pixels intensity 
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Each pixel has 
an associated 

(spatial) 
coordinate 
within the 

image

Inductive Bias

Nearby pixels tend to have the same color



Sequences
• Variable size data characterized by sequentially dependent information

• Each element of the sequence is (possibly) a vector (multivariate)

• Sequence elements can be sampled at irregular times

• In ML can be used both as input and output information 
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Inductive Bias

The element at time 𝑡 in the sequence may depend only on its (more or less) recent past



Graphs
Allow to represent articulated relationships in compound data

Node label
𝑥𝑣

Edge label 𝑥𝑣𝑢

𝑣

𝑢



Basics of Statistical Learning Theory



Fundamental Definitions in ML

• Sample/observation/example: A single instance or observation 
𝒙

E.g. a vector 𝒙 = 𝑥1, … , 𝑥𝐾

• Dataset: A collection of samples 𝐷 = 𝒙1, 𝒚1 ;  … 𝒙𝑁 , 𝒚𝑁

• Features: Attributes or variables describing each sample, e.g. 𝑥𝑘

• Target: Desired outcomes for supervised learning, e.g. 𝒚𝑛



ML Models 

• ML model: A parametric function ℎ𝜃,𝛼 (𝒙) that can be applied to 
data 𝐱 and whose behavior is regulated by adaptive parameters 𝜃
(learned) and by hyperparameters 𝛼 (externally set)
• ℎ𝜃,𝛼 defines a family of functions
• Changing parameters (and hyperparameters) changes how the function 

behaves

• Training: Process through which the parameters 𝜃 of model 
ℎ𝜃,𝛼 are modified to adapt to training dataset 𝐷 by optimizing a 
cost/error function 𝐸 ℎ𝜃,𝛼 𝐷)



Empirical Error (Supervised Learning)
Suppose we have a dataset of N samples

𝐷 = 𝒙1, 𝒚1 ;  … 𝒙𝑁, 𝒚𝑁

The empirical (sample) error of model h𝜃 (omitting 𝛼 for simplicity) with 
respect to the sample 𝐷 is

𝐸 ℎ𝜃 𝐷) =
1

𝑁


(𝒙𝑖,𝒚𝑖)

𝐿(ℎ𝜃 𝒙𝑖 , 𝒚𝑖)

where 𝐿(ℎ𝜃 𝒙𝑖 , 𝒚𝑖)is the loss, i.e. a function measuring the discrepancy

between the predicted ℎ𝜃 𝒙𝑖 and the target value𝒚𝑖
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Learning is the process which identifies those parameters 𝜃 that minimize 
𝐸 ℎ𝜃 𝐷) ⇒ however, we would like to achieve something more… 



Generalization

• Sought property of a model ℎ𝜃 that, trained on 𝐷, generalizes well its output 
on new/fresh data 𝐷′
• The goal of a ML model is to predict well on unseen data
• Opposite of memorization

• Generalization states that the model can transfer its performance from a 
dataset (finite data) to new samples (infinite data)

• Statistical learning theory studies the conditions under which we can 
generalize starting from a finite sample

• How we can make sure that the empirical error 𝐸 ℎ𝜃 𝐷) is a good estimator 
of the risk 𝑅 ℎ𝜃

𝐸 ℎ𝜃 𝐷) =
1

𝑁


(𝒙𝑖,𝒚𝑖)

𝐿(ℎ𝜃 𝒙𝑖 , 𝒚𝑖) ≈ 𝑅 ℎ𝜃 = 𝔼𝑥,𝑦~P 𝐿 𝒙, 𝒚 = න 𝐿 ℎ𝜃 𝒙 , 𝒚 𝑑𝑃(𝒙, 𝒚)



Empirical Risk & Model Complexity
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Underfit: model 
is too simple 
and cannot 
learn the right 
function

A balanced 
model 
complexity gives 
us generalization 
guarantees

Overfit: model is too 
complex; it is 
memorizing the 
dataset but not 
generalizing



Bias-Variance

Bias: how close is 
the learned function 
from the target one?

Error from overly 
simplistic models.

Example: Linear 
regression on non-
linear data.

Variance: How much 
dataset-dependent is 
my learned function?

Error from overly 
complex models 
capturing noise.

Example: Overfitting 
high-order 
polynomials.

Trade-off

Balancing bias and 
variance to achieve 
optimal performance.

Need tools to measure 
trade-off and control 
model complexity



Given a finite dataset 𝐷 we need to create 
(at least) 3 partitions
• Training set 𝐷𝑡𝑟 is used to learn model 

parameters
• Validation set 𝐷𝑣𝑎𝑙  is used to measure 

overfit/underfit and take decisions on 
the model (hyperparameters 𝛼)

• Test set 𝐷𝑡𝑠𝑡 is used to reliably estimate 
𝑅 ℎ𝜃;𝛼 (generalization)
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Measuring the trade-off
How do we measure overfitting/underfitting?



Model Selection and Evaluation



Model Selection
Set of techniques from robust statistics to measure generalization, avoid 
overfitting and reduce the effect of model bias

Key catch: separate training phase,  from the choice of model configuration 
(including hyperparameters 𝛼), from model generalization assessment

Training Validation TestingData

Learn parameters 𝜃∗

minimizing 𝐸 ℎ𝜃,𝛼 𝐷𝑡𝑟)
Find hyperparameters 𝛼∗

optimizing 𝐸 ℎ𝜃∗,𝛼 𝐷𝑣𝑎𝑙)

Assess generalization as 
𝐸 ℎ𝜃∗,𝛼∗ 𝐷𝑡𝑠𝑡)



Parameters Vs Hyperparameters

• Parameters 𝜽
• Learned automatically from data through training
• Contain model knowledge (data patterns)
• Example: coefficients of linear regression; weights of a neural network

• Hyperparameters 𝜶
• Can be set manually by the practitioner (can also be automated)
• Tuned in model selection to optimize model generalization

• Example: k in kNN; learning rates in neural networks; depth in decision 
trees



Model selection and inductive bias

• Hyperparameters are not the only aspect tuned during model selection
• Preprocessing and architectural design choices of an ML model influences deeply

• The type of tasks it can solve
• The type of data it can handle
• The quality of generalization of its results

• Design choices (for model selection)
• Data normalization (preprocessing more in general)
• Neural network topology
• Probability distributions
• Activation functions
• Distance metrics
• Regularization strategies
• Loss functions
• ….
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Inductive bias



Regularization

• Techniques to prevent overfitting by adding constraints to the model
• Implemented through mechanisms to control model complexity

A typical scheme entails modifying the training error

𝐸 ℎ𝜃,𝛼 𝐷𝑡𝑟) =
1

𝑁


(𝒙𝑖,𝒚𝑖)

𝐿(ℎ𝜃 𝒙𝑖 , 𝒚𝑖) + 𝜆𝑃(ℎ𝜃,𝛼)

• 𝑃(ℎ𝜃,𝛼) is a term penalizing if ℎ𝜃,𝛼 is too complex 
• E.g.: using too many parameters 𝜃
• We will see example using norms of the parameter vectors as penalty functions

• 𝜆 is an hyperparameter (𝜆 ∈ 𝛼) regulating the trade-off between training error 
and penalization



Managing Model Selection - Holdout Splits
The preliminary action for model selection requires generating the dataset 
partition into training, validation and test
The holdout approach creates a static partition by selecting at random 
(without replacement!!!) which samples end-up in each of the three bins 
Magic proportions used often: 40/30/30, 50/25/25, 60/20/20, 80/10/10

Training Validation Test
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Dataset

30%

30%

40%



A word of caution about random splitting
The selection of samples cannot be fully random: it 
needs to preserve in the three partitions the same 
distributional properties of the original dataset!
• Proportion of samples from each class in 

classification tasks
• Distribution of relevant input features, such as 

patient gender or age
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The solution typical amounts to do stratification or stratified sampling
1. Divide data in groups according to the variable w.r.t. which you want to 

stratify (e.g. the predicted class)
2. Sample at random training, validation and test samples from each of 

the group above according to the magic proportions 



Managing Model Selection – Grid 
Hyperparameter Search

Assume you have two sets of hyperparameters and their candidate values
𝛼1 = 0.1, 0.2, 0.3 , 𝛼2 = [0.01, 0.001, 0.0001]

Given a (well designed) split in 𝐷𝑡𝑟, 𝐷𝑣𝑎𝑙, 𝐷𝑡𝑠𝑡

1. Create a grid of hyperparameter to search, with as many elements as 
the combinations of 𝛼1 and 𝛼2 values: e.g. 𝛼1 = 0.1, 𝛼2 = 0.01, then 𝛼1
= 0.1, 𝛼2 = 0.001, … then 𝛼1 = 0.3, 𝛼2 = 0.0001

2. Instantiate as many models as elements of the grid above
3. Train each model instance on 𝐷𝑡𝑟 and assess its performance on 𝐷𝑣𝑎𝑙

4. Select the best performing model (combination of hyperparameters) on 
𝐷𝑣𝑎𝑙

5. Retrain the best performing model on 𝐷𝑡𝑟 ∪ 𝐷𝑣𝑎𝑙 and test generalization 
performance on 𝐷𝑡𝑠𝑡



k-fold cross-validation

5-fold validation

Resampling procedure obtain more robust estimates of performance in 
ML models while remaining sample effective
Reduces variability compared to a holdout train-validation-test split
1. Split the dataset into k folds.
2. Train the model on gray folds.
3. Validate on the blue fold.
4. Repeat for each fold and 

average the results.
TrainingValidation

fold 1
fold 2
fold 3
fold 4
fold 5

TestTest best model on hold-out



Measuring Validation Performance with K-
Fold



Leave-One-Out Cross-Validation

• Leave only one observation for validation each time

• Maximum use of data (useful with small sample sizes)

• Worse use of time



Nested Cross-Validation

A two-layered cross-validation 
method 
• Outer loop: Splits the dataset for 

model evaluation.
• Inner loop: Performs -fold cross-

validation for hyperparameter 
tuning.

Provides robust estimates of model 
generalization performance 
• Average test performance and its 

dispersion



Measuring predictive performance

• Evaluating how well a model is doing (on training, validation or 
test) requires the definition of a performance metric

• The performance metric can be (and generally is) different from 
the model loss function
• Loss function: serves to define the optimization problem that guides 

learning of the model parameters
• Performance function: measure how adequate a model is for the specific 

application in which it will be used
• Performance metrics need to be tailored to the specific 

application and to the nature of the finite dataset
• Example: highly imbalanced classes



Some Basic Metrics

Focus on classification tasks (regression is a 
bit less interesting on this subject)
If we have a binary classification problem (true 
false)
• True Positives (TP): Correctly predicted 

positive cases.
• True Negatives (TN): Correctly predicted 

negative cases.
• False Positives (FP): Incorrectly predicted as 

positive.
• False Negatives (FN): Incorrectly predicted as 

negative.

Img @ Wikipedia



Confusion Matrix

Provides insights into model performance across classes.

Actual Classes

Pr
ed

ic
te

d 
C

la
ss

es

Binary Multiclass



Precision and Recall

Precision is the proportion of true positive predictions among all 
positive predictions

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)

Recall (sensitivity or TP Rate (TPR)) is the proportion of true positive 
cases detected among all actual positives

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)

These metrics are crucial for imbalanced datasets



Example: Disease screening

High recall predictor:
• Ensures most diseased patients are identified.
• Minimizes false negatives but may increase false positives.

High precision predictor:
• Reduces false positives, ensuring accurate diagnosis.
• Important for reducing unnecessary treatments or tests.



F1 Metric

The harmonic mean of Precision and Recall balancing them into a 
single score

𝐹1 =  2 ∗
(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙)

(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙)

Useful when there is an uneven class distribution or when both 
Precision and Recall are important.



Specificity

• Specificity (or TN Rate (TNR)) is the proportion of true negative 
cases detected among all actual negatives

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

(𝑇𝑁 + 𝐹𝑃)

• A complement to recall (sensitivity)



AUC-ROC Curve

AUC-ROC evaluates binary classifiers
performance based on classification 
thresholds
• Receiver Operating Characteristic 

(ROC): Curve plotting TPR (Recall) vs. 
FPR

• Area Under Curve (AUC): Numerical 
representation of ROC quality

• AUC close to 1 indicates excellent 
performance.

• Useful for comparing multiple models.



Wrap-up



Take home lessons

• The nature of data and of the learning tasks guides the design choices of the 
learning model (Inductive bias)

• The goal of an ML model is to generalize well on new data, using a finite dataset in an 
optimal manner to estimate the theorical risk (error on infinite data)

• Model complexity needs to be controlled to avoid overfitting and achieve 
generalization (regularization)

• Model selection provides us with a toolset to obtain robust estimates from the 
empirical risk, identifying optimal model hyperparameters and design choices (grid 
search, holdout, k-fold cross validation, nested CV)

• Choosing model performance metric requires insight into the final application and 
the nature of the dataset
• Confusion matrix: detailed class-wise analysis.
• Precision, recall and F1: imbalanced datasets.
• AUC-ROC: holistic view of classification thresholds.



Next Lecture

• Tomorrow: lab time!
• Next lecture (Thursday)

• Linear models in machine learning
• Linear regression models
• Logistic regression models
• Learning by least square minimization and gradient descent
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